JPH11251112A - Pressure-sensitive resistance change type conductive composition - Google Patents

Pressure-sensitive resistance change type conductive composition

Info

Publication number
JPH11251112A
JPH11251112A JP6401198A JP6401198A JPH11251112A JP H11251112 A JPH11251112 A JP H11251112A JP 6401198 A JP6401198 A JP 6401198A JP 6401198 A JP6401198 A JP 6401198A JP H11251112 A JPH11251112 A JP H11251112A
Authority
JP
Japan
Prior art keywords
particles
pressure
resistance
sensitive
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6401198A
Other languages
Japanese (ja)
Inventor
Masao Yasuda
田 正 男 安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PORIMATEC KK
Original Assignee
PORIMATEC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PORIMATEC KK filed Critical PORIMATEC KK
Priority to JP6401198A priority Critical patent/JPH11251112A/en
Publication of JPH11251112A publication Critical patent/JPH11251112A/en
Pending legal-status Critical Current

Links

Landscapes

  • Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce the cost, and adjust the rate of change of resistance value arbitrarily and easily, by using a liquid rubber for a matrix rubber and mixing carbon particles and a very small quantity of highresistance particles. SOLUTION: A liquid silicone rubber is used for a matrix in which conductive particles and high-resistance particles are to be kneaded. Approximately 50-200 pts.wt. of carbon particles having an average grain size of approximately 2-50 μm and approximately 0.1-5 pts.wt. of high-resistance particles having a specific electric resistance of approximately 10-200 Ωcm when pressurized at 4.9×10<5> Pa (5 kg/cm<2> ) and having an average grain size of approximately 0.05-5 mm are kneaded into the matrix, thus producing a pressure-sensitive conductive composition. In this case, titanium oxide particles or the like, or particles with their surfaces coated with titanium oxide or the like, are used as the high- resistance particles. By changing the quantity of high-resistance particles to be mixed, the rate of change of resistance value is varied from 10<1> to 10<5> or more. Thus, the rate of change of resistance value is made arbitrarily and easily adjustable and the cost is reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は圧力を加えることに
より抵抗値が変化する感圧導電センサーに使われる感圧
抵抗変化型導電性組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure-sensitive resistance-changing conductive composition used for a pressure-sensitive conductive sensor whose resistance changes when pressure is applied.

【0002】[0002]

【従来の技術】従来から圧力に応じて抵抗値が変わる材
料組成は知られている。
2. Description of the Related Art Conventionally, a material composition whose resistance value changes according to pressure is known.

【0003】例えば特公昭56-187公報には有機可とう性
材料から成る基材と角を落とした人造黒鉛粒子から構成
される感圧導電性弾性体組成物が記載されている。
For example, Japanese Patent Publication No. 56-187 discloses a pressure-sensitive conductive elastic composition composed of a base material made of an organic flexible material and artificial graphite particles with sharp corners.

【0004】さらに例えば特開昭59-98164公報にはシリ
コーンゴム組成物100重量部に対して白金化合物を用い
て表面処理した導電性金属粒子を100〜2000重量部配合
したことを特徴とする感圧導電性シリコーンゴム組成物
が開示されている。
Further, for example, Japanese Patent Application Laid-Open No. 59-98164 discloses a feeling wherein 100 to 2000 parts by weight of a conductive metal particle surface-treated with a platinum compound is blended with 100 parts by weight of a silicone rubber composition. Piezoelectric silicone rubber compositions are disclosed.

【0005】さらに本発明に近い感圧導電組成物として
は特開平2-186604公報に有機高分子材料と導電性材料お
よび前記導電性材料の1/100以下の電気伝導度を有する
半導体材料および絶縁性材料を含有してなることを特徴
とする感圧抵抗変化型導電性組成物が公知であり、特開
平3-247662公報には有機高分子材料、導電性材料、該導
電性材料の1/100以下の電気伝導度を有する半導体材料
及び絶縁性材料、および有機溶媒を含有し、EHD型粘
度計で測定した粘度が1から5000ポイズであることを特
徴とする感圧抵抗変化型導電性組成物が公知である。
Further, as a pressure-sensitive conductive composition close to the present invention, JP-A-2-186604 discloses an organic polymer material, a conductive material, a semiconductor material having an electrical conductivity of 1/100 or less of the conductive material, and an insulating material. A pressure-sensitive resistance-change-type conductive composition characterized by containing a conductive material is known. Japanese Patent Application Laid-Open No. 3-247662 discloses an organic polymer material, a conductive material, and one-third of the conductive material. A pressure-sensitive resistance-change-type conductive composition containing a semiconductor material and an insulating material having an electric conductivity of 100 or less, and an organic solvent, and having a viscosity of 1 to 5,000 poise measured by an EHD viscometer. Things are known.

