JPH11258185A - Analytical method for thin film by x-rays - Google Patents

Analytical method for thin film by x-rays

Info

Publication number
JPH11258185A
JPH11258185A JP10057993A JP5799398A JPH11258185A JP H11258185 A JPH11258185 A JP H11258185A JP 10057993 A JP10057993 A JP 10057993A JP 5799398 A JP5799398 A JP 5799398A JP H11258185 A JPH11258185 A JP H11258185A
Authority
JP
Japan
Prior art keywords
thin film
rays
mem
nonlinear
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10057993A
Other languages
Japanese (ja)
Inventor
Masayuki Hisayoshi
将之 久芳
Shinya Matsuno
信也 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP10057993A priority Critical patent/JPH11258185A/en
Publication of JPH11258185A publication Critical patent/JPH11258185A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an analytical method in which the substance characteristic of a material for a thin film can be analyzed easily and in a short time by a method wherein a theoretical value and a measured value are converted into a spectrum density distribution by a maximum entropy method(MEM) in addition to the method of nonlinear least squares and to a fitting technique and the method of nonlinear least squares is applied to its image space. SOLUTION: A sample in which a single-layer or multilayer thin film is formed on a substrate is irradiated with X-rays. The substance characteristic of a material for the thin film is measured on the basis of the dependence on the angle of incidence of the intensity of their reflected X-rays. In this case, in a process in which the substance characteristic is found in such a way that the measured value of the dependence on the angle of incidence of the intensity of the reflected X-rays agrees with a theoretical value, the theoretical value and the measured value are converted into a spectrum density distribution by an MEM. The method of nonlinear least squares is applied in its image space, and the substance characteristic is found. Thereby, the substance characteristic of the material for the thin film can be analyzed easily and in a short time without depending on experience.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、X線反射率測定に
よる薄膜の物質特性(例えば膜厚、密度、表面および界
面の粗さなど)の解析方法に関するものであり、詳細に
は、特にX線反射強度の入射角依存性から薄膜の物質特
性を解析する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing material properties (eg, film thickness, density, surface and interface roughness, etc.) of a thin film by measuring X-ray reflectivity. The present invention relates to a method for analyzing the material properties of a thin film from the dependence of the line reflection intensity on the incident angle.

【0002】[0002]

【従来の技術】試料にX線を照射すると、表面で反射す
るX線、表面では屈折しながらも透過し1、2層目の界
面で反射するX線、さらには2,3層目の界面で反射す
るX線などが干渉しあいX線の入射角度と干渉して検出
できる反射強度は複雑な曲線となる。
2. Description of the Related Art When a sample is irradiated with X-rays, X-rays reflected on the surface, X-rays refracted on the surface and transmitted while being reflected at the first and second layer interfaces, and further, the second and third layer interfaces are irradiated. X-rays and the like reflected by the X-rays interfere with each other and interfere with the incident angle of the X-rays, and the detected reflection intensity has a complicated curve.

【0003】一方、試料の層数、各層の厚さ、屈折率、
表面や界面の粗さ等の物質特性がわかっている場合は入
射角と反射強度の関係をフレネルの漸化式に基づいて理
論的に算出することが可能であり、検査機によって得ら
れた測定値と理論式によって得られた理論値との差の自
乗の和が最小になるような物質特性を試行錯誤で見つけ
だすことによって試料の物質特性を求めることが出来
る。試行錯誤で見つけだすのは非効率なので、通常は適
当な非線形最小自乗法を用いて物質特性(パラメータ)
のフィッティングが行われる。
On the other hand, the number of layers of a sample, the thickness of each layer, the refractive index,
If the material properties such as surface and interface roughness are known, the relationship between the incident angle and the reflection intensity can be theoretically calculated based on the Fresnel recurrence formula, and the measurement obtained by the inspection machine The material characteristics of the sample can be obtained by finding by trial and error a material characteristic that minimizes the sum of the squares of the difference between the value and the theoretical value obtained by the theoretical formula. Since finding by trial and error is inefficient, material properties (parameters) are usually calculated using an appropriate nonlinear least squares method.
Is performed.

