JPH11252796A - Power system higher harmonic real-time simulator - Google Patents

Power system higher harmonic real-time simulator

Info

Publication number
JPH11252796A
JPH11252796A JP10049474A JP4947498A JPH11252796A JP H11252796 A JPH11252796 A JP H11252796A JP 10049474 A JP10049474 A JP 10049474A JP 4947498 A JP4947498 A JP 4947498A JP H11252796 A JPH11252796 A JP H11252796A
Authority
JP
Japan
Prior art keywords
current
harmonic
voltage
load
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10049474A
Other languages
Japanese (ja)
Other versions
JP3599157B2 (en
Inventor
Kiyotaka Ueno
清隆 上野
Shinya Kawada
信哉 川田
Toru Katsuno
徹 勝野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Fuji Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP4947498A priority Critical patent/JP3599157B2/en
Publication of JPH11252796A publication Critical patent/JPH11252796A/en
Application granted granted Critical
Publication of JP3599157B2 publication Critical patent/JP3599157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To faithfully reproduce higher harmonic phenomena in a real system by realizing higher harmonic current response without delays to higher harmonic voltage, and enabling load in the generation of higher harmonics and absorptive load to be simulated individually. SOLUTION: This simulator is equipped with a Fourier transform means 501 which samples system voltage digitally, Fourier-transforms it, and detects the phase of the voltage of fundamental voltage, a quantity-of-current-souse-load operating means 502 which operates the higher harmonic current vector synchronized with the phase of fundamental wave voltage, based on the phase of the fundamental wave voltage and the preset current source setting currents, an instantaneous value converting means 503, which converts the higher harmonic current vector outputted from this operation means 502 into instantaneous value since waveform and converts this waveform from digital in analog so as to make a higher harmonic current command as higher harmonic wave generation load, and means which injects higher harmonic current into the system by driving a current source amplifier 504, in accordance with the higher harmonic current command.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、一般需要家を縮約
して高調波発生負荷または吸収負荷として動作する負荷
モデルにより実系統の高調波を模擬可能とした電力系統
高調波リアルタイムシミュレータに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power system harmonic real-time simulator capable of simulating a real system harmonic by a load model operating as a harmonic generation load or an absorption load by reducing a general customer.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
電力系統シミュレータは種々提供されているが、それら
の多くは商用周波数である50Hzまたは60Hzの基
本波電圧・電流による現象を模擬するものであった。こ
のため、パワーエレクトロニクス機器等に起因して実際
の系統にある程度(数%)存在する高調波を模擬するこ
とができず、特に、周波数の高い高調波電圧に対し、高
調波インピーダンスに対応して限りなく小さい時間遅れ
を持つ高調波電流を模擬するためには、一瞬のうちに電
流応答波形をディジタル演算して応答遅れのない理想の
電流源を駆動しなくてはならず、これは物理的に困難で
あった。
2. Description of the Related Art
Although various power system simulators are provided, many of them simulate a phenomenon caused by a fundamental voltage / current at a commercial frequency of 50 Hz or 60 Hz. For this reason, it is not possible to simulate harmonics that exist to some extent (several percent) in the actual system due to power electronics equipment and the like. In order to simulate a harmonic current with an extremely small time delay, the current response waveform must be digitally operated in an instant to drive an ideal current source with no response delay. Was difficult.

【0003】そこで本発明は、系統の高調波電圧に対す
る高調波電流の応答遅れを補償し、高調波電圧や電流に
よる現象を高精度に模擬できるようにした電力系統高調
波リアルタイムシミュレータを提供しようとするもので
ある。
Accordingly, the present invention aims to provide a power system harmonic real-time simulator capable of compensating for a response delay of a harmonic current with respect to a harmonic voltage of a system and simulating a phenomenon caused by the harmonic voltage or current with high accuracy. Is what you do.

【0004】[0004]

【課題を解決するための手段】上記課題を解決するた
め、請求項1記載の発明は、系統電圧をディジタルサン
プリングしてフーリエ変換し、基本波電圧の位相を検出
するフーリエ変換手段と、前記基本波電圧の位相と予め
設定された電流源設定電流とに基づいて基本波電圧位相
に同期した高調波電流ベクトルを演算する電流源負荷量
演算手段と、前記電流源負荷量演算手段から出力される
高調波電流ベクトルを瞬時値正弦波形に変換し、この波
形をD/A変換することにより高調波発生負荷としての
高調波電流指令を作成する瞬時値変換手段と、前記高調
波電流指令に従って電流源アンプを駆動し、系統へ高調
波電流を注入する手段と、を備えたものである。
In order to solve the above-mentioned problems, the present invention according to claim 1 comprises a Fourier transform means for digitally sampling a system voltage and performing a Fourier transform to detect a phase of a fundamental wave voltage; Current source load calculating means for calculating a harmonic current vector synchronized with the fundamental voltage phase based on the phase of the wave voltage and a preset current source set current, and output from the current source load calculating means. An instantaneous value converting means for converting a harmonic current vector into an instantaneous value sine waveform and D / A converting the waveform to create a harmonic current command as a harmonic generation load, and a current source according to the harmonic current command Means for driving an amplifier and injecting a harmonic current into a system.