【0006】さらに具体的には特公平7-87123 に塩化ビ
ニル樹脂、酢酸ビニル樹脂、塩化ビニル、酢酸ビニル共
重合体樹脂ならびにこれらの変性体樹脂から選択される
1種以上の樹脂から成るバインダ100重量部に対し鱗片
状のグラファイトを30から180重量部と前記グラファイ
トの1/100以下の電気伝導度を有する半導体材料及び絶
縁材料から選ばれる1種以上の材料50から 340重量部と
有機溶媒とを含有して成ることを特徴とするスイッチ素
子として用いる感圧抵抗変化型導電性と膜形成性組成物
がある。
More specifically, Japanese Patent Publication No. 7-87123 discloses a binder 100 comprising at least one resin selected from vinyl chloride resin, vinyl acetate resin, vinyl chloride, vinyl acetate copolymer resin and modified resins thereof. 30 to 180 parts by weight of flaky graphite with respect to parts by weight, and 50 to 340 parts by weight of at least one material selected from a semiconductor material and an insulating material having an electric conductivity of 1/100 or less of the graphite, and an organic solvent. There is a pressure-sensitive resistance-change-type conductive and film-forming composition used as a switching element characterized by containing.

【0007】[0007]

【発明が解決しようとする課題】しかしながら近年のエ
レクトロニクス機器の小型化、低コスト化には従来の組
成物では十分対応できない。すなわち特公昭56-9187号
の方法では角を落とした黒鉛粒子を調整するのが容易で
はない。特開昭59-98164号においても白金化合物を用い
て表面処理した導電性金属粒子を用意するのは容易では
ないことに加え比重の大きな金属粒子を使うので作業中
に金属粒子が沈降してしまう難点もある。また特開平2-
186604号に記載されている技術では具体的に感圧抵抗変
化型導電性組成物を構成できず同特許の実施例では特公
平7-87123号におけると同様に下記の問題点が生じる。
すなわち有機溶媒を使用するので作業環境に問題があ
る、塩ビ酢ビ系樹脂を使用しているので良好なヒステリ
シス特性が期待できず、また、熱可塑性の塩ビ酢ビ系樹
脂を使用するので高温時の特性に不安がある等である。
However, conventional compositions cannot sufficiently cope with recent miniaturization and cost reduction of electronic equipment. That is, it is not easy to adjust the graphite particles whose corners have been dropped by the method of JP-B-56-9187. Also in JP-A-59-98164, it is not easy to prepare conductive metal particles surface-treated using a platinum compound, and in addition, metal particles having a large specific gravity are used. There are drawbacks. Also, JP-A-2-
The technique described in Japanese Patent No. 186604 cannot specifically form a pressure-sensitive resistance-changeable conductive composition, and the following problems occur in the examples of the patent as in Japanese Patent Publication No. 7-87123.
In other words, there is a problem in the working environment because an organic solvent is used, good hysteresis characteristics cannot be expected because a vinyl chloride-vinyl acetate resin is used, and high-temperature Are concerned about the characteristics of

【0008】以上のように従来の技術では近年のエレク
トロニクス機器の小型化、低コスト化に十分対応できる
感圧導電性組成物を得ることはできない。
As described above, the conventional technology cannot provide a pressure-sensitive conductive composition that can sufficiently cope with recent miniaturization and cost reduction of electronic equipment.

【0009】[0009]

【課題を解決するための手段】以上の従来技術の課題を
解決するために、本発明はマトリックスゴムに液状ゴム
を使用し、カーボン粒子と微量の高抵抗粒子を配合する
組成にすることにより従来の感圧導電性組成物では達成
することが難しかった下記のような効果が生じる。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems of the prior art, the present invention uses a liquid rubber as a matrix rubber and forms a composition in which carbon particles and a trace amount of high resistance particles are blended. The following effects, which are difficult to achieve with the pressure-sensitive conductive composition described above, occur.

