JPH11251168A - Withstand voltage test method of stationary induction apparatus - Google Patents

Withstand voltage test method of stationary induction apparatus

Info

Publication number
JPH11251168A
JPH11251168A JP4650098A JP4650098A JPH11251168A JP H11251168 A JPH11251168 A JP H11251168A JP 4650098 A JP4650098 A JP 4650098A JP 4650098 A JP4650098 A JP 4650098A JP H11251168 A JPH11251168 A JP H11251168A
Authority
JP
Japan
Prior art keywords
frequency
power supply
voltage
parallel resonance
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4650098A
Other languages
Japanese (ja)
Inventor
Eiji Ozaki
英二 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4650098A priority Critical patent/JPH11251168A/en
Publication of JPH11251168A publication Critical patent/JPH11251168A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve compensation ratio of reactive power and reduce power supply capacity by fitting power supply frequency to parallel resonance frequency and selecting frequency using a low magnetic flux region wherein excitation current of an apparatus under test becomes almost sine wave regarding power supply frequency. SOLUTION: A variable frequency/variable voltage power supply 1 and a compensating reactor 2 are connected parallel to an apparatus 3 under test. Frequency of a power supply 1 is adjusted and the the power supply frequency is fit to parallel resonance frequency which is decided by electrostatic capacity to ground of the apparatus 3 under test and inductance of the compensating reactor 2. In the process, frequency using a low magnetic flux region wherein excitation current of the apparatus 3 under test becomes almost sine wave is selected. Furthermore, the compensating reactor 2 is connected to a secondary side of a voltage adjusting transformer. Ratio between a primary side and a secondary side of a voltage adjusting transformer is adjusted to change compensation capacity of the compensating reactor 2 and parallel resonance frequency is fit to setting frequency of a power supply.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電源と補償リアク
トルとが並列に接続された静止誘導器の耐電圧を試験す
る方法に係り、特に、電源容量の最小化を図った試験方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for testing the withstand voltage of a stationary inductor in which a power supply and a compensating reactor are connected in parallel, and more particularly to a test method for minimizing a power supply capacity. is there.

【0002】[0002]

【従来の技術】一般に、変圧器、誘導電圧調整器あるい
はリアクトルなどの静止誘導器に関しては、出力電圧可
変の電源を静止誘導器に並列に接続し、該静止誘導器を
供試器として耐電圧を試験している。このとき、供試器
は対地静電容量を持つため進み無効電力を取るようにな
っている。したがって、電源の容量を小さくすることを
目的として、電源および供試器に対して並列に無効電力
を補償するための補償リアクトルを接続している。
2. Description of the Related Art Generally, for a stationary inductor such as a transformer, an induction voltage regulator or a reactor, a variable output voltage power supply is connected in parallel to the stationary inductor, and the static inductor is used as a test device to withstand a withstand voltage. Has been tested. At this time, since the test device has a ground capacitance, it is designed to take advance reactive power. Therefore, for the purpose of reducing the capacity of the power supply, a compensation reactor for compensating the reactive power is connected to the power supply and the test device in parallel.

【0003】ところで、電源を周波数を商用周波数と
し、定格電圧の1、1倍程度に励磁してから耐電圧試験
を実施した場合、商用周波数程度では電源周波数が低い
ので、供試器の発生磁束が高くなる。これは静止誘導器
における発生磁束および発生電圧と電源周波数との間に
下式(1)のような関係があるためである。
When a withstand voltage test is carried out after exciting the power supply to a commercial frequency at about one and one times the rated voltage, the power supply frequency is low at about the commercial frequency. Will be higher. This is because there is a relationship such as the following equation (1) between the generated magnetic flux and the generated voltage in the stationary inductor and the power supply frequency.

【0004】[0004]

【数1】 Φ=K・V/f …(1) Φ:発生磁束 V:発生電圧 f:電源周波数 K:定数 すなわち、静止誘導器が所定の電圧Vを誘起する場合、
電源周波数fが低ければ発生磁束Φは高くなる。
Φ = K · V / f (1) Φ: Generated magnetic flux V: Generated voltage f: Power supply frequency K: Constant That is, when the stationary inductor induces a predetermined voltage V,
When the power supply frequency f is low, the generated magnetic flux Φ increases.