【0005】請求項2記載の発明は、系統電圧をディジ
タルサンプリングしてフーリエ変換し、高調波電圧を検
出するフーリエ変換手段と、前記高調波電圧、基本波電
圧、及び、高調波有効・無効電力設定手段により与えら
れる初期負荷量に基づいて、基本波電圧位相に同期し、
かつ負荷により吸収されるべき高調波電流ベクトルを演
算する電流変換演算手段と、前記電流変換演算手段の出
力を基本波電圧の位相を基準とした高調波電流ベクトル
に変換する電流変換手段と、前記電流変換手段から出力
される高調波電流ベクトルを瞬時値正弦波形に変換し、
この波形をD/A変換することにより高調波吸収負荷と
しての高調波電流指令を作成する瞬時値変換手段と、前
記高調波電流指令に従って電流源アンプを駆動し、系統
へ高調波電流を注入する手段と、を備えたものである。
According to a second aspect of the present invention, there is provided a Fourier transform means for digitally sampling a system voltage, performing a Fourier transform, and detecting a harmonic voltage, the harmonic voltage, the fundamental voltage, and the harmonic active / reactive power. Based on the initial load amount provided by the setting means, synchronized with the fundamental wave voltage phase,
And current conversion operation means for calculating a harmonic current vector to be absorbed by the load, and current conversion means for converting the output of the current conversion operation means into a harmonic current vector based on the phase of the fundamental voltage, Converting the harmonic current vector output from the current conversion means into an instantaneous value sine waveform,
An instantaneous value converter for creating a harmonic current command as a harmonic absorption load by D / A converting this waveform, and driving a current source amplifier in accordance with the harmonic current command to inject the harmonic current into the system. Means.

【0006】請求項3記載の発明は、系統電圧及び系統
電流をディジタルサンプリングしてフーリエ変換し、基
本波電圧の位相と高調波電流とを検出するフーリエ変換
手段と、前記基本波電圧の位相と予め設定された電流源
設定電流とに基づいて基本波電圧位相に同期した高調波
電流ベクトルを演算する電流源負荷量演算手段と、前記
高調波電流及び基本波電圧の位相に基づいて計測電流量
としての高調波電流ベクトルを演算する計測電流量演算
手段と、前記電流源負荷量演算手段の出力と計測電流量
演算手段の出力との偏差が入力され、前記計測電流量演
算手段の出力が前記電流源負荷量演算手段の出力に一致
するように制御演算を行う制御演算手段と、前記制御演
算手段から出力される高調波電流ベクトルを瞬時値正弦
波形に変換し、この波形をD/A変換することにより高
調波発生負荷としての高調波電流指令を作成する瞬時値
変換手段と、前記高調波電流指令に従って電流源アンプ
を駆動し、系統へ高調波電流を注入する手段と、を備え
たものである。
According to a third aspect of the present invention, there is provided a Fourier transform means for digitally sampling and Fourier-transforming a system voltage and a system current to detect a phase of a fundamental wave voltage and a harmonic current. Current source load amount calculating means for calculating a harmonic current vector synchronized with a fundamental voltage phase based on a preset current source set current; and a measured current amount based on the phases of the harmonic current and the fundamental voltage. And a deviation between the output of the current source load amount calculating unit and the output of the measured current amount calculating unit, and the output of the measured current amount calculating unit is A control operation means for performing a control operation so as to match the output of the current source load amount operation means, and a harmonic current vector output from the control operation means being converted into an instantaneous value sine waveform. Instantaneous value conversion means for creating a harmonic current command as a harmonic generation load by D / A converting a waveform, and means for injecting a harmonic current into a system by driving a current source amplifier in accordance with the harmonic current command And with.

【0007】請求項4記載の発明は、系統電圧をディジ
タルサンプリングしてフーリエ変換し、高調波電圧及び
高調波電流を検出するフーリエ変換手段と、前記高調波
電圧、基本波電圧、及び、高調波有効・無効電力設定手
段により与えられる初期負荷量に基づいて、基本波電圧
位相に同期し、かつ負荷により吸収されるべき高調波電
流ベクトルを演算する電流変換演算手段と、前記電流変
換演算手段の出力を基本波電圧の位相を基準とした高調
波電流ベクトルに変換する電流変換手段と、前記高調波
電流及び基本波電圧の位相に基づいて計測電流量として
の高調波電流ベクトルを演算する計測電流量演算手段
と、前記電流変換手段の出力と計測電流量演算手段の出
力との偏差が入力され、前記計測電流量演算手段の出力
が前記電流変換手段の出力に一致するように制御演算を
行う制御演算手段と、前記制御演算手段から出力される
高調波電流ベクトルを瞬時値正弦波形に変換し、この波
形をD/A変換することにより高調波吸収負荷としての
高調波電流指令を作成する瞬時値変換手段と、前記高調
波電流指令に従って電流源アンプを駆動し、系統へ高調
波電流を注入する手段と、を備えたものである。
According to a fourth aspect of the present invention, there is provided a Fourier transform means for digitally sampling a system voltage and performing a Fourier transform to detect a harmonic voltage and a harmonic current, and the harmonic voltage, the fundamental voltage, and the harmonic voltage. Based on the initial load amount provided by the active / reactive power setting means, a current conversion calculating means for calculating a harmonic current vector synchronized with the fundamental wave voltage phase and to be absorbed by the load; and Current conversion means for converting an output into a harmonic current vector based on the phase of the fundamental voltage, and a measurement current for calculating a harmonic current vector as a measurement current amount based on the harmonic current and the phase of the fundamental voltage And a deviation between the output of the current converting means and the output of the measured current calculating means is input, and the output of the measured current calculating means is calculated by the current converting means. Control arithmetic means for performing control arithmetic so as to match the output; and converting the harmonic current vector output from the control arithmetic means into an instantaneous value sine waveform, and D / A converting this waveform to obtain a harmonic absorption load. And a means for driving a current source amplifier in accordance with the harmonic current command and injecting a harmonic current into the system.

【0008】[0008]

【発明の実施の形態】以下、図に沿って本発明の実施形
態を説明する。まず、図7は本発明の実施形態が適用さ
れる電力系統シミュレータの全体構成図である。図7に
おいて、10は実系統における原子力発電所や水力・火
力発電所等に対応する発電機モデルであり、11は制御
装置、12はアナログ回路13及び出力アンプ14から
なる発電機本体である。15は発電機用変圧器としての
変圧器モデル、16は遮断器モデルを示す。また、20
はコンデンサ及びリアクトルからなる送電線モデル、3
0は遮断器モデル、40は系統用変圧器としての変圧器
モデルである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. First, FIG. 7 is an overall configuration diagram of a power system simulator to which the embodiment of the present invention is applied. In FIG. 7, reference numeral 10 denotes a generator model corresponding to a nuclear power plant, a hydro / thermal power plant, or the like in an actual system, reference numeral 11 denotes a control device, and reference numeral 12 denotes a generator main body including an analog circuit 13 and an output amplifier 14. Reference numeral 15 denotes a transformer model as a generator transformer, and reference numeral 16 denotes a circuit breaker model. Also, 20
Is a transmission line model consisting of a capacitor and a reactor, 3
0 is a circuit breaker model, and 40 is a transformer model as a system transformer.