【0010】−感圧導電性組成物を調整する上で特殊な
材料、方法を必要としない。したがって低コストで製造
可能である。
[0010] No special materials or methods are required for preparing the pressure-sensitive conductive composition. Therefore, it can be manufactured at low cost.

【0011】−抵抗値の変化比率(無圧時の抵抗値を加
圧時に達する最小の抵抗値で除した値)を101から105
上まで任意、かつ容易に調整可能である。
[0011] - any change in the resistance ratio (the value obtained by dividing the minimum resistance value of the resistance value of the non-pressure time reaches pressurized) from 10 1 to 10 5 or more, and can be easily adjusted.

【0012】−クシ状電極上に本組成物を、印刷、コー
ティング、塗布、滴下して、加熱するだけで高性能な感
圧センサーを構成できる。
-A high-performance pressure-sensitive sensor can be constructed simply by printing, coating, applying, and dropping the present composition on a comb-like electrode and heating the composition.

【0013】以下さらに詳しく説明する。The details will be described below.

【0014】[0014]

【発明の実施の形態】本発明は、導電性粒子、高抵抗粒
子を練り込むマトリックスに、液状シリコーンゴムを使
用し、平均粒子径が2μm〜50μmのカーボン粒子を50
〜 200重量部と4.9×105Pa(5kg/cm2)で加圧した時の
比電気抵抗が10Ωcmから200MΩcm、かつ平均粒子径が
0.05〜5mmである高抵抗粒子を0.1から5重量部練り込み
感圧導電性組成物を製作した。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention uses a liquid silicone rubber as a matrix into which conductive particles and high-resistance particles are kneaded, and removes carbon particles having an average particle diameter of 2 to 50 μm.
~ 200 parts by weight and specific electric resistance when pressurized at 4.9 × 10 5 Pa (5kg / cm 2 ) from 10Ωcm to 200MΩcm, and average particle size
A pressure-sensitive conductive composition was prepared by kneading 0.1 to 5 parts by weight of high resistance particles of 0.05 to 5 mm.

【0015】マトリックスを液状ゴムとすることにより
導電性粒子の練り混みに固形の天然ゴムや合成ゴムの時
のような混練ロールや加圧ニーダーが不要となり簡単な
設備で短時間に導電性組成物を作成可能となる。
By using a liquid rubber as the matrix, there is no need for a kneading roll or a pressure kneader as in the case of solid natural rubber or synthetic rubber for kneading the conductive particles. Can be created.

【0016】液状シリコーンゴムは耐寒耐熱性に優れ、
かつ歪み−応力ヒステリシスも小さいので高精度の感圧
センサーを構成できる。さらに比較的穏やかな条件で架
橋可能(室温から100℃、1時間以下でも架橋可能であ
る)であることも利点となる。
Liquid silicone rubber has excellent cold and heat resistance,
In addition, since the strain-stress hysteresis is small, a highly accurate pressure-sensitive sensor can be configured. It is also advantageous that crosslinking is possible under relatively mild conditions (crosslinking is possible even at room temperature to 100 ° C. for 1 hour or less).