【0005】静止誘導器の発生磁束が高いと、静止誘導
器の励磁特性つまり鉄心の磁束−電流特性は線形性の低
い非線形性を示すことになる。この結果、静止誘導器の
電流波形が歪んで無効電流が増大し、たとえ静止誘導器
に補償リアクトルを接続してあっても無効電力の補償が
困難となり、鉄心飽和といった不具合を招くおそれがあ
った。
[0005] If the magnetic flux generated by the stationary inductor is high, the excitation characteristics of the stationary inductor, that is, the magnetic flux-current characteristics of the iron core, exhibit nonlinearity with low linearity. As a result, the current waveform of the stationary inductor is distorted and the reactive current increases. .

【0006】そこで従来の静止誘導器の耐電圧試験で
は、その試験電圧の大きさから商用周波数よりも数倍高
い周波数を使用している。これにより、静止誘導器の発
生磁束を低くして静止誘導器の励磁特性における線形性
を確保して電流波形の歪みを抑え、鉄心飽和を防止しつ
つ耐電圧試験を実施している。
Therefore, in the withstand voltage test of the conventional stationary inductor, a frequency several times higher than the commercial frequency is used due to the magnitude of the test voltage. Thus, the magnetic flux generated by the stationary inductor is reduced, the linearity in the excitation characteristics of the stationary inductor is secured, the distortion of the current waveform is suppressed, and the withstand voltage test is performed while preventing core saturation.

【0007】[0007]

【発明が解決しようとする課題】ところで、供試器の取
る無効電流の全てを補償リアクトルによって補償するた
めには、供試器の対地静電容量と補償リアクトルのイン
ダクタンスとで決まる並列共振周波数と、電源側の周波
数とを、合致させることが重要である。すなわち、補償
リアクトルによる補償率は前記並列共振周波数と電源周
波数とが一致するかどうかによって左右される。
In order to compensate all the reactive currents taken by the test device by the compensating reactor, the parallel resonance frequency determined by the capacitance of the test device to the ground and the inductance of the compensating reactor is required. It is important to match the frequency of the power supply. That is, the compensation rate by the compensation reactor depends on whether the parallel resonance frequency matches the power supply frequency.

【0008】しかしながら、従来の静止誘導器の耐電圧
試験方法では、電源周波数と並列共振周波数とを合わせ
ることが困難であった。したがって、電源に無効電流お
よび高調波電流が多く流れて補償リアクトルの補償率が
低下し、電源容量が増大した。
[0008] However, it is difficult to match the power supply frequency with the parallel resonance frequency in the conventional static inductor withstand voltage test method. Therefore, a large amount of reactive current and harmonic current flow in the power supply, so that the compensation rate of the compensation reactor decreases and the power supply capacity increases.

【0009】本発明はこのような問題点を解消するため
に提案されたものであり、その目的は、無効電力の補償
率を向上させて電源容量の低減を可能とした静止誘導器
の耐電圧試験方法を提供することにある。
The present invention has been proposed to solve such a problem, and an object of the present invention is to improve a withstand voltage of a stationary inductor which can reduce a power supply capacity by improving a reactive power compensation rate. To provide a test method.

【0010】[0010]

【課題を解決するための手段】本発明は上記目的を達成
するために提案されたものであり、請求項1の発明は、
静止誘導器を供試器とし、この供試器の耐電圧を試験す
る方法であって、周波数および出力電圧が可変である電
源と、無効電力を補償するための補償リアクトルとを前
記供試器に並列に接続し、前記電源の周波数を調整して
この電源周波数を、前記供試器の対地静電容量と補償リ
アクトルのインダクタンスとで決まる並列共振周波数に
合せると共に、前記電源周波数について前記供試器の励
磁電流がほぼ正弦波になる低磁束領域を使用する周波数
を選ぶようにしたことを特徴とする。
SUMMARY OF THE INVENTION The present invention has been proposed to achieve the above object.
A method for testing a withstand voltage of a static inductor as a test device, the test device comprising: a power supply having a variable frequency and an output voltage; and a compensation reactor for compensating for reactive power. Connected in parallel to each other, adjusting the frequency of the power supply to match this power supply frequency with a parallel resonance frequency determined by the earth capacitance of the tester and the inductance of the compensating reactor. The frequency is selected to use a low magnetic flux region in which the exciting current of the vessel becomes substantially sinusoidal.