【0009】更に、50はコントローラ51及び出力ア
ンプ52からなる負荷モデルであり、電力需要家に対応
する。本発明では、上記負荷モデル50を高調波発生負
荷または高調波吸収(消費)負荷として動作させ、高調
波電流指令に従って系統に高調波電流を注入(いわゆる
吸い出し動作も含む)することにより、実系統に存在す
る高調波を模擬するものである。
Reference numeral 50 denotes a load model including a controller 51 and an output amplifier 52, which corresponds to a power consumer. According to the present invention, the load model 50 is operated as a harmonic generation load or a harmonic absorption (consumption) load, and a harmonic current is injected into the system according to a harmonic current command (including a so-called extraction operation), thereby realizing a real system. This simulates the harmonics existing in.

【0010】次に、図1は請求項1〜請求項4に記載し
た発明の基本となる処理を概念的に示した図である。す
なわち、本発明では、まず系統電圧や必要に応じて系統
電流をディジタルサンプリングし、基本波や高調波とい
った周波数別のベクトルに展開(静止化)する。次に、
高調波電流ベクトル設定手段(電流源負荷量演算手段ま
たは設定負荷量の電流変換演算手段など)により、基本
波の位相に同期した高調波電流ベクトル(発生または吸
収されるべき高調波電流ベクトル)を演算する。その
際、高調波有効・無効電力設定手段により設定された初
期負荷量を用いることもある。そして、前記高調波電流
ベクトルを瞬時値正弦波形に変換すると共に、この瞬時
値正弦波形を基本波負荷電流瞬時値正弦波形に重畳して
D/A変換し、電流指令として電流源アンプを駆動する
ことにより、系統へ高調波電流を注入する。なお、系統
の高調波電流を計測して設定量にフィードバックし、計
測量が設定量に一致するようにPI制御演算等を行って
高調波電流指令を作成しても良い。
Next, FIG. 1 is a diagram conceptually showing the basic processing of the invention described in claims 1 to 4. That is, in the present invention, first, the system voltage and the system current are digitally sampled as necessary, and are developed (stationary) into frequency-specific vectors such as fundamental waves and harmonics. next,
Harmonic current vector setting means (current source load amount calculating means or current conversion calculating means of the set load amount, etc.) converts a harmonic current vector (a harmonic current vector to be generated or absorbed) synchronized with the phase of the fundamental wave. Calculate. At that time, the initial load amount set by the harmonic active / reactive power setting means may be used. Then, the harmonic current vector is converted into an instantaneous value sine waveform, and the instantaneous value sine waveform is superimposed on the fundamental load current instantaneous value sine waveform, D / A converted, and a current source amplifier is driven as a current command. This injects a harmonic current into the system. The harmonic current command may be created by measuring the harmonic current of the system and feeding it back to the set amount, and performing PI control calculation or the like so that the measured amount matches the set amount.

【0011】次に、図2は請求項1に記載した発明の実
施形態を示すブロック図である。この実施形態は、当該
負荷モデルを高調波発生負荷として動作させる例であ
る。図2において、系統接続点505から系統電圧v
a(t)の瞬時値がディジタルサンプリングされ、離散フー
リエ変換(DFT)手段501により基本波電圧位相θ
0が検出される。この基本波電圧位相θ0は電流源負荷量
演算手段502に入力され、予め実測により設定された
電流源設定電流Ig∠θgに従って基本波電圧位相θ0
同期した高調波電流ベクトル(実数部Ir、虚数部Ii)に
変換される。上記電流源負荷量演算手段502は、当該
負荷モデルを高調波発生負荷として見た場合の発生高調
波電流を演算している。
FIG. 2 is a block diagram showing an embodiment of the first aspect of the present invention. This embodiment is an example in which the load model is operated as a harmonic generation load. In FIG. 2, a system voltage v
The instantaneous value of a (t) is digitally sampled, and the fundamental wave voltage phase θ
0 is detected. The fundamental voltage phase θ 0 is input to the current source load amount calculating means 502, and a harmonic current vector (real number) synchronized with the fundamental voltage phase θ 0 according to the current source setting current I g ∠θ g set in advance by actual measurement The part I r is converted into an imaginary part I i ). The current source load amount calculation means 502 calculates a generated harmonic current when the load model is viewed as a harmonic generation load.

【0012】電流源負荷量演算手段502から出力され
た高調波電流ベクトルは瞬時値変換手段503において
振幅Ia、位相θaを有する瞬時値正弦波形に変換され
る。この波形はD/A変換されて電流指令となり、電流
源アンプ504に与えられる。電流源アンプ504で
は、上記電流指令に従って高調波電流を生成し、この高
調波を系統接続点505を介して系統に注入する。
The harmonic current vector output from the current source load amount calculating means 502 is converted into an instantaneous value sine waveform having an amplitude I a and a phase θ a by an instantaneous value converting means 503. This waveform is subjected to D / A conversion and becomes a current command, which is provided to the current source amplifier 504. The current source amplifier 504 generates a harmonic current in accordance with the current command, and injects the harmonic into the system via the system connection point 505.