【0017】導電性粒子としてはカーボン粒子を用い
る。加圧減圧を繰り返したときに尖端が欠けていき感圧
特性が変化することがさけられるので長期の安定性を考
えると球状のカーボン粒子が好ましい。カーボン粒子は
平均粒子径が2μm〜50μmのものを用いる。平均粒子
径が2μm未満の球状カーボン粒子は製造が困難であ
り、50μmを超える平均粒子径のものは本組成物を用い
て構成する感圧導電センサーにおいて通常0.05mmから5m
m 程度の電極間隙幅に相当数のカーボン粒子が存在しな
ければならないことを考えると適当ではない。カーボン
粒子の配合量は50から200重量部とする。50重量部未満
では必要な導電性を発現できず200重量部を超えると配
合物の粘度が大きくなり電極上に均一に塗布することが
困難となる。
Carbon particles are used as the conductive particles. Since it is possible to avoid a change in pressure-sensitive characteristics due to chipping when repeated pressurization and depressurization, spherical carbon particles are preferred in view of long-term stability. Carbon particles having an average particle diameter of 2 μm to 50 μm are used. Spherical carbon particles having an average particle diameter of less than 2 μm are difficult to produce, and those having an average particle diameter of more than 50 μm are usually from 0.05 mm to 5 m in a pressure-sensitive conductive sensor formed using the present composition.
This is not appropriate considering that a considerable number of carbon particles must be present in the electrode gap width of about m. The compounding amount of the carbon particles is from 50 to 200 parts by weight. If the amount is less than 50 parts by weight, the required conductivity cannot be exhibited. If the amount exceeds 200 parts by weight, the viscosity of the compound becomes large, and it becomes difficult to apply the compound uniformly on the electrode.

【0018】さらに本組成物の特徴として4.9×105Pa
(5kg/cm2)で加圧した時の比電気抵抗が10Ωcmから200
MΩcm、かつ平均粒子径が0.05〜5μmである高抵抗粒
子、好ましくは酸化チタン、酸化錫、二硫化モリブデン
粒子または表面に酸化チタン、酸化錫、二硫化モリブデ
ンをコーティングした粒子を少なくとも1種以上 0.1か
ら 5重量部配合する。比電気抵抗が10Ωcm未満の高抵抗
粒子では充分な抵抗値変化比率を得ることができず 200
MΩcmより大きい比電気抵抗の粒子ではなめらかな感圧
曲線を得ることはできない。高抵抗粒子が 0.1重量部以
下では充分な抵抗値変化比率を得ることができず 5重量
部を越えて配合すると感圧曲線がなめらかでなくなる場
合がある。高抵抗粒子の粒子径は 0.05μmから5μmが
好ましい。高抵抗粒子の粒子径が0.05μm以下では液状
ゴム中に分散させるのが困難であり5μmを超えるとな
めらかな感圧曲線が得られなくなる。
Further, as a characteristic of the present composition, 4.9 × 10 5 Pa
(5kg / cm 2 ) when pressurized from 10Ωcm to 200
MΩcm, high-resistance particles having an average particle diameter of 0.05 to 5 μm, preferably at least one kind of titanium oxide, tin oxide, molybdenum disulfide particles or particles having a surface coated with titanium oxide, tin oxide, molybdenum disulfide at least 0.1% From 5 parts by weight. High resistance particles with a specific electric resistance of less than 10 Ωcm cannot obtain a sufficient resistance value change ratio.
A smooth pressure-sensitive curve cannot be obtained with particles having a specific electric resistance larger than MΩcm. If the amount of the high-resistance particles is less than 0.1 part by weight, a sufficient resistance value change ratio cannot be obtained. If the amount exceeds 5 parts by weight, the pressure-sensitive curve may not be smooth. The particle diameter of the high resistance particles is preferably from 0.05 μm to 5 μm. If the particle diameter of the high-resistance particles is 0.05 μm or less, it is difficult to disperse them in the liquid rubber, and if it exceeds 5 μm, a smooth pressure-sensitive curve cannot be obtained.

【0019】高抵抗粒子の配合量を変えることによって
抵抗値の変化比率を101から105以上まで変えることがで
きる。以下実施例にもとずき説明する。
By changing the amount of the high resistance particles, the change ratio of the resistance value can be changed from 10 1 to 10 5 or more. A description will be given below based on embodiments.

【0020】[0020]