【0011】このような請求項1の静止誘導器の耐電圧
試験方法では、電源が可変周波数電源であるため、電源
周波数を連続的に調整することができる。そのため、電
源周波数を、供試器の対地静電容量と補償リアクトルの
インダクタンスとで決まる並列共振周波数に合わせて選
ぶことができる。したがって、供試器の取る無効電流を
全て補償リアクトルによって補償することができる。こ
れにより、電源から供試器へは最小限の有効電力を供給
するだけで済み、電源容量を低減させることができる。
In the method for testing a withstand voltage of a stationary inductor according to the first aspect of the present invention, since the power supply is a variable frequency power supply, the power supply frequency can be continuously adjusted. Therefore, the power supply frequency can be selected in accordance with the parallel resonance frequency determined by the capacitance to ground of the test device and the inductance of the compensation reactor. Therefore, all the reactive currents taken by the test device can be compensated for by the compensation reactor. As a result, only a minimum amount of active power needs to be supplied from the power supply to the test device, and the power supply capacity can be reduced.

【0012】請求項2の発明は、静止誘導器を供試器と
し、この供試器の耐電圧を試験する方法であって、出力
電圧が可変である電源と、電圧調整用変圧器とを前記供
試器に並列に接続し、前記電圧調整用変圧器の2次側に
無効電力を補償するための補償リアクトルを接続し、こ
の電圧調整用変圧器の1〜2次間のレシオを調整して前
記補償リアクトルの補償容量を変化させ、前記供試器の
対地静電容量と補償リアクトルのインダクタンスとで決
まる並列共振周波数を前記電源の周波数に合せると共
に、前記並列共振周波数について前記供試器の励磁電流
がほぼ正弦波になる低磁束領域を使用する周波数を選ぶ
ようにしたことを特徴とする。
According to a second aspect of the present invention, there is provided a method for testing a withstand voltage of a static induction device as a test device, comprising a power supply having a variable output voltage and a voltage adjusting transformer. Connected in parallel with the test equipment, connected a compensation reactor for compensating reactive power to the secondary side of the voltage adjustment transformer, and adjusted the ratio between the primary and secondary of this voltage adjustment transformer. The compensation capacitance of the compensation reactor is changed to match the parallel resonance frequency determined by the ground capacitance of the test device and the inductance of the compensation reactor to the frequency of the power supply, and the test device is tested for the parallel resonance frequency. Is characterized by selecting a frequency to use a low magnetic flux region where the exciting current becomes a substantially sine wave.

【0013】このような請求項2の静止誘導器の耐電圧
試験方法では、電圧調整用変圧器の1〜2次間のレシオ
を調整して補償リアクトルの補償容量を変化させること
ができるので、供試器の対地静電容量と補償リアクトル
のインダクタンスとで決まる並列共振周波数を調整する
ことができる。したがって、電源の周波数に合せて並列
共振周波数を選ぶことができる。これにより、上記請求
項1と同様、補償リアクトルの補償率を高めることがで
き、電源容量を低く抑えることができる。
According to the method for testing the withstand voltage of the stationary inductor according to the second aspect of the present invention, the compensation capacity of the compensation reactor can be changed by adjusting the ratio between the first and second orders of the voltage adjusting transformer. The parallel resonance frequency determined by the capacitance to ground of the test device and the inductance of the compensation reactor can be adjusted. Therefore, the parallel resonance frequency can be selected according to the frequency of the power supply. This makes it possible to increase the compensation rate of the compensation reactor and reduce the power supply capacity, as in the first aspect.