【0013】図3は、請求項2に記載した発明の実施形
態を示すブロック図である。この実施形態は、当該負荷
モデルを高調波吸収負荷として動作させる例である。図
3において、離散フーリエ変換手段501によってn次
高調波の実効値電圧Van∠θ1が出力され、設定負荷量
の電流変換演算手段506に入力される。電流変換演算
手段506は、n次高調波の実効値電圧、基本波電圧、
及び、例えばa相のn次高調波の初期負荷量PLAn,Q
LAnを用いて、高調波インピーダンスに反比例した電流
ベクトルの実数部(a相についてはILAr)及び虚数部
(同じくI LAi)を演算し、出力する。なお、初期負荷量
LAn,QLAnは、図示されていない有効電力・無効電力
設定手段によって設定される値である。
FIG. 3 shows an embodiment according to the second aspect of the present invention.
It is a block diagram showing a state. In this embodiment, the load
This is an example in which the model is operated as a harmonic absorption load. Figure
3, the discrete Fourier transform means 501 uses the nth order
RMS voltage V of harmonican∠θ1Is output and the set load
Is input to the current conversion calculating means 506. Current conversion operation
The means 506 includes an effective value voltage of the nth harmonic, a fundamental voltage,
And, for example, the initial load P of the n-th harmonic of the a-phase.LAn, Q
LAnAnd the current is inversely proportional to the harmonic impedance
The real part of the vector (ILAr) And imaginary part
(Also I LAi) Is calculated and output. The initial load
PLAn, QLAnAre active power and reactive power not shown
This is a value set by the setting means.

【0014】電流変換演算手段506の出力は、後続の
電流変換手段512により基本波電圧の位相θaを基準
とした高調波電流ベクトルに変換され、その実数部Ir
及び虚数部Iiが瞬時値変換手段503に入力される。
すなわち、上記電流変換演算手段506及び電流変換手
段512は、当該負荷モデルを高調波吸収負荷として見
た場合に吸収されるべき高調波電流を演算している。
The output of the current converter operation means 506 is converted into a harmonic current vector relative to the phase theta a fundamental wave voltage by a subsequent current converting means 512, the real part I r
And the imaginary part I i are input to the instantaneous value conversion means 503.
That is, the current conversion calculation means 506 and the current conversion means 512 calculate the harmonic current to be absorbed when the load model is viewed as a harmonic absorption load.

【0015】瞬時値変換手段503では、高調波電流ベ
クトルが前記と同様に振幅Ia、位相θaを有する瞬時値
正弦波形に変換される。この値はD/A変換されて電流
指令となり、電流源アンプ504に与えられる。電流源
アンプ504では、上記電流指令に従って高調波電流を
生成し、系統接続点505を介して系統に注入する(系
統から吸い出す)。
In the instantaneous value conversion means 503, the harmonic current vector is converted into an instantaneous value sine waveform having an amplitude I a and a phase θ a in the same manner as described above. This value is subjected to D / A conversion to become a current command, which is given to the current source amplifier 504. The current source amplifier 504 generates a harmonic current in accordance with the current command and injects it into the system via the system connection point 505 (extracts from the system).

【0016】また、図4は請求項3に記載した発明の実
施形態を示すブロック図である。この実施形態は、図2
の実施形態に高調波電流のフィードバックループを付加
して構成されており、負荷モデルが発生する高調波電流
をその設定量に高精度に一致させるようにしたものであ
る。本実施形態においては、離散フーリエ変換手段50
1に系統電圧va(t)の瞬時値と、シャント510により
検出した系統電流Ia(t)の瞬時値とが入力される。離散
フーリエ変換手段501からは、基本波電圧の位相θa
とn次高調波の実効値電流Ian∠θ2とが出力され、こ
れらは各々電流源負荷量演算手段502、計測電流量演
算手段507に入力される。
FIG. 4 is a block diagram showing an embodiment of the invention described in claim 3. This embodiment is shown in FIG.
In this embodiment, a harmonic current feedback loop is added to the above-described embodiment, and the harmonic current generated by the load model is matched with the set amount with high accuracy. In this embodiment, the discrete Fourier transform means 50
1, the instantaneous value of the system voltage v a (t) and the instantaneous value of the system current I a (t) detected by the shunt 510 are input. From the discrete Fourier transform means 501, the phase θ a of the fundamental wave voltage
And an effective value current I an ∠θ 2 of the n-th harmonic are output to the current source load amount calculating means 502 and the measured current amount calculating means 507, respectively.

【0017】電流源負荷量演算手段502は、前記図2
と同様に電流源負荷量の実数部Igr、虚数部Igiを演算
して出力する。一方、計測電流量演算手段507では、
n次高調波の実効値電流と基本波電圧の位相とを用い
て、高調波の計測電流量の実数部IMAr及び虚数部IMAi
を求めて出力する。電流源負荷量演算手段502及び計
測電流量演算手段507の出力側には減算器508が設
けられており、この減算器508において、各演算手段
502,507の出力の実数部どおし、虚数部どおしの
偏差が演算され、実数部偏差ΔIr及び虚数部偏差ΔIi
として出力される。すなわち、高調波電流ベクトルの設
定量に対して計測量がフィードバックされる。
The current source load amount calculating means 502 is provided by the aforementioned FIG.
Similarly, the real part I gr and the imaginary part I gi of the current source load amount are calculated and output. On the other hand, in the measured current amount calculating means 507,
The real part I MAr and the imaginary part I MAi of the measured current amount of the harmonic are calculated using the effective value current of the nth harmonic and the phase of the fundamental wave voltage.
Is output. A subtractor 508 is provided on the output side of the current source load amount calculating means 502 and the measured current amount calculating means 507. In the subtractor 508, the real part of the output of each of the calculating means 502 and 507 is divided into an imaginary number. The deviation of each part is calculated, and the real part deviation ΔI r and the imaginary part deviation ΔI i
Is output as That is, the measured amount is fed back to the set amount of the harmonic current vector.