【実施例1】液状付加型シリコーンゴム KE109(信越化
学工業(株)製)100重量部にカーボンマイクロビーズ IC
B1020(日本カーボン(株)製)を 120重量部配合し、
さらに酸化チタン A-100(石原産業(株)製)(内径6mm
のガラス管に粉体を適量入れ両端を径6mmの円筒形銅電
極で4.9×105Pa(5kg/cm2)の圧力を加えることによっ
て測定した圧粉体比電気抵抗が20MΩcm、平均粒子径0.
15μm)を0.5重量部配合しインキロールで練り感圧導
電組成物を得た。これを図1に示すように真空脱泡の後
ガラスエポキシ基板に接着された厚さ36μmの銅箔で形
成された電極幅 0.5mm、電極間隔 0.5mm、電極ピッチ1
mmのクシ状電極上に塗布した。 100℃で1時間加熱硬化
させたのち厚さが1mmを超える部分を削り取り厚さを1
mmの感圧導電センサーとした。その上から直径 5.5mmの
底面の平らな押し子で押し感圧特性を測定した。酸化チ
タンを 0.5重量部配合すると抵抗値変化比率は102以上
(9.5kΩ〜80Ω以下)にまでなった。
Example 1 100 parts by weight of liquid addition type silicone rubber KE109 (manufactured by Shin-Etsu Chemical Co., Ltd.) was mixed with carbon microbead IC.
120 parts by weight of B1020 (Nippon Carbon Co., Ltd.)
Furthermore, titanium oxide A-100 (manufactured by Ishihara Sangyo Co., Ltd.) (6 mm inner diameter)
The powder has a specific electrical resistance of 20 MΩcm and an average particle diameter of about 20 MΩcm, measured by applying an appropriate amount of powder to a glass tube and applying a pressure of 4.9 × 10 5 Pa (5 kg / cm 2 ) at both ends with a cylindrical copper electrode having a diameter of 6 mm. 0.
15 μm) and kneaded with an ink roll to obtain a pressure-sensitive conductive composition. As shown in FIG. 1, after vacuum degassing, the electrode width was 0.5 mm, the electrode interval was 0.5 mm, and the electrode pitch was 1 formed of a 36 μm thick copper foil adhered to a glass epoxy substrate.
It was applied on a mm-shaped comb electrode. After heating and hardening at 100 ° C for 1 hour, the part with thickness exceeding 1mm is scraped off and the thickness is reduced to 1
mm. From above, the pressure sensitivity was measured with a flat pusher with a bottom of 5.5 mm in diameter. Resistance change rate as to blend 0.5 part by weight of titanium oxide became up to 10 more (9.5Keiomega~80omu less).

【0021】[0021]

【実施例2】酸化チタンの配合量を1.0 重量部とし、他
は実施例1と同様にして製作した。
Example 2 A titanium oxide was prepared in the same manner as in Example 1 except that the amount of titanium oxide was changed to 1.0 part by weight.

【0022】抵抗値変化比率は105 以上(100MΩ以上
〜300Ω以下)にまでなった。
The resistance value change ratio is up to 10 5 or more (from 100 MΩ to 300 Ω).

【0023】[比較例]液状付加型シリコーンゴム KE1
09(信越化学工業(株)製) 100重量部に平均粒子径10μ
mのカーボンマイクロビーズ ICB1020(日本カーボン
(株)製)を90;100;110;120;140の各重量部を配合
し、インキロールで練り、比較例1〜5の感圧導電組成
物を得た。この組成物を実施例1〜2と同じ方法で感圧
導電センサーとした。その上から直径 5.5mmの底面の平
らな押し子で押し感圧特性を測定した。無圧時と加圧時
で抵抗値変化率は101〜101.5にとどまり、感圧センサー
として十分な抵抗値変化量は得られないことがわかっ
た。比較例4は、実施例1、2とは酸化チタンを配合し
ない差異であるが、抵抗値変化比率は、ほぼ101(180Ω
〜17Ω)である。
Comparative Example Liquid addition type silicone rubber KE1
09 (Shin-Etsu Chemical Co., Ltd.) Average particle size 10μ in 100 parts by weight
m carbon microbeads ICB1020 (Nippon Carbon
90; 100; 110; 120; 140 by weight and kneaded with an ink roll to obtain the pressure-sensitive conductive compositions of Comparative Examples 1 to 5. This composition was used as a pressure-sensitive conductive sensor in the same manner as in Examples 1 and 2. From above, the pressure sensitivity was measured with a flat pusher with a bottom of 5.5 mm in diameter. Resistance change rate with no pressure time and pressurization stays in 10 1 to 10 1.5, it was found that no sufficient resistance change amount obtained as a pressure-sensitive sensor. Comparative Example 4 is different from Examples 1 and 2 in that no titanium oxide is blended, but the resistance value change ratio is almost 10 1 (180Ω).
~ 17Ω).