【0014】なお、請求項1および2の発明において、
互いに合致するよう調整された電源周波数および並列共
振周波数は、供試器の励磁電流がほぼ正弦波になる低磁
束領域を選んで使用している。そのため、静止誘導器の
励磁特性つまり鉄心の磁束−電流特性は線形性が高くな
り、静止誘導器の電流波形が歪むことがない。したがっ
て、無効電力の補償が容易であり、鉄心飽和を確実に防
止することが可能である。
In the first and second aspects of the present invention,
The power supply frequency and the parallel resonance frequency adjusted so as to match each other are selected and used in a low magnetic flux region where the exciting current of the EUT becomes almost a sine wave. Therefore, the excitation characteristic of the stationary inductor, that is, the magnetic flux-current characteristic of the iron core has a high linearity, and the current waveform of the stationary inductor is not distorted. Therefore, it is easy to compensate for the reactive power, and it is possible to reliably prevent core saturation.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施形態の一例に
ついて、図面を参照して具体的に説明する。なお、第1
の実施形態は請求項1の発明に呼応し、第2の実施形態
は請求項2の発明に呼応するものであり、両者ともに、
電源および補償リアクトルを静止誘導器に対し並列に接
続し、この静止誘導器を供試器として該静止誘導器の耐
電圧を試験する方法である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be specifically described below with reference to the drawings. The first
The second embodiment corresponds to the invention of claim 1, and the second embodiment corresponds to the invention of claim 2.
In this method, a power supply and a compensating reactor are connected in parallel to a stationary inductor, and the withstanding voltage of the stationary inductor is tested using the stationary inductor as a test device.

【0016】(1)第1の実施形態 図1に示すように、供試器3に対し可変周波数・可変電
圧電源1および補償リアクトル2を並列に接続する。こ
のような第1の実施形態では、電源1の周波数を調整
し、この電源周波数を、供試器3の対地静電容量と補償
リアクトル2のインダクタンスとで決まる並列共振周波
数に合せるようにする。このとき、供試器3の励磁電流
がほぼ正弦波になる低磁束領域を使用する周波数を選ぶ
ようにしている。
(1) First Embodiment As shown in FIG. 1, a variable frequency / variable voltage power supply 1 and a compensating reactor 2 are connected to a test device 3 in parallel. In the first embodiment, the frequency of the power supply 1 is adjusted so that the power supply frequency matches the parallel resonance frequency determined by the capacitance of the test device 3 and the inductance of the compensating reactor 2. At this time, a frequency is selected to use a low magnetic flux region where the exciting current of the test device 3 becomes substantially a sine wave.

【0017】以上のような第1の実施形態の試験方法で
は、電源1が可変周波数電源であるため電源1の周波数
を連続的に調整することができる。したがって図2の等
価回路図に示すように、該電源周波数を、供試器3の対
地静電容量10と補償リアクトル2のインダクタンスと
で決まる並列共振周波数に合わせることができる。
In the test method of the first embodiment as described above, since the power supply 1 is a variable frequency power supply, the frequency of the power supply 1 can be continuously adjusted. Therefore, as shown in the equivalent circuit diagram of FIG. 2, the power supply frequency can be adjusted to the parallel resonance frequency determined by the ground capacitance 10 of the test device 3 and the inductance of the compensation reactor 2.

【0018】ところで、並列共振周波数、供試器対地静
電容量および補償リアクトルのインダクタンスの間には
下式(2)、
By the way, between the parallel resonance frequency, the EUT ground capacitance and the inductance of the compensating reactor, the following equation (2) is used.

【数2】 という関係が成立している。(Equation 2) Is established.