【0018】上記偏差ΔIr,ΔIiは後段のPI(比例
・積分)制御演算手段509に入力されてPI制御演算
が実行され、設定量に一致するような高調波電流ベクト
ル(負荷モデルにより発生するべき高調波電流ベクト
ル)が演算される。ここで、PI制御演算に代えてPI
D(比例・積分・微分)制御演算を用いても良い。制御
演算手段509から出力された高調波電流ベクトルは瞬
時値変換手段503において振幅Ia、位相θaを有する
瞬時値正弦波形に変換される。この波形はD/A変換さ
れて電流指令となり、電流源アンプ504に与えられ
る。電流源アンプ504では、上記電流指令に従って高
調波電流を生成し、シャント510及び系統接続点50
5を介して系統に注入する。
The deviations ΔI r and ΔI i are input to a PI (proportional / integral) control calculating means 509 in the subsequent stage, where PI control calculation is executed, and a harmonic current vector (generated by a load model) that matches a set amount. Is calculated. Here, instead of PI control calculation, PI
D (proportional / integral / differential) control calculation may be used. The harmonic current vector output from the control calculation means 509 is converted by the instantaneous value conversion means 503 into an instantaneous value sine waveform having an amplitude I a and a phase θ a . This waveform is subjected to D / A conversion and becomes a current command, which is provided to the current source amplifier 504. The current source amplifier 504 generates a harmonic current according to the current command, and outputs the shunt 510 and the system connection point 50.
Inject into the system via 5.

【0019】図5は、請求項4記載の発明の実施形態を
示すブロック図である。この実施形態は、図3の実施形
態に高調波電流のフィードバックループを付加して構成
されており、負荷モデルが吸収する高調波電流をその設
定量に高精度に一致させるようにしたものである。本実
施形態では、図4と同様に離散フーリエ変換手段501
に系統電圧va(t)及び系統電流Ia(t)の各瞬時値が入力
される。離散フーリエ変換手段501からは、n次高調
波の実効値電圧Van∠θ1及び実効値電流Ian∠θ2が出
力され、これらは各々設定負荷量の電流変換演算手段5
06、計測電流量演算手段507に入力される。
FIG. 5 is a block diagram showing an embodiment of the fourth aspect of the present invention. This embodiment is configured by adding a harmonic current feedback loop to the embodiment of FIG. 3, so that the harmonic current absorbed by the load model is matched with the set amount with high accuracy. . In the present embodiment, as in FIG.
, The instantaneous values of the system voltage v a (t) and the system current I a (t) are input. The discrete Fourier transform means 501 outputs the effective value voltage V an ∠θ 1 and the effective value current I an ∠θ 2 of the n-th harmonic, and these are respectively the current conversion calculating means 5 for the set load amount.
06, input to the measured current amount calculation means 507.

【0020】設定負荷量の電流変換演算手段506は、
前記図3と同様に、n次高調波の実効値電圧、基本波電
圧、及び、例えばa相のn次高調波の初期負荷量PLAn,
LA nを用いて、高調波インピーダンスに反比例した電
流ベクトルの実数部ILAr及び虚数部ILAiを演算し、出
力する。初期負荷量PLAn,QLAnは、図示されていない
有効電力・無効電力設定手段によって設定される値であ
る。上記電流変換演算手段506の出力は、電流変換手
段512により基本波電圧の位相θaを基準とした電流
に変換される。一方、計測電流量演算手段507は図4
と同様の動作を行い、高調波の計測電流量の実数部及I
MAr及び虚数部IMAiを求めて出力する。
The current conversion calculating means 506 for the set load amount is
3, the effective value voltage of the n-th harmonic, the fundamental wave voltage, and the initial load amount P LAn , for example, of the a-phase n-th harmonic.
Using Q LA n , a real part I LAr and an imaginary part I LAi of a current vector inversely proportional to the harmonic impedance are calculated and output. The initial load amounts P LAn and Q LAn are values set by active power / reactive power setting means (not shown). The output of the current converter operation means 506 is converted into a current relative to the phase theta a fundamental wave voltage by the current conversion unit 512. On the other hand, the measured current amount calculating means 507
The same operation as that described above is performed, and the real part and I
MAr and the imaginary part I MAi are obtained and output.

【0021】減算器508では、電流変換手段512と
計測電流量演算手段507の出力の実数部どおし、虚数
部どおしの偏差が演算され、実数部偏差ΔIr及び虚数
部偏差ΔIiとして出力される。これらの偏差ΔIr
iは後段のPI制御演算手段509に入力され、PI
演算によって設定量に一致するような高調波電流ベクト
ル(負荷モデルにより吸収されるべき高調波電流ベクト
ル)が演算される。なお、この実施形態でも、PI制御
演算に代えてPID制御演算を用いても良い。
The subtractor 508 calculates the deviation between the real part and the imaginary part of the outputs of the current conversion means 512 and the measured current amount calculation means 507, and calculates the real part deviation ΔI r and the imaginary part deviation ΔI i. Is output as These deviations ΔI r , Δ
I i is input to the PI control calculation means 509 at the subsequent stage, and PI
A harmonic current vector (a harmonic current vector to be absorbed by the load model) that matches the set amount is calculated by the calculation. In this embodiment, the PID control calculation may be used instead of the PI control calculation.

【0022】上記高調波電流ベクトルは、瞬時値変換手
段503において振幅Ia、位相θaを有する瞬時値正弦
波形に変換されると共に、D/A変換されて電流指令と
なり、電流源アンプ504に与えられる。電流源アンプ
504では、上記電流指令に従って高調波電流を生成
し、シャント510及び系統接続点505を介して系統
に注入する(系統から吸い出す)。
The harmonic current vector is converted by an instantaneous value converter 503 into an instantaneous value sinusoidal waveform having an amplitude I a and a phase θ a and D / A converted into a current command. Given. The current source amplifier 504 generates a harmonic current in accordance with the above current command, and injects it into the system via the shunt 510 and the system connection point 505 (extracts from the system).