【0024】[0024]

【実施例3】液状付加型シリコーンゴム KE109(信越化
学工業(株)製) 100重量部に、カーボンマイクロビーズ
ICB1020(日本カーボン(株)製)を120重量部配合し、さ
らに高抵抗粒子として酸化錫 SH-S(日本化学産業(株)
製)(圧粉体比電気抵抗5kΩ、平均粒子径1.2μm)を
1.0重量部配合しインキロールで練り感圧導電組成物を
得た。抵抗値変化比率は102以上(50kΩ以上〜1
20Ω)にまでなった。
Example 3 Carbon microbeads were added to 100 parts by weight of liquid addition type silicone rubber KE109 (Shin-Etsu Chemical Co., Ltd.)
120 parts by weight of ICB1020 (manufactured by Nippon Carbon Co., Ltd.), and tin oxide SH-S (Nippon Chemical Industry Co., Ltd.) as high resistance particles
(Electrical resistance of green compact 5 kΩ, average particle diameter 1.2 μm)
1.0 part by weight was mixed and kneaded with an ink roll to obtain a pressure-sensitive conductive composition. The resistance value change ratio is 10 2 or more (50 kΩ or more to 1
20Ω).

【0025】[0025]

【実施例4】酸化錫の配合量を 2.0重量部として実施例
3と同様な方法で感圧導電組成物を得た。抵抗値変化比
率は103 以上(5MΩ〜1.8kΩ)にまでなった。
Example 4 A pressure-sensitive conductive composition was obtained in the same manner as in Example 3, except that the blending amount of tin oxide was 2.0 parts by weight. The resistance value change ratio became 10 3 or more (5 MΩ to 1.8 kΩ).

【0026】[0026]

【実施例5】酸化錫に代え二硫化モリブデン モリコー
トマイクロサイズパウダー(ダウコーニングアジア(株)
製)(圧粉体比電気抵抗50kΩcm、平均粒子径 1μm)
を1重量部を配合し、インキロールで練り感圧導電組成
物を得た。この組成物を比較例1と同じ方法で感圧導電
センサーとし、その上から直径 5.5mmの底面の平らな押
し子で押し感圧特性を測定した。抵抗値変化比率は10
1以上(550Ω〜25Ω)にまでなった。
[Example 5] Molybdenum disulfide molycoat micro-size powder (Dow Corning Asia Co., Ltd.) in place of tin oxide
(Electric resistance 50kΩcm, average particle diameter 1μm)
And kneaded with an ink roll to obtain a pressure-sensitive conductive composition. This composition was used as a pressure-sensitive conductive sensor in the same manner as in Comparative Example 1, and the pressure-sensitive characteristics were measured from above using a flat pusher having a bottom of 5.5 mm in diameter. Resistance change ratio is 10
It became 1 or more (550 Ω to 25 Ω).

【0027】[0027]

【実施例6】実施例5の二硫化モリブデン モリコート
マイクロサイズパウダーの配合量を2重量部として感圧
導電組成物を得た。
Example 6 A pressure-sensitive conductive composition was obtained by using the molybdenum disulfide molycoat micro-sized powder of Example 5 in an amount of 2 parts by weight.

【0028】抵抗値変化比率は101 以上(13kΩ〜
310Ω)にまでなった。
The resistance value change ratio is 10 1 or more (13 kΩ-
310Ω).

【0029】[0029]

【実施例7】実施例5の二硫化モリブデン モリコート
マイクロサイズパウダーの配合量を5重量部として感圧
導電組成物を得た。
Example 7 A pressure-sensitive conductive composition was obtained using 5 parts by weight of the molybdenum disulfide molycoat micro-sized powder of Example 5.

【0030】抵抗値変化比率は101以上(6kΩ〜5
50Ω)にまでなった。
The resistance value change ratio is 10 1 or more (6 kΩ to 5
50Ω).