【0004】ところが、後ろの図2に示すように、グラ
フの複雑さゆえ、フィッティング作業の初期値が解に相
当近くないとフィッティングが成功せず、その解に近い
初期値を見つけるために結局試行錯誤を行わなければな
らず、大変な時間がかかるという問題がある。
However, as shown in FIG. 2 below, the fitting is not successful unless the initial value of the fitting operation is very close to the solution due to the complexity of the graph, and eventually the trial is performed to find an initial value close to the solution. There is a problem that it is necessary to make a mistake and it takes a lot of time.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、前記
の問題点を解消しうる解析方法、即ち、薄膜材料の物質
特性を容易にしかも短時間に解析することのできる方法
を提供することである。
An object of the present invention is to provide an analysis method that can solve the above-mentioned problems, that is, a method that can easily and quickly analyze the material properties of a thin film material. It is.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
に、本発明は、反射強度の測定値と理論値とで直接フィ
ッティングするのではなく、測定値と理論値のそれぞれ
についてマキシマムエントロピーメソッド(以下、ME
Mという)により変換して反射強度の周波数成分分布を
求め、その周波数成分同士の差の自乗和が最小となるよ
うに物質特性を決定するものである。
In order to solve the above problems, the present invention does not directly fit a measured value and a theoretical value of the reflection intensity, but uses a maximum entropy method for each of the measured value and the theoretical value. Hereinafter, ME
M) to determine the frequency component distribution of the reflection intensity, and determine the material characteristics so that the sum of the squares of the differences between the frequency components is minimized.

【0007】即ち、本発明は、基板上に単層または多層
の薄膜を形成した試料にX線を照射し、その反射X線の
強度の入射角度に対する依存性から該薄膜の物質特性を
測定する方法において、前記反射X線強度の入射角度依
存性の測定値に理論値が一致するようにして物質特性を
求める過程において、非線形最小自乗法によるフィッテ
ィング手法に加えて、MEMによって理論値及び測定値
をスペクトル密度分布に変換し、その像空間において非
線形最小自乗法を適用することにより物質特性を求める
ことを特徴とするX線による薄膜の解析方法、である。
That is, the present invention irradiates a sample in which a single-layer or multilayer thin film is formed on a substrate with X-rays, and measures the material properties of the thin film from the dependence of the reflected X-ray intensity on the incident angle. In the method, in the process of obtaining a material property by making the theoretical value coincide with the measured value of the incident angle dependence of the reflected X-ray intensity, the theoretical value and the measured value are measured by MEM in addition to the fitting method by the nonlinear least square method. Is converted into a spectral density distribution, and a material characteristic is obtained by applying a non-linear least square method in the image space.

【0008】MEMとは、データのモデルとして線形な
自己回帰モデルを仮定し、その自己回帰モデルの係数を
推定し、その係数からスペクトル密度を推定する方法、
である。その目的はフーリエ変換と似ているが、その原
理は大きく異なり、MEMの方が比較的少数のデータか
ら安定したスペクトルが得やすいと言われており、窓関
数の選択という様な任意性の入り込む余地が少なく、得
られるスペクトル密度分布が相対的になめらかでフィッ
ティング作業に好都合という長所がある。
MEM is a method of assuming a linear autoregressive model as a data model, estimating coefficients of the autoregressive model, and estimating a spectral density from the coefficients.
It is. The purpose is similar to the Fourier transform, but the principle is very different, and it is said that MEM is easier to obtain a stable spectrum from a relatively small number of data, and arbitrariness such as selection of a window function is included. There is an advantage that there is little room, the obtained spectral density distribution is relatively smooth, and it is convenient for fitting work.

【0009】MEMによって周波数成分を求める過程に
おいて、反射強度と入射角度の4乗との積の周波数成分
分布を求めるとよりシャープな曲線を得ることが出来
る。このようにMEMを導入することにより、図2の様
な複雑な曲線も図3のように比較的単純な形状となり、
フィッティング作業が成功しやすい。周波数分布は試料
の各層の厚さ、屈折率と直接的な関係にあり、特にこの
2つの値を得るのに有効である。
In the process of obtaining frequency components by MEM, a sharper curve can be obtained by obtaining the frequency component distribution of the product of the reflection intensity and the fourth power of the incident angle. By introducing MEM in this manner, a complicated curve as shown in FIG. 2 also has a relatively simple shape as shown in FIG.
Fitting work is easy to succeed. The frequency distribution has a direct relationship with the thickness and the refractive index of each layer of the sample, and is particularly effective for obtaining these two values.

【0010】一方、この方法によるフィッティングは、
従来の技術に比べ誤差による影響を受けやすいという欠
点がある。そこでこの方法でフィッティングするだけで
終わらず、この結果を初期値として従来の強度でのフィ
ッティングを引き続き行うことによって物質特性を最終
的に決定する。これにより従来の技術で問題であった適
切な初期値を見つけにくいと言う問題点を解決した。
On the other hand, fitting by this method is as follows:
It has a disadvantage that it is more susceptible to errors than the conventional technology. Therefore, the material properties are finally determined by not only ending with the fitting by this method but also performing fitting with the conventional strength using the result as an initial value. This solves the problem that it is difficult to find an appropriate initial value, which is a problem in the conventional technology.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施の形態を説明
する。
Embodiments of the present invention will be described below.

【0012】[0012]

【実施例1】図2は、Si基盤上に酸化シリコン薄膜を
形成した試料のX線反射率測定結果である。そのMEM
による変換後のフィッティング結果を図3に示す。横軸
は角度(2θ)に対する周波数(1/2度)であり、縦
軸はその密度である。これにより、酸化シリコン薄膜の
概略の膜厚が41.04nmとわかった。この結果を初
期値として従来の技術により、酸化シリコン薄膜の膜
厚、密度、表面粗さ及び界面粗さが下記のとおり求めら
れた。また、その結果を図4に示す。ドットが測定値
で、線が求めた物質特性に基づく理論式による計算値で
ある。
EXAMPLE 1 FIG. 2 shows the results of measuring the X-ray reflectivity of a sample having a silicon oxide thin film formed on a Si substrate. The MEM
FIG. 3 shows the fitting result after the conversion by. The horizontal axis represents the frequency (1/2 degree) with respect to the angle (2θ), and the vertical axis represents the density. As a result, the approximate thickness of the silicon oxide thin film was found to be 41.04 nm. Using this result as an initial value, the thickness, density, surface roughness, and interface roughness of the silicon oxide thin film were determined as follows by a conventional technique. FIG. 4 shows the results. The dots are the measured values, and the lines are the values calculated by the theoretical formula based on the obtained material properties.

【0013】 酸化シリコンの膜厚:44.5nm 酸化シリコンの密度:2.2g/cc 表面粗さ :0.43nm 界面粗さ :0.07nm ここで、界面粗さとは、酸化シリコンとSi基盤の境界
面の粗さを言う。なお、エリプソメータによる測定で酸
化シリコンの膜厚は45nm、原子間力顕微鏡により測
定した表面粗さは0.43nmであり、本方法による解
析結果と非常によく一致した。
[0013] Film thickness of silicon oxide: 44.5 nm Density of silicon oxide: 2.2 g / cc Surface roughness: 0.43 nm Interface roughness: 0.07 nm Here, the interface roughness is defined as that of silicon oxide and Si base. It refers to the roughness of the interface. Note that the thickness of the silicon oxide film was 45 nm as measured by an ellipsometer, and the surface roughness was 0.43 nm as measured with an atomic force microscope, which was in excellent agreement with the analysis result by this method.

【0014】[0014]

【実施例2】図5はSi基板上にCu(銅)薄膜を形成
した試料のX線反射率測定結果である。そのMEMによ
る変換後のフィッティング結果を図6に示す。これによ
り、Cu薄膜の概略の膜厚が97nmと算出された。こ
の値を初期値として従来法により銅薄膜の膜厚、密度、
表面粗さそして界面粗さが下記のとおり求められた。
EXAMPLE 2 FIG. 5 shows the results of measuring the X-ray reflectivity of a sample in which a Cu (copper) thin film was formed on a Si substrate. FIG. 6 shows the fitting result after the conversion by MEM. Thus, the approximate thickness of the Cu thin film was calculated to be 97 nm. With this value as the initial value, the thickness, density,
The surface roughness and interface roughness were determined as follows.

【0015】 銅薄膜の膜厚 :99.9nm 銅薄膜の密度 :8.9g/cc 表面粗さ :1.0nm 界面粗さ :0.1nmThickness of copper thin film: 99.9 nm Density of copper thin film: 8.9 g / cc Surface roughness: 1.0 nm Interface roughness: 0.1 nm

【0016】[0016]

【実施例3】図7はSi基板上にAu(金)薄膜を、さら
にその上にCu薄膜を形成した試料のX線反射率測定結
果である。そのMEMによる変換後のフィッティング結
果を図8に示す。これによりCu及びAu薄膜の膜厚が
それぞれ107nm、8.7nmと算出された。この結
果を基に従来の技術により、各層の膜厚及び界面粗さを
容易に求めることが出来た。その結果は下記のとおりで
ある。
Embodiment 3 FIG. 7 shows the results of measuring the X-ray reflectivity of a sample in which an Au (gold) thin film is formed on a Si substrate and a Cu thin film is further formed thereon. FIG. 8 shows the fitting result after the conversion by MEM. As a result, the thicknesses of the Cu and Au thin films were calculated to be 107 nm and 8.7 nm, respectively. Based on this result, the film thickness and the interface roughness of each layer could be easily obtained by the conventional technique. The results are as follows.