【0023】最後に、図6は、請求項3及び4記載の発
明の実施形態を合成した例を示すブロック図であり、図
4、図5と同一の構成要素には同一番号を付してある。
この実施形態では、電流変換手段512の出力と電流源
負荷量演算手段502の出力とが加算器511により加
算されて高調波電流の目標電流ベクトルが作成される。
そして、この目標電流ベクトルに対して計測電流量がフ
ィードバックされ、減算器508により実数部偏差ΔI
r及び虚数部偏差ΔIiが求められる。減算器508以降
の処理は、図4、図5と同一である。この実施形態によ
れば、高調波発生負荷及び高調波吸収負荷の双方を考慮
した負荷モデルを実現でき、より一層、実系統に近い高
調波模擬を行うことができる。
Finally, FIG. 6 is a block diagram showing an example in which the embodiments of the inventions according to claims 3 and 4 are combined. The same components as those in FIGS. 4 and 5 are denoted by the same reference numerals. is there.
In this embodiment, the output of the current conversion means 512 and the output of the current source load amount calculation means 502 are added by the adder 511 to create a target current vector of the harmonic current.
Then, the measured current amount is fed back to this target current vector, and the real part deviation ΔI
r and the imaginary part deviation ΔI i are obtained. The processing after the subtractor 508 is the same as in FIGS. According to this embodiment, a load model that considers both the harmonic generation load and the harmonic absorption load can be realized, and a harmonic simulation closer to an actual system can be performed.

【0024】[0024]

【発明の効果】以上のように本発明によれば、従来の電
力系統シミュレータでは不可能であった高調波電圧・電
流現象を正確に、しかも高調波電流の応答遅れなく模擬
することができ、系統の各地点での高調波潮流の解析や
高調波抑制効果の検証が容易になる。また、高調波発生
負荷と吸収負荷とを比率を変えて個別に割り付け可能と
なり、高調波電流の流入や消費を自由に設定できる利点
がある。更に、高調波の周波数ごとに位相や利得を調整
できるので、系統シミュレータ全体の周波数特性を一手
に調整することができ、全体的に高調波模擬精度の向上
が可能になる。
As described above, according to the present invention, it is possible to accurately simulate harmonic voltage / current phenomena which were impossible with the conventional power system simulator, and without delaying the response of the harmonic current. Analysis of the harmonic flow at each point in the system and verification of the harmonic suppression effect are facilitated. In addition, the harmonic generation load and the absorption load can be individually assigned by changing the ratio, and there is an advantage that the inflow and consumption of the harmonic current can be set freely. Further, since the phase and the gain can be adjusted for each frequency of the harmonic, the frequency characteristics of the entire system simulator can be adjusted at once, and the accuracy of the harmonic simulation can be improved as a whole.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1〜請求項4の発明の基本となる処理を
概念的に示した図である。
FIG. 1 is a diagram conceptually showing a basic process of the invention of claims 1 to 4;

【図2】請求項1記載の発明の実施形態を示すブロック
図である。
FIG. 2 is a block diagram showing an embodiment of the invention described in claim 1;

【図3】請求項2記載の発明の実施形態を示すブロック
図である。
FIG. 3 is a block diagram showing an embodiment of the invention described in claim 2;

【図4】請求項3記載の発明の実施形態を示すブロック
図である。
FIG. 4 is a block diagram showing an embodiment of the invention described in claim 3;

【図5】請求項4記載の発明の実施形態を示すブロック
図である。
FIG. 5 is a block diagram showing an embodiment of the invention described in claim 4;

【図6】請求項3及び4記載の発明の実施形態を合成し
た例を示すブロック図である。
FIG. 6 is a block diagram showing an example in which the embodiments of the third and fourth aspects of the invention are combined.

【図7】本発明の実施形態が適用される電力系統シミュ
レータの全体構成図である。
FIG. 7 is an overall configuration diagram of a power system simulator to which an embodiment of the present invention is applied.

【符号の説明】[Explanation of symbols]