【0019】このような並列共振周波数と電源1の周波
数とが一致したとき、補償リアクトル2は供試器3の取
る無効電流を全て補償することができる。したがって、
電源1から供給される電力は供試器3のロス等価抵抗9
で消費される有効電力のみとなり、電源容量を低く抑え
ることが可能となる。
When the parallel resonance frequency matches the frequency of the power supply 1, the compensation reactor 2 can compensate for all the reactive currents taken by the test device 3. Therefore,
The power supplied from the power supply 1 is equal to the loss equivalent resistance 9 of the tester 3.
Only the active power consumed by the power supply, and the power supply capacity can be kept low.

【0020】また、すでに述べたように供試器3の励磁
特性(鉄心の磁束−電流特性)は、電源周波数および発
生磁束によって決定される。つまり、電源周波数が小さ
く発生磁束が高くなると急激に非線形となり、図3に示
した非直線領域5に入る。これに対して電源周波数を大
きくすれば発生磁束は低くなり、供試器3の励磁特性は
図3に示した直線性の高い領域4に入る。
Further, as described above, the excitation characteristics (magnetic flux-current characteristics of the iron core) of the test device 3 are determined by the power supply frequency and the generated magnetic flux. That is, when the power supply frequency is small and the generated magnetic flux is high, the nonlinearity rapidly becomes nonlinear, and enters the nonlinear region 5 shown in FIG. On the other hand, if the power supply frequency is increased, the generated magnetic flux decreases, and the excitation characteristics of the test device 3 fall into the region 4 having high linearity shown in FIG.

【0021】ここで、静止誘導器を低磁束領域で使用し
た時の供試器3の誘起電圧Vの波形6を図4に示し、供
試器3の発生磁束Φの波形7および電流Iの波形8を図
5に示す。すなわち、磁束−電流特性の直線性の高い領
域4を使うことにより、供試器3の電流Iの波形8をほ
ぼ正弦波とすることができる。
FIG. 4 shows a waveform 6 of the induced voltage V of the test device 3 when the stationary inductor is used in a low magnetic flux region, and FIG. Waveform 8 is shown in FIG. That is, by using the region 4 having high linearity of the magnetic flux-current characteristics, the waveform 8 of the current I of the EUT 3 can be made substantially a sine wave.

【0022】第1の実施形態において並列共振周波数に
合致するよう調整された電源周波数は、供試器3の電流
Iの波形8がほぼ正弦波となる低磁束領域を選んで使用
している。したがって、静止誘導器の電流波形は歪むこ
とがなく、無効電力の補償が容易であり、鉄心の飽和を
確実に防止することができる。
In the first embodiment, the power supply frequency adjusted to match the parallel resonance frequency is selected and used in a low magnetic flux region where the waveform 8 of the current I of the test device 3 is substantially a sine wave. Therefore, the current waveform of the stationary inductor is not distorted, the reactive power can be easily compensated, and the saturation of the iron core can be reliably prevented.

【0023】(2)第2の実施形態 図6に示すように、供試器3に対し固定周波数・可変電
圧電源11と、電圧調整用変圧器12とを並列に接続す
る。また、電圧調整用変圧器12の2次側に補償リアク
トル2を接続する。このような第2の実施形態では、電
圧調整用変圧器12の1〜2次間のレシオを調整して補
償リアクトル2の補償容量を変化させ、供試器3の対地
静電容量と補償リアクトル2のインダクタンスとで決ま
る並列共振周波数を、前記電源11の固定周波数に合せ
るようにする。このとき、供試器3の励磁電流がほぼ正
弦波になる低磁束領域を使用する周波数を選ぶようにし
ている。
(2) Second Embodiment As shown in FIG. 6, a fixed frequency / variable voltage power supply 11 and a voltage adjusting transformer 12 are connected in parallel to a test device 3. Further, the compensation reactor 2 is connected to the secondary side of the voltage adjusting transformer 12. In the second embodiment, the ratio between the first and second order of the voltage adjustment transformer 12 is adjusted to change the compensation capacitance of the compensation reactor 2, and the capacitance of the test device 3 to the ground and the compensation reactor are adjusted. The parallel resonance frequency determined by the inductance 2 is adjusted to the fixed frequency of the power supply 11. At this time, a frequency is selected to use a low magnetic flux region where the exciting current of the test device 3 becomes substantially a sine wave.