【0017】 表面粗さ :1.0nm 銅薄膜の膜厚 :102nm 銅と金の界面粗さ :0.52nm 金薄膜の膜厚 :9.9nm 金とシリコンの界面粗さ:0.1nmSurface roughness: 1.0 nm Film thickness of copper thin film: 102 nm Interface roughness between copper and gold: 0.52 nm Film thickness of gold thin film: 9.9 nm Interface roughness between gold and silicon: 0.1 nm

【0018】[0018]

【比較例1】図9は、Si基板上に酸化シリコン薄膜を
形成した、実施例2と同じ資料でMEMを用いて初期値
を決めずに、酸化シリコンの膜厚の初期値を30nmと
して非線形最小自乗法によりフィッティングを行った結
果である。計算値は測定値に見られるような振動が見ら
れず、単調現象する曲線となった。このあと試行錯誤で
初期値を求めて実施例2と同じ結果を得るのに約30分
かかった。
[Comparative Example 1] FIG. 9 shows a case where a silicon oxide thin film was formed on a Si substrate, and the initial value of the silicon oxide film thickness was set to 30 nm without using an MEM to determine the initial value. It is the result of performing fitting by the least square method. The calculated value did not show the vibration as seen in the measured value, and was a curve with a monotonous phenomenon. Thereafter, it took about 30 minutes to obtain an initial value by trial and error to obtain the same result as in Example 2.

【0019】因みに、実施例2においては10分程度で
最適解を求めることができている。
Incidentally, in the second embodiment, the optimum solution can be obtained in about 10 minutes.

【0020】[0020]

【発明の効果】本発明によれば、MEM法により得られ
る最適値に近い値を基にして、非線形最小自乗法による
精密化を行うことができるので、薄膜材料の物質特性を
経験によらず容易に短時間に解析することができる。
According to the present invention, since the refinement by the nonlinear least squares method can be performed based on the value close to the optimum value obtained by the MEM method, the material characteristics of the thin film material can be determined regardless of the experience. Analysis can be easily performed in a short time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の概要を説明するための図である。FIG. 1 is a diagram for explaining an outline of the present invention.

【図2】本発明の実施例1におけるX線反射率測定結果
の説明図である。
FIG. 2 is an explanatory diagram of an X-ray reflectance measurement result in Example 1 of the present invention.

【図3】本発明の実施例1におけるMEMによるフィッ
ティング結果の説明図である。
FIG. 3 is an explanatory diagram of a fitting result by MEM in Example 1 of the present invention.

【図4】本発明の実施例1におけるMEMで得られた結
果を初期値として、非線形最小自乗法によるフィッティ
ングを行った結果の説明図である。
FIG. 4 is an explanatory diagram of a result of performing fitting by a nonlinear least squares method using a result obtained by MEM in Example 1 of the present invention as an initial value.

【図5】本発明の実施例2におけるX線反射率測定結果
の説明図である。
FIG. 5 is an explanatory diagram of an X-ray reflectance measurement result in Example 2 of the present invention.

【図6】本発明の実施例2におけるMEMによるフィッ
ティング結果の説明図である。
FIG. 6 is an explanatory diagram of a fitting result by MEM in Example 2 of the present invention.

【図7】本発明の実施例3におけるX線反射率測定結果
の説明図である。
FIG. 7 is an explanatory diagram of an X-ray reflectance measurement result in Example 3 of the present invention.

【図8】本発明の実施例3におけるMEMによるフィッ
ティング結果の説明図である。
FIG. 8 is an explanatory diagram of a fitting result by MEM in Example 3 of the present invention.

【図9】本発明の比較例1の説明図である。FIG. 9 is an explanatory diagram of Comparative Example 1 of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基板上に単層または多層の薄膜を形成し
た試料にX線を照射し、その反射X線の強度の入射角度
に対する依存性から該薄膜の物質特性を測定する方法に
おいて、前記反射X線強度の入射角度依存性の測定値に
理論値が一致するようにして物質特性を求める過程にお
いて、非線形最小自乗法によるフィッティング手法に加
えて、マキシマムエントロピーメソッド(MEM)によ
って理論値及び測定値をスペクトル密度分布に変換し、
その像空間において非線形最小自乗法を適用することに
より物質特性を求めることを特徴とするX線による薄膜
の解析方法。
1. A method for irradiating a sample having a single-layer or multi-layer thin film formed on a substrate with X-rays and measuring the material properties of the thin film from the dependence of the intensity of the reflected X-rays on the incident angle. In the process of determining the material properties so that the theoretical value matches the measured value of the incident angle dependence of the reflected X-ray intensity, the theoretical value and the measurement value are measured by the maximum entropy method (MEM) in addition to the fitting method using the nonlinear least squares method. Convert the values to a spectral density distribution,
A method of analyzing a thin film by X-rays, wherein a material property is obtained by applying a nonlinear least squares method in the image space.
JP10057993A 1998-03-10 1998-03-10 Analytical method for thin film by x-rays Withdrawn JPH11258185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10057993A JPH11258185A (en) 1998-03-10 1998-03-10 Analytical method for thin film by x-rays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10057993A JPH11258185A (en) 1998-03-10 1998-03-10 Analytical method for thin film by x-rays

Publications (1)

Publication Number Publication Date
JPH11258185A true JPH11258185A (en) 1999-09-24

Family

ID=13071544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10057993A Withdrawn JPH11258185A (en) 1998-03-10 1998-03-10 Analytical method for thin film by x-rays

Country Status (1)

Country Link
JP (1) JPH11258185A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271459A (en) * 1998-03-26 1999-10-08 Jeol Ltd Method for measuring beam
US7257192B2 (en) 2004-07-15 2007-08-14 Rigaku Corporation Method and apparatus for X-ray reflectance measurement
JP2019158605A (en) * 2018-03-13 2019-09-19 富士通株式会社 X-ray analysis apparatus, x-ray analysis method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271459A (en) * 1998-03-26 1999-10-08 Jeol Ltd Method for measuring beam
US7257192B2 (en) 2004-07-15 2007-08-14 Rigaku Corporation Method and apparatus for X-ray reflectance measurement
JP2019158605A (en) * 2018-03-13 2019-09-19 富士通株式会社 X-ray analysis apparatus, x-ray analysis method, and program

Similar Documents

Publication Publication Date Title
US7321426B1 (en) Optical metrology on patterned samples
CN109540007B (en) Measuring method and measuring device for ultra-thick film
CN103743349B (en) Method and device for measuring nano film
WO2003046474A1 (en) Method and apparatus for measuring stress in semiconductor wafers
KR101822516B1 (en) Apparatus and method for measuring electromagnetic waves, and recording medium
JP2003529047A (en) X-ray reflectivity measurement on patterned wafer
US20030012337A1 (en) Determination of material parameters
KR20150012509A (en) A method and apparatus for measuring thickness of object to be measured
TWI441271B (en) System, method and computer readable medium for through silicon via structure measurement
Salenbien et al. Laser-based surface acoustic wave dispersion spectroscopy for extraction of thicknesses, depth, and elastic parameters of a subsurface layer: Feasibility study on intermetallic layer structure in integrated circuit solder joint
JP2002267417A (en) Film thickness measuring method and step measuring method
JPH11258185A (en) Analytical method for thin film by x-rays
JP3781245B2 (en) Manufacturing method of semiconductor device
US7463355B1 (en) Nondestructive optical technique for simultaneously measuring optical constants and thickness of thin films
JP2003506675A (en) Improved optical method for measuring metal thin films
JPH07294220A (en) Method and apparatus for detecting film thickness of multilayered thin film
US11041798B2 (en) Arrangement for determining the achievable adhesive strength before forming a connection having material continuity to a surface of a joining partner
US6453263B1 (en) Surface analysis using ellipsometry
JP2009109387A (en) Sample analysis apparatus and method
Gamsky et al. Infrared reflection absorption spectroscopy of photoresist films on silicon wafers: measuring film thickness and removing interference fringes
Prudnikov et al. Wavelet transform approach to the analysis of specular x-ray reflectivity curves
JP3339243B2 (en) X-ray reflectance analysis method and apparatus
KR100969213B1 (en) Method for analyzing membrane structure and apparatus therefor
JPH08338819A (en) Method and apparatus for x ray analysis
Schram et al. Feasibility study to probe thin inorganic and organic coatings on aluminium substrates by means of visible and infrared spectroscopic ellipsometry

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510