10 発電機モデル 11 制御装置 12 発電機本体 13 アナログ回路 14 出力アンプ 15,40 変圧器モデル 16,30 遮断器モデル 20 送電線モデル 50 負荷モデル 51 コントローラ 52 出力アンプ 501 離散フーリエ変換手段 502 電流源負荷量演算手段 503 瞬時値変換手段 504 電流源アンプ 505 系統接続点 506 設定負荷量の電流変換演算手段 507 計測電流量演算手段 508 減算器 509 PI制御演算手段 510 シャント 511 加算器 512 電流変換手段 DESCRIPTION OF SYMBOLS 10 Generator model 11 Control device 12 Generator body 13 Analog circuit 14 Output amplifier 15, 40 Transformer model 16, 30 Circuit breaker model 20 Transmission line model 50 Load model 51 Controller 52 Output amplifier 501 Discrete Fourier transform means 502 Current source load Amount calculation means 503 Instantaneous value conversion means 504 Current source amplifier 505 System connection point 506 Current conversion calculation means for set load amount 507 Measured current amount calculation means 508 Subtractor 509 PI control calculation means 510 Shunt 511 Adder 512 Current conversion means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 勝野 徹 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Toru Katsuno 1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Fuji Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 系統電圧をディジタルサンプリングして
フーリエ変換し、基本波電圧の位相を検出するフーリエ
変換手段と、 前記基本波電圧の位相と予め設定された電流源設定電流
とに基づいて基本波電圧位相に同期した高調波電流ベク
トルを演算する電流源負荷量演算手段と、 前記電流源負荷量演算手段から出力される高調波電流ベ
クトルを瞬時値正弦波形に変換し、この波形をD/A変
換することにより高調波発生負荷としての高調波電流指
令を作成する瞬時値変換手段と、 前記高調波電流指令に従って電流源アンプを駆動し、系
統へ高調波電流を注入する手段と、 を備えたことを特徴とする電力系統高調波リアルタイム
シミュレータ。
1. Fourier transform means for digitally sampling and Fourier transforming a system voltage to detect a phase of a fundamental voltage, and a fundamental wave based on the phase of the fundamental wave voltage and a preset current source set current. Current source load amount calculating means for calculating a harmonic current vector synchronized with the voltage phase; and a harmonic current vector output from the current source load amount calculating means is converted into an instantaneous value sine waveform, and this waveform is converted into a D / A signal. An instantaneous value conversion means for creating a harmonic current command as a harmonic generation load by converting, and a means for driving a current source amplifier in accordance with the harmonic current command and injecting a harmonic current into a system. A power system harmonic real-time simulator, characterized in that:
【請求項2】 系統電圧をディジタルサンプリングして
フーリエ変換し、高調波電圧を検出するフーリエ変換手
段と、 前記高調波電圧、基本波電圧、及び、高調波有効・無効
電力設定手段により与えられる初期負荷量に基づいて、
基本波電圧位相に同期し、かつ負荷により吸収されるべ
き高調波電流ベクトルを演算する電流変換演算手段と、 前記電流変換演算手段の出力を基本波電圧の位相を基準
とした高調波電流ベクトルに変換する電流変換手段と、 前記電流変換手段から出力される高調波電流ベクトルを
瞬時値正弦波形に変換し、この波形をD/A変換するこ
とにより高調波吸収負荷としての高調波電流指令を作成
する瞬時値変換手段と、 前記高調波電流指令に従って電流源アンプを駆動し、系
統へ高調波電流を注入する手段と、 を備えたことを特徴とする電力系統高調波リアルタイム
シミュレータ。
2. Fourier transform means for digitally sampling and Fourier transforming a system voltage to detect a harmonic voltage, and an initial value provided by the harmonic voltage, fundamental wave voltage, and harmonic active / reactive power setting means. Based on the load,
Current conversion operation means for calculating a harmonic current vector synchronized with the fundamental voltage phase and to be absorbed by the load, and converting the output of the current conversion operation means into a harmonic current vector based on the phase of the fundamental voltage. A current conversion means for converting; a harmonic current vector output from the current conversion means being converted into an instantaneous sine waveform, and a D / A conversion of this waveform to create a harmonic current command as a harmonic absorption load. A power system harmonic real-time simulator, comprising: an instantaneous value conversion unit that drives a current source amplifier according to the harmonic current command to inject a harmonic current into the system.
【請求項3】 系統電圧及び系統電流をディジタルサン
プリングしてフーリエ変換し、基本波電圧の位相と高調
波電流とを検出するフーリエ変換手段と、 前記基本波電圧の位相と予め設定された電流源設定電流
とに基づいて基本波電圧位相に同期した高調波電流ベク
トルを演算する電流源負荷量演算手段と、 前記高調波電流及び基本波電圧の位相に基づいて計測電
流量としての高調波電流ベクトルを演算する計測電流量
演算手段と、 前記電流源負荷量演算手段の出力と計測電流量演算手段
の出力との偏差が入力され、前記計測電流量演算手段の
出力が前記電流源負荷量演算手段の出力に一致するよう
に制御演算を行う制御演算手段と、 前記制御演算手段から出力される高調波電流ベクトルを
瞬時値正弦波形に変換し、この波形をD/A変換するこ
とにより高調波発生負荷としての高調波電流指令を作成
する瞬時値変換手段と、 前記高調波電流指令に従って電流源アンプを駆動し、系
統へ高調波電流を注入する手段と、 を備えたことを特徴とする電力系統高調波リアルタイム
シミュレータ。
3. Fourier transform means for digitally sampling and Fourier-transforming a system voltage and a system current to detect a phase of a fundamental voltage and a harmonic current, and a current source preset to a phase of the fundamental voltage. Current source load amount calculating means for calculating a harmonic current vector synchronized with the fundamental voltage phase based on the set current; and a harmonic current vector as a measured current amount based on the phase of the harmonic current and the fundamental voltage. And a deviation between the output of the current source load amount calculating unit and the output of the measured current amount calculating unit, and the output of the measured current amount calculating unit is used as the current source load amount calculating unit. A control operation means for performing a control operation so as to match the output of the control circuit; and a harmonic current vector output from the control operation means, which is converted into an instantaneous value sine waveform, and this waveform is D / A converted. Instantaneous value conversion means for generating a harmonic current command as a harmonic generation load, and means for driving a current source amplifier in accordance with the harmonic current command and injecting a harmonic current into a system. Power system harmonic real-time simulator characterized by the following.
【請求項4】 系統電圧をディジタルサンプリングして
フーリエ変換し、高調波電圧及び高調波電流を検出する
フーリエ変換手段と、 前記高調波電圧、基本波電圧、及び、高調波有効・無効
電力設定手段により与えられる初期負荷量に基づいて、
基本波電圧位相に同期し、かつ負荷により吸収されるべ
き高調波電流ベクトルを演算する電流変換演算手段と、 前記電流変換演算手段の出力を基本波電圧の位相を基準
とした高調波電流ベクトルに変換する電流変換手段と、 前記高調波電流及び基本波電圧の位相に基づいて計測電
流量としての高調波電流ベクトルを演算する計測電流量
演算手段と、 前記電流変換手段の出力と計測電流量演算手段の出力と
の偏差が入力され、前記計測電流量演算手段の出力が前
記電流変換手段の出力に一致するように制御演算を行う
制御演算手段と、 前記制御演算手段から出力される高調波電流ベクトルを
瞬時値正弦波形に変換し、この波形をD/A変換するこ
とにより高調波吸収負荷としての高調波電流指令を作成
する瞬時値変換手段と、 前記高調波電流指令に従って電流源アンプを駆動し、系
統へ高調波電流を注入する手段と、 を備えたことを特徴とする電力系統高調波リアルタイム
シミュレータ。
4. Fourier transform means for digitally sampling and Fourier transforming a system voltage to detect a harmonic voltage and a harmonic current; and a harmonic voltage, a fundamental wave voltage, and a harmonic active / reactive power setting means. Based on the initial load given by
Current conversion operation means for calculating a harmonic current vector synchronized with the fundamental voltage phase and to be absorbed by the load, and converting the output of the current conversion operation means into a harmonic current vector based on the phase of the fundamental voltage. Current converting means for converting; measuring current amount calculating means for calculating a harmonic current vector as a measured current amount based on the phases of the harmonic current and the fundamental voltage; output of the current converting means and measurement current amount calculation Control operation means for inputting a deviation from the output of the means, and performing control operation so that the output of the measured current amount calculation means coincides with the output of the current conversion means; and a harmonic current output from the control operation means. An instantaneous value conversion means for converting a vector into an instantaneous value sinusoidal waveform and D / A converting the waveform to create a harmonic current command as a harmonic absorption load; Current source amplifier drives, power system harmonics realtime simulator that the means for injecting harmonic currents, comprising the to the system according to the command.
JP4947498A 1998-03-02 1998-03-02 Power system harmonic real-time simulator Expired - Fee Related JP3599157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4947498A JP3599157B2 (en) 1998-03-02 1998-03-02 Power system harmonic real-time simulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4947498A JP3599157B2 (en) 1998-03-02 1998-03-02 Power system harmonic real-time simulator