【0031】[比較例6]液状付加型シリコーンゴム K
E109(信越化学工業(株)製) 100重量部に、カーボンマ
イクロビーズICB1020(日本カーボン(株)製)を
120重量部配合し、さらに高抵抗粒子としてシリコーン
樹脂微粉末トスパール 105(東芝シリコーン(株)製)
(圧粉体比電気抵抗は 200MΩcmを超える、平均粒子径
は 0.5μm)を 0.5重量部配合し、インキロールで練り
感圧導電組成物を得た。この組成物を比較例1と同じ方
法で感圧導電センサーとし、その上から直径 5.5mmの底
面の平らな押し子で押し感圧特性を測定した。
Comparative Example 6 Liquid addition type silicone rubber K
E109 (Shin-Etsu Chemical Co., Ltd.) 100 parts by weight of carbon microbeads ICB1020 (Nippon Carbon Co., Ltd.)
120 parts by weight, and as a high-resistance particle, silicone resin fine powder Tospearl 105 (manufactured by Toshiba Silicone Co., Ltd.)
0.5 parts by weight (compact electric resistance exceeds 200 MΩcm, average particle size is 0.5 μm) was mixed with an ink roll to obtain a pressure-sensitive conductive composition. This composition was used as a pressure-sensitive conductive sensor in the same manner as in Comparative Example 1, and the pressure-sensitive characteristics were measured from above using a flat pusher having a bottom of 5.5 mm in diameter.

【0032】抵抗値変化比率は、103以上(100M
Ω〜170kΩ)である。圧粉体比電気抵抗が 200MΩ
cmを超えるる粒子ではなめらかな曲線が得られないこと
がわかる。
The resistance value change ratio is 10 3 or more (100 M
Ω to 170 kΩ). Green compact electric resistance 200MΩ
It can be seen that a smooth curve cannot be obtained with particles exceeding cm.

【0033】以上の実施例1〜7の配合割合ならびに無
加圧時抵抗値および加圧時抵抗値を表1にまとめて示
す。
Table 1 summarizes the compounding ratios of the above Examples 1 to 7, and the resistance under no pressure and the resistance under pressure.

【0034】比較例1〜6の配合割合ならびに無加圧時
抵抗値および加圧時抵抗値を表2にまとめて示す。
Table 2 shows the compounding ratios of Comparative Examples 1 to 6, and the resistance value under no pressure and the resistance value under pressure.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【発明の効果】本発明の感圧抵抗変化型導電性組成物を
用いることにより、特殊な機器、材料を用いることなく
抵抗値変化比率が101から105以上まで任意に調整可能な
感圧センサーを構成することが可能となり、エレクトロ
ニクス機器の感圧スイッチ、感圧キーボードスイッチ、
自動車の着座センサー、自動車窓ガラスのはさみこみ検
知センサー、その他圧力センサーとして広範な用途が開
ける。
By using the pressure-sensitive resistance-change-type conductive composition of the present invention, the pressure-sensitive resistance can be arbitrarily adjusted from 10 1 to 10 5 or more without using special equipment and materials. Sensors can be configured, pressure-sensitive switches for electronic devices, pressure-sensitive keyboard switches,
It can be used for a wide variety of applications such as car seat sensors, car window scissors detection sensors, and other pressure sensors.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の感圧導電組成物をくし状電極上に塗
布して構成した感圧センサーの略図である。
FIG. 1 is a schematic view of a pressure-sensitive sensor constituted by applying the pressure-sensitive conductive composition of the present invention onto a comb-like electrode.

【図2】 実施例1〜7の感圧特性におよぼす効果を示
す図である。
FIG. 2 is a diagram showing the effects of Examples 1 to 7 on pressure-sensitive characteristics.

【図3】 比較例1〜5の感圧特性の関係を示す図であ
る。
FIG. 3 is a diagram illustrating a relationship between pressure-sensitive characteristics of Comparative Examples 1 to 5.

【図4】 比較例6の感圧特性の関係を示す図である。FIG. 4 is a diagram showing a relationship between pressure-sensitive characteristics of Comparative Example 6.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】液状ゴム 100重量部に対し、平均粒子径が
2μm〜50μmのカーボン粒子を50〜200重量部と、
4.9×105Pa(5kg/cm2)で加圧した圧粉体の比電気抵抗が1
0Ωcm〜200MΩcm、かつ平均粒子径が0.05μm〜5μm
である粒子(以下高抵抗粒子)を0.1 〜5 重量部とを含
むことを特徴とする感圧抵抗変化型導電性組成物。
(1) The average particle diameter is 100 parts by weight of the liquid rubber.
50 to 200 parts by weight of carbon particles of 2 μm to 50 μm,
The specific electrical resistance of the green compact pressed at 4.9 × 10 5 Pa (5 kg / cm 2 ) is 1
0 Ωcm to 200 MΩcm, and the average particle size is 0.05 μm to 5 μm
A pressure-sensitive resistance-changing conductive composition comprising 0.1 to 5 parts by weight of particles (hereinafter referred to as high-resistance particles).
【請求項2】 液状ゴムが,液状シリコーンゴムである
請求項1に記載の感圧抵抗変化型導電性組成物。
2. The pressure-sensitive resistance variable conductive composition according to claim 1, wherein the liquid rubber is a liquid silicone rubber.
【請求項3】 高抵抗粒子が、酸化チタン、酸化錫、二
硫化モリブデンまたは表面に酸化チタン、酸化錫、二硫
化モリブデンをコーティングした粒子から選ばれる請求
項1あるいは2に記載の感圧抵抗変化型導電性組成物。
3. The pressure-sensitive resistance change according to claim 1, wherein the high-resistance particles are selected from titanium oxide, tin oxide, molybdenum disulfide or particles whose surfaces are coated with titanium oxide, tin oxide, or molybdenum disulfide. Type conductive composition.
JP6401198A 1998-02-28 1998-02-28 Pressure-sensitive resistance change type conductive composition Pending JPH11251112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6401198A JPH11251112A (en) 1998-02-28 1998-02-28 Pressure-sensitive resistance change type conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6401198A JPH11251112A (en) 1998-02-28 1998-02-28 Pressure-sensitive resistance change type conductive composition

Publications (1)

Publication Number Publication Date
JPH11251112A true JPH11251112A (en) 1999-09-17

Family

ID=13245822

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6401198A Pending JPH11251112A (en) 1998-02-28 1998-02-28 Pressure-sensitive resistance change type conductive composition

Country Status (1)

Country Link
JP (1) JPH11251112A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018111218A (en) * 2017-01-06 2018-07-19 国立大学法人長岡技術科学大学 Method for producing pressure-sensitive conductive elastomer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018111218A (en) * 2017-01-06 2018-07-19 国立大学法人長岡技術科学大学 Method for producing pressure-sensitive conductive elastomer

Similar Documents

Publication Publication Date Title
US6495069B1 (en) Polymer composition
JPH02503049A (en) Nonlinear materials and overvoltage protection devices using them
JP2002506578A (en) Nonlinear resistor having varistor characteristics and method of manufacturing the resistor
MX2008002344A (en) Conductive materials.
JPH06196304A (en) Composition of polymer thick-film resistor
KR100655347B1 (en) Thick film conductor compositions for use in membrane switch applications
CN110099963B (en) Resin composition, cured product, conductive film, conductive pattern, and garment
CN108347828A (en) Conductive mixture and the preparation method and application thereof based on liquid metal
JP3273610B2 (en) Thick film NTC thermistor composition
WO2018102254A1 (en) Nonlinear composite compositions, methods of making the same, and articles including the same
KR20060093794A (en) Resin-basd caron nanotube hybrid materials with high thermal conductivity
JPH11251112A (en) Pressure-sensitive resistance change type conductive composition
TW200834612A (en) Polymeric positive temperature coefficient thermistor and process for preparing the same
JPH03143967A (en) Electrically conductive ink
JP7021263B2 (en) Bioelectrode
JP2018067640A (en) Composition for positive temperature coefficient resistor, paste for positive temperature coefficient resistor, positive temperature coefficient resistor, and method for manufacturing positive temperature coefficient resistor
JP6048166B2 (en) Conductive adhesive composition and electronic device using the same
JP3541264B2 (en) Positive temperature characteristic element
WO2023210522A1 (en) Conductive coating material and circuit former
JPH0822714A (en) Conductive paste and semiconductor ceramic component using the same
JPH0737703A (en) Positive temperature characteristic resin composition
CN208077708U (en) resistor
JP3684867B2 (en) PTC composition and planar heating element
JP2623678B2 (en) Conductive material
JP3605148B2 (en) Thick film resistor composition and variable resistor