【0024】以上のような第2の実施形態の試験方法で
は、電圧調整用変圧器12の1〜2次間のレシオを調整
して補償リアクトル2の補償容量を変化させ、並列共振
周波数を連続的に調整することができる。したがって、
並列共振周波数を電源11の固定周波数に合せることが
でき、上記第1の実施形態と同様、電源11から供試器
3へは供試器3のロス等価抵抗9で消費される有効電力
のみを供給するだけでよい。これにより、供試器3の取
る無効電流は全て補償リアクトル2で補償でき、補償リ
アクトル2の補償率が向上して、電源容量の低減が可能
となる。
In the test method of the second embodiment as described above, the ratio between the first and second order of the voltage adjustment transformer 12 is adjusted to change the compensation capacity of the compensation reactor 2 and to make the parallel resonance frequency continuous. Can be adjusted. Therefore,
The parallel resonance frequency can be adjusted to the fixed frequency of the power supply 11, and only the active power consumed by the loss equivalent resistance 9 of the test equipment 3 is supplied from the power supply 11 to the test equipment 3 as in the first embodiment. Just supply them. Thereby, all the reactive currents taken by the test device 3 can be compensated for by the compensation reactor 2, the compensation rate of the compensation reactor 2 is improved, and the power supply capacity can be reduced.

【0025】また、第2の実施形態において電源11の
固定周波数に合致するよう調整された並列共振周波数は
低磁束領域を選んで使用しており、供試器3の電流Iの
波形8はほぼ正弦波である。したがって、上記第1の実
施形態と同じように、静止誘導器の電流波形は歪むこと
がなく、無効電力を確実に補償でき、鉄心飽和の防止が
可能である。
Further, in the second embodiment, the parallel resonance frequency adjusted to match the fixed frequency of the power supply 11 is selected and used in a low magnetic flux region, and the waveform 8 of the current I of the test device 3 is substantially It is a sine wave. Therefore, similarly to the first embodiment, the current waveform of the stationary inductor is not distorted, the reactive power can be reliably compensated for, and iron core saturation can be prevented.

【0026】(3)他の実施形態 なお、本発明は以上のような実施形態に限定されるもの
ではなく、例えば、請求項1および2の発明を包含する
実施形態として、図7に示すように第2の実施形態にお
ける固定周波数・可変電圧電源11に代えて可変周波数
・可変電圧電源1を用いた実施形態がある。
(3) Other Embodiments The present invention is not limited to the above-described embodiments. For example, as shown in FIG. There is an embodiment in which the variable frequency / variable voltage power supply 1 is used instead of the fixed frequency / variable voltage power supply 11 in the second embodiment.

【0027】このような実施形態によれば、電源周波数
および並列共振周波数の両方を連続的に調整することが
できるので、より高い精度で両者を合致させることが可
能となり、補償率の向上および電源容量の低減に寄与す
ることができる。
According to such an embodiment, since both the power supply frequency and the parallel resonance frequency can be continuously adjusted, the two can be matched with higher accuracy, and the compensation rate can be improved and the power supply can be improved. This can contribute to a reduction in capacity.

【0028】[0028]

【発明の効果】以上説明したように、本発明の静止誘導
器の耐電圧試験方法によれば、周波数可変電源の周波数
を調整するか、あるいは電圧調整用変圧器により補償リ
アクトルの補償容量を変化させて並列共振周波数を調整
することによって、電源周波数と並列共振周波数とを合
わせることができるため、無効電力の補償率を向上させ
て電源容量を低減させることが可能となった。
As described above, according to the withstand voltage test method for a stationary inductor of the present invention, the frequency of a variable frequency power supply is adjusted or the compensation capacity of a compensation reactor is changed by a voltage adjusting transformer. By adjusting the parallel resonance frequency in this way, the power supply frequency and the parallel resonance frequency can be matched, so that it is possible to improve the reactive power compensation rate and reduce the power supply capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態の耐電圧試験回路の概
略図。
FIG. 1 is a schematic diagram of a withstand voltage test circuit according to a first embodiment of the present invention.

【図2】第1の実施形態の耐電圧試験回路の簡易等価回
路図。
FIG. 2 is a simplified equivalent circuit diagram of the withstand voltage test circuit according to the first embodiment.

【図3】静止誘導器の磁束−電流特性を示すグラフ。FIG. 3 is a graph showing magnetic flux-current characteristics of a stationary inductor.

【図4】静止誘導器を低磁束領域で使用した時の電圧の
波形を示すグラフ。
FIG. 4 is a graph showing a voltage waveform when the stationary inductor is used in a low magnetic flux region.

【図5】静止誘導器を低磁束領域で使用した時の磁束お
よび電流の波形を示すグラフ。
FIG. 5 is a graph showing waveforms of magnetic flux and current when the stationary inductor is used in a low magnetic flux region.

【図6】本発明の第2の実施形態の耐電圧試験回路の概
略図。
FIG. 6 is a schematic diagram of a withstand voltage test circuit according to a second embodiment of the present invention.

【図7】本発明の他の実施形態の耐電圧試験回路の概略
図。
FIG. 7 is a schematic diagram of a withstand voltage test circuit according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…可変周波数・可変電圧電源 2…補償リアクトル 3…供試器 4…直線性の高い領域 5…非直線領域 6…供試器の誘起電圧の波形 7…供試器の発生磁束の波形 8…供試器の電流の波形 9…供試器のロス等価抵抗 10…供試器の対地静電容量 11…固定周波数・可変電圧電源 12…電圧調整変圧器 DESCRIPTION OF SYMBOLS 1 ... Variable frequency / variable voltage power supply 2 ... Compensation reactor 3 ... Tester 4 ... High linearity area 5 ... Non-linear area 6 ... Waveform of induced voltage of tester 7 ... Waveform of magnetic flux generated by tester 8 … Current waveform of test equipment 9… Equivalent loss resistance of test equipment 10… Capacity to ground of test equipment 11… Fixed frequency / variable voltage power supply 12… Voltage adjustment transformer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 静止誘導器を供試器とし、この供試器の
耐電圧を試験する方法であって、 周波数および出力電圧が可変である電源と、無効電力を
補償するための補償リアクトルとを前記供試器に並列に
接続し、 前記電源の周波数を調整してこの電源周波数を、前記供
試器の対地静電容量と補償リアクトルのインダクタンス
とで決まる並列共振周波数に合せると共に、 前記電源周波数について前記供試器の励磁電流がほぼ正
弦波になる低磁束領域を使用する周波数を選ぶようにし
たことを特徴とする静止誘導器の耐電圧試験方法。
1. A method for testing a withstand voltage of a stationary inductor as a test device, comprising: a power supply having a variable frequency and an output voltage; and a compensation reactor for compensating for reactive power. Are connected in parallel to the test equipment, and the frequency of the power supply is adjusted to match the power supply frequency with the parallel resonance frequency determined by the ground capacitance of the test equipment and the inductance of the compensation reactor. A withstand voltage test method for a stationary inductor, wherein a frequency is selected to use a low magnetic flux region in which the exciting current of the test device is substantially a sine wave.
【請求項2】 静止誘導器を供試器とし、この供試器の
耐電圧を試験する方法であって、 出力電圧が可変である電源と、電圧調整用変圧器とを前
記供試器に並列に接続し、 前記電圧調整用変圧器の2次側に無効電力を補償するた
めの補償リアクトルを接続し、 この電圧調整用変圧器の1〜2次間のレシオを調整して
前記補償リアクトルの補償容量を変化させ、前記供試器
の対地静電容量と補償リアクトルのインダクタンスとで
決まる並列共振周波数を前記電源の周波数に合せると共
に、 前記並列共振周波数について前記供試器の励磁電流がほ
ぼ正弦波になる低磁束領域を使用する周波数を選ぶよう
にしたことを特徴とする静止誘導器の耐電圧試験方法。
2. A method for testing a withstand voltage of a static induction device as a test device, the test device comprising: a power supply having a variable output voltage; and a voltage adjusting transformer. Connected in parallel, a compensation reactor for compensating for reactive power is connected to the secondary side of the voltage adjustment transformer, and a ratio between the first and second order of the voltage adjustment transformer is adjusted to adjust the compensation reactor. And the parallel resonance frequency determined by the ground capacitance of the EUT and the inductance of the compensation reactor is matched with the frequency of the power supply, and the exciting current of the EUT for the parallel resonance frequency is substantially A withstand voltage test method for a stationary inductor, wherein a frequency for using a low magnetic flux region that becomes a sine wave is selected.
JP4650098A 1998-02-27 1998-02-27 Withstand voltage test method of stationary induction apparatus Pending JPH11251168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4650098A JPH11251168A (en) 1998-02-27 1998-02-27 Withstand voltage test method of stationary induction apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4650098A JPH11251168A (en) 1998-02-27 1998-02-27 Withstand voltage test method of stationary induction apparatus

Publications (1)

Publication Number Publication Date
JPH11251168A true JPH11251168A (en) 1999-09-17

Family

ID=12748970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4650098A Pending JPH11251168A (en) 1998-02-27 1998-02-27 Withstand voltage test method of stationary induction apparatus

Country Status (1)

Country Link
JP (1) JPH11251168A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950149A (en) * 2014-03-24 2015-09-30 国家电网公司 Electronic power-frequency voltage-withstand test voltage-regulating device, test wiring circuit and test voltage-regulating method
CN109521339A (en) * 2018-11-27 2019-03-26 汪锐 Based on the non-power frequency parallel resonance pressure resistant test method compensated entirely
JP2020176888A (en) * 2019-04-17 2020-10-29 中国電力株式会社 Measurement device and measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104950149A (en) * 2014-03-24 2015-09-30 国家电网公司 Electronic power-frequency voltage-withstand test voltage-regulating device, test wiring circuit and test voltage-regulating method
CN109521339A (en) * 2018-11-27 2019-03-26 汪锐 Based on the non-power frequency parallel resonance pressure resistant test method compensated entirely
JP2020176888A (en) * 2019-04-17 2020-10-29 中国電力株式会社 Measurement device and measurement method

Similar Documents

Publication Publication Date Title
JPH0627151A (en) Amperometric converter operated on basis of compensation primciple
Zirka et al. Simplified models of three-phase, five-limb transformer for studying GIC effects
US5576942A (en) Method and apparatus for reducing the harmonic currents in alternating-current distribution networks
US5912553A (en) Alternating current ferroresonant transformer with low harmonic distortion
JPH0570460B2 (en)
JPH11251168A (en) Withstand voltage test method of stationary induction apparatus
Neves et al. Practical distribution transformer models for harmonic studies
KR20050086460A (en) Method for the generation of a high-frequency ac voltage and corresponding high-frequency amplifier
US2434493A (en) Voltage stabilizing transformer
Ichinokura et al. Graphical circuit analysis of two C-core type parametric power converter
EP0278635B1 (en) Negative feedback power supply apparatus
Hsu et al. Experimental study of harmonic-flux effects in ferromagnetic materials
Ece et al. An analysis of transformer excitation current under nonsinusoidal supply voltage
Modrijan et al. Precision $ B $–$ H $ Analyzer With Low THD Secondary Induced Voltage
Rymarski et al. The dynamic properties of a single‐phase transformer‐based inverter for ups systems
US2467807A (en) Electric induction apparatus
Blake The frequency tripler
Dadić et al. Automated system for the measurement of AC magnetization characteristics
JPH07183125A (en) Demagnetization of electromagnetic induction equipment
Kusters et al. A phantom burden for current transformer calibration
JPH0937468A (en) Static reactive power compensator
Pejovic Current Injection Devices
JPS6176962A (en) Current detector
Sankaran et al. Use of a voltage follower to ensure sinusoidal flux in a core
JPH0630308B2 (en) Memory type negative feedback power supply