Publications (2)

Publication Number Publication Date
JPH11252796A true JPH11252796A (en) 1999-09-17
JP3599157B2 JP3599157B2 (en) 2004-12-08

Family

ID=12832160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4947498A Expired - Fee Related JP3599157B2 (en) 1998-03-02 1998-03-02 Power system harmonic real-time simulator

Country Status (1)

Country Link
JP (1) JP3599157B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749488A (en) * 2012-06-27 2012-10-24 南京信息工程大学 Power grid harmonic wave real-time on-line monitor and method for detecting harmonic wave using same
CN105807136A (en) * 2016-03-17 2016-07-27 国网上海市电力公司 Harmonic emission level estimation method based on weighted support vector machine
CN106405464A (en) * 2016-10-10 2017-02-15 国网四川省电力公司电力科学研究院 Method for generating traceable random waveform analog power signals
CN109643894A (en) * 2017-02-23 2019-04-16 株式会社志贺机能水研究所 Higher hamonic wave generation device
CN110426967A (en) * 2019-08-07 2019-11-08 威胜集团有限公司 Analog simulation method, device and the storage medium of household loads data

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164233A (en) * 1987-12-17 1989-06-28 Kansai Electric Power Co Inc:The Active filter
JPH0564371A (en) * 1991-09-05 1993-03-12 Mitsubishi Electric Corp System simulator
JPH0599969A (en) * 1991-10-14 1993-04-23 Tokyo Electric Power Co Inc:The Three phase electronlike loading device
JPH0614463A (en) * 1992-06-25 1994-01-21 Meidensha Corp Testing apparatus for higher harmonics suppressing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01164233A (en) * 1987-12-17 1989-06-28 Kansai Electric Power Co Inc:The Active filter
JPH0564371A (en) * 1991-09-05 1993-03-12 Mitsubishi Electric Corp System simulator
JPH0599969A (en) * 1991-10-14 1993-04-23 Tokyo Electric Power Co Inc:The Three phase electronlike loading device
JPH0614463A (en) * 1992-06-25 1994-01-21 Meidensha Corp Testing apparatus for higher harmonics suppressing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102749488A (en) * 2012-06-27 2012-10-24 南京信息工程大学 Power grid harmonic wave real-time on-line monitor and method for detecting harmonic wave using same
CN105807136A (en) * 2016-03-17 2016-07-27 国网上海市电力公司 Harmonic emission level estimation method based on weighted support vector machine
CN106405464A (en) * 2016-10-10 2017-02-15 国网四川省电力公司电力科学研究院 Method for generating traceable random waveform analog power signals
CN109643894A (en) * 2017-02-23 2019-04-16 株式会社志贺机能水研究所 Higher hamonic wave generation device
CN109643894B (en) * 2017-02-23 2022-10-11 株式会社志贺机能水研究所 Higher harmonic generator
CN110426967A (en) * 2019-08-07 2019-11-08 威胜集团有限公司 Analog simulation method, device and the storage medium of household loads data

Also Published As

Publication number Publication date
JP3599157B2 (en) 2004-12-08

Similar Documents

Publication Publication Date Title
CN106771786B (en) Verification method and experimental device for power grid impedance identification
Lian et al. Real-time simulation of voltage source converters based on time average method
Riccobono et al. Noninvasive online parametric identification of three-phase AC power impedances to assess the stability of grid-tied power electronic inverters in LV networks
Dinavahi et al. Real-time digital simulation of power electronic apparatus interfaced with digital controllers
Moore et al. Model system tests on a new numeric method of power system frequency measurement
Roinila et al. Hardware-in-the-loop methods for real-time frequency-response measurements of on-board power distribution systems
Familiant et al. New techniques for measuring impedance characteristics of three-phase AC power systems
Roscoe et al. Architecture of a network-in-the-loop environment for characterizing AC power-system behavior
JP4679525B2 (en) Active filter
CN111313438A (en) High-frequency oscillation suppression method and system for flexible direct current transmission system
CN105429484A (en) PWM rectifier prediction power control method and system based on any period delay
JP3599157B2 (en) Power system harmonic real-time simulator
Liu et al. A low torque ripple PMSM drive for EPS applications
Conchas et al. Sensor fault-tolerant control for a doubly fed induction generator in a smart grid
CN110632532B (en) Test system and method for meeting parallel operation of multiple groups of serial photovoltaic inverters
Robert et al. Hardware-In-the-Loop Simulation of a High Frequency Interleaved Converter based on a Low-Cost FPGA Platform
KR101172748B1 (en) Control Device and Method for Making Unbalanced Three Phase Voltage at AC Power Source
Zhang et al. Hardware-in-the-loop Based Grid Compatibility Test for Power Electronics Interface
Hackl et al. A novel modular combinable hardware-in-the-loop platform for stability investigations of converter-driven power grids
Vujkov et al. Advanced research and development facility for digital control of power electronic based drives
Sankhe et al. Overview of Power Hardware-in-the-Loop Simulation Towards Implementation of Digital Controller for Resonant Inverters
Sansano Novel methods for enhancing accuracy and stability of power hardware-in-the-loop simulations
Paran Utilization of impedance matching to improve damping impedance method-based PHIL interface
JP3354465B2 (en) Power converter
JP3668863B2 (en) Hybrid power system analyzer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040908

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees