JPH11248666A - Electrolyte concentration analyzing apparatus - Google Patents

Electrolyte concentration analyzing apparatus

Info

Publication number
JPH11248666A
JPH11248666A JP4712498A JP4712498A JPH11248666A JP H11248666 A JPH11248666 A JP H11248666A JP 4712498 A JP4712498 A JP 4712498A JP 4712498 A JP4712498 A JP 4712498A JP H11248666 A JPH11248666 A JP H11248666A
Authority
JP
Japan
Prior art keywords
sample
liquid
electrolyte concentration
sensor
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4712498A
Other languages
Japanese (ja)
Inventor
Naoya Imai
直也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP4712498A priority Critical patent/JPH11248666A/en
Publication of JPH11248666A publication Critical patent/JPH11248666A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To make processable a plurality of samples in a short time without lowering the accuracy of analysis by arranging a sensor outside a leading-in tube connecting a sample holding part to a measurement part, and detecting the boundary between a sample liquid level and an air layer. SOLUTION: Samples and dilluting liquid are respectively dispensed into a sample receptacle 11 by means of a sample dispensing syringe and dilluting liquid dispensing syringe 25, and they are stirred with a stirring rod 33. The dilluted samples are sucked into a flow type measurement cell 13 by a suction pump 18 through a leading-in tube 12, and during that time, air is detected by a ultrasonic sensor 14. In the case where detection is not possible, an abnormality alarm signal is output to forcibly stop operation. Then, correction liquid is dispensed into thereceptable 11 by a correction liquid dispensing syringe 29 through a two-way solenoid valve 28, and the electric potential of sample remaining in the cell 13 is measured after the liquid is stirred. Thereafter, the correction liquid is sucked into the cell 13 by the pump 18, then the detection of air is made by the sensor 14 to stop the pump 18 in order to measure the potentials of the remaining liquid. According to the difference between the potential the concentration of sample is calculated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電解質濃度分析装
置に関するものであり、主にフロー型測定セルを具備す
る臨床検査用電解質濃度分析装置に関するものである。
特に、生化学自動分析装置に組込んだ場合に高速処理の
要求に応ずることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte concentration analyzer, and more particularly to an electrolyte concentration analyzer for a clinical test provided with a flow type measurement cell.
In particular, when incorporated in an automatic biochemical analyzer, it can meet the demand for high-speed processing.

【0002】[0002]

【従来の技術】検査試料として採取した尿や血液等を定
量分析する手段として、これらの試料液をイオン選択性
電極を用いて定量分析する電解質濃度分析装置は、従来
から知られている。この電解質濃度分析装置は、図6に
示すように、フロー型測定セル7と、このフロー型測定
セル7の入口側に試料液導入管6を介して接続された試
料ポット1と、フロー型測定セル7の出口側に細径(例
えば、内径1mm以下)の吸引管8を介して接続された
吸引ポンプ9とを有し、試料ポット1に注入された試料
液等の電解質溶液を吸引ポンプ9の吸引力でフロー型測
定セル7に導入し、このフロー型測定セル内に設けられ
たイオン選択性電極により電解質溶液中の電解質成分を
定量測定後、廃液タンク(図示しない)への廃液を行う
ように構成されている。なお、図中2は試料ポット1に
試料液を注入する試料液注入ノズル、3は試料ポット1
に標準液を注入する標準液注入ノズル、4は試料ポット
1に希釈液を注入する希釈液注入ノズル、5は試料ポッ
ト1に注入された試料液等を攪拌する攪拌機を示してい
る。
2. Description of the Related Art As a means for quantitatively analyzing urine, blood or the like collected as a test sample, an electrolyte concentration analyzer for quantitatively analyzing these sample liquids using an ion-selective electrode has been conventionally known. As shown in FIG. 6, the electrolyte concentration analyzer comprises a flow type measurement cell 7, a sample pot 1 connected to the inlet side of the flow type measurement cell 7 via a sample liquid introduction pipe 6, and a flow type measurement cell. A suction pump 9 connected to the outlet side of the cell 7 via a suction pipe 8 having a small diameter (for example, an inner diameter of 1 mm or less), and an electrolyte solution such as a sample solution injected into the sample pot 1 is sucked by the suction pump 9 Is introduced into the flow type measuring cell 7 by the suction force of the above, and after the quantitative measurement of the electrolyte component in the electrolyte solution by the ion selective electrode provided in the flow type measuring cell, the waste liquid is drained to a waste liquid tank (not shown). It is configured as follows. In the figure, reference numeral 2 denotes a sample liquid injection nozzle for injecting a sample liquid into the sample pot 1;
Reference numeral 4 denotes a diluting liquid injection nozzle for injecting a diluting liquid into the sample pot 1, and 5 denotes a stirrer for stirring the sample liquid and the like injected into the sample pot 1.

【0003】ところで、上記のように構成される電解質
濃度分析装置では、フロー型測定セル7に電解質溶液を
導入して定量分析を行う場合に、フロー型測定セル7に
空気が入り込むと、正確な分析データを得ることができ
なくなる。このため、従来では試料ポット1から試料液
導入管6を通じて、フロー型測定セル7に空気が入り込
まないようにするために、試料ポット1に注入された電
解質溶液を試料液導入管6を通じてフロー型測定セル7
に導入した後、電解質溶液の一部を試料1に残留させて
定量分析を実施している。
[0003] In the electrolyte concentration analyzer configured as described above, when air is introduced into the flow-type measurement cell 7 when an electrolyte solution is introduced into the flow-type measurement cell 7 and quantitative analysis is performed, accurate measurement is performed. Analysis data cannot be obtained. For this reason, conventionally, in order to prevent air from entering the flow-type measuring cell 7 from the sample pot 1 through the sample liquid introducing pipe 6, the electrolyte solution injected into the sample pot 1 is flow-typed through the sample liquid introducing pipe 6. Measurement cell 7
After that, a part of the electrolyte solution is left in the sample 1 for quantitative analysis.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、試料ポ
ット1に電解質溶液を残留させて定量分析を行うと、フ
ロー型測定セル7での測定が終了した後で、フロー型測
定セル7内の電解質溶液に試料ポット1内の残留液を加
えた総量を順次排出する必要があり、残留液の排出が終
了するまでは、試料ポット1に次の試料液等を注入する
ことができないため、多数の試料を連続して処理する場
合に時間がかかるという問題があった。
However, when the electrolyte solution is left in the sample pot 1 and quantitative analysis is performed, the electrolyte solution in the flow type measurement cell 7 is terminated after the measurement in the flow type measurement cell 7 is completed. It is necessary to sequentially discharge the total amount of the residual liquid in the sample pot 1 and the next sample liquid or the like cannot be injected into the sample pot 1 until the discharge of the residual liquid is completed. There is a problem that it takes a long time to continuously process.

【0005】また、試料ポット1に電解質溶液を残留さ
せて定量分析を行うために、フロー型測定セル7内で測
定に必要とされる電解質溶液より多量な電解質溶液を用
意しなければならなかった。
Further, in order to allow the electrolyte solution to remain in the sample pot 1 and perform the quantitative analysis, it is necessary to prepare a larger amount of electrolyte solution than the electrolyte solution required for measurement in the flow type measurement cell 7. .

【0006】この発明は、上述した問題点に鑑みてなさ
れたもので、その目的は分析精度を低下させることな
く、必要最小量の試料を用いて、多数の試料を短時間で
処理することのできる電解質濃度分析装置を提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned problems, and has as its object to process a large number of samples in a short time by using a required minimum amount of samples without lowering the analysis accuracy. An object of the present invention is to provide an electrolyte concentration analyzer that can be used.

【0007】[0007]

【課題を解決するための手段】本発明は、サンプル、希
釈液及び校正液を収容するための試料保持部と、イオン
電極を備えたフロー型測定セルを有する測定部と、試料
保持部中の試料を測定部に導く吸引手段と、試料保持部
と測定部とを接続する試料導入管とを備える電解質濃度
分析装置において、試料保持部と測定部とを接続する導
入管の外側に、導入管中の試料液面と空気層の境界を検
知するためのセンサーを配置した電解質濃度分析装置で
ある。
According to the present invention, there is provided a sample holding section for containing a sample, a diluting solution and a calibration liquid, a measuring section having a flow-type measuring cell provided with an ion electrode, In an electrolyte concentration analyzer including a suction unit that guides a sample to a measurement unit and a sample introduction tube that connects the sample holding unit and the measurement unit, an introduction tube is provided outside the introduction tube that connects the sample holding unit and the measurement unit. This is an electrolyte concentration analyzer provided with a sensor for detecting the boundary between the liquid surface of the sample and the air layer.

【0008】本発明は、サンプル、希釈液及び校正液を
収容するための試料保持部と、イオン電極を備えたフロ
ー型測定セルを有する測定部と、試料保持部中の試料を
測定部に導く吸引手段と、試料保持部と測定部とを接続
する試料導入管とを備える電解質濃度分析装置におい
て、測定部と吸引手段とを接続する吸引管の外側に、吸
引管中の試料液面と空気層の境界を検知するためのセン
サーを配置した電解質濃度分析装置である。
According to the present invention, there is provided a sample holding section for containing a sample, a diluting solution and a calibration liquid, a measuring section having a flow type measuring cell provided with an ion electrode, and a sample in the sample holding section guided to the measuring section. In an electrolyte concentration analyzer including a suction unit and a sample introduction tube connecting a sample holding unit and a measurement unit, a sample liquid surface in the suction tube and air are provided outside the suction tube connecting the measurement unit and the suction unit. This is an electrolyte concentration analyzer in which a sensor for detecting a layer boundary is arranged.

【0009】本発明は、上記センサーが超音波センサー
であることを特徴とするものである。本発明は、上記測
定部に並列に側路部を設けたことを特徴とするものであ
る。
The present invention is characterized in that the sensor is an ultrasonic sensor. The present invention is characterized in that a bypass is provided in parallel with the measuring section.

【0010】[0010]

【発明の実施の形態】本発明の第1の実施の形態につい
て、図1を参照して説明する。図1において、試料容器
11は、試料、希釈液及び校正液を収容するものであ
り、上部に開口を有し、下部はロート状に形成されてい
る。導入管12の一端は、試料容器12の底部に接続さ
れており、他端はフロー型測定セル13に接続されてい
る。フロー型測定セル13は、試料液に含まれるNa、
K、Cl等のイオン濃度をイオン選択性電極と比較電極
により測定するためのものである。超音波センサー14
が、導入管12を挟持して、所定の位置に設けられてい
る。この所定の位置は、フロー型測定セル13内に上記
イオン濃度を測定することができる必要量の試料、校正
液を収容した後、導入管12内の空気を検知できる位置
に設定される。また、、フロー型測定セル13の側壁に
は、二方電磁弁15を介して、比較電極液容器16が接
続されている。さらに、フロー型測定セル13の下部に
は、試料、校正液及び比較電極液を吸引するために、吸
引管17を介して吸引ポンプ18が接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. In FIG. 1, a sample container 11 stores a sample, a diluent, and a calibration liquid, has an opening at an upper part, and is formed in a funnel shape at a lower part. One end of the introduction tube 12 is connected to the bottom of the sample container 12, and the other end is connected to the flow type measurement cell 13. The flow-type measurement cell 13 includes Na,
This is for measuring the ion concentration of K, Cl, and the like using an ion-selective electrode and a comparative electrode. Ultrasonic sensor 14
Are provided at predetermined positions with the introduction tube 12 interposed therebetween. The predetermined position is set to a position where the flow of the ion concentration can be measured in the flow type measurement cell 13 and the air in the introduction pipe 12 can be detected after the necessary amount of the sample and the calibration liquid are stored. A reference electrode solution container 16 is connected to a side wall of the flow type measurement cell 13 via a two-way solenoid valve 15. Further, a suction pump 18 is connected to a lower portion of the flow type measurement cell 13 through a suction pipe 17 for sucking a sample, a calibration solution, and a reference electrode solution.

【0011】試料容器11に試料を分注するための試料
分注ノズル19、希釈液を分注するための希釈液分注ノ
ズル20及び校正液を分注するための校正液分注ノズル
21の各々の一端が、試料容器11の開口内に配置され
ている。
A sample dispensing nozzle 19 for dispensing a sample into the sample container 11, a diluting solution dispensing nozzle 20 for dispensing a diluent, and a calibration solution dispensing nozzle 21 for dispensing a calibration solution. One end of each is disposed in the opening of the sample container 11.

【0012】試料分注ノズル19の他端は、図示しない
公知の分注シリンジに接続されている。希釈液分注ノズ
ル20は、チューブ22の一端に接続されており、チュ
ーブ22の他端は、二方電磁弁24を介して希釈液分注
シリンジ25に接続されている。希釈液分注シリンジ2
5は二方電磁弁26を介して希釈液容器26に接続され
ている。校正液分注ノズル21は、チューブ23の一端
に接続されており、二方電磁弁28を介して校正液分注
シリンジ29に接続されており、さらに、該シリンジ2
9の側壁から、チューブ30が二方電磁弁31を介し
て、校正液容器32に接続されている。
The other end of the sample dispensing nozzle 19 is connected to a known dispensing syringe (not shown). The diluent dispensing nozzle 20 is connected to one end of a tube 22, and the other end of the tube 22 is connected to a diluent dispensing syringe 25 via a two-way solenoid valve 24. Diluent dispensing syringe 2
5 is connected to the diluent container 26 via a two-way solenoid valve 26. The calibration liquid dispensing nozzle 21 is connected to one end of a tube 23, and is connected to a calibration liquid dispensing syringe 29 via a two-way solenoid valve 28.
The tube 30 is connected to the calibration liquid container 32 via the two-way solenoid valve 31 from the side wall of the tube 9.

【0013】攪拌棒33が、試料容器11内の液体を攪
拌するために、試料容器11の内部に配置されている。
図2を参照して、第1の実施の形態の動作を説明する。
t1において、サンプル分注シリンジと希釈液分注シリ
ンジが駆動し、試料と希釈液をそれぞれ試料容器12に
分注する。t2において、試料容器12に収容された試
料と希釈液を攪拌棒33で攪拌する。t3において、吸
引ポンプ18を駆動させて、希釈された試料をフロー型
測定セル13内に吸引する。t4において、導入管12
を介して、試料をフロー型測定セル13内に吸引してい
る間に、超音波センサー14が、エアーを検知する。こ
の検知する時間は、予め時間を設定しておいて、その範
囲内でエアーを検知したときは、次の動作に移行し、そ
の設定内でエアーが検知できなかった場合は、タイムア
ウトエラー等動作異常警告を出力して、次の動作を強制
的に停止する。
A stirring rod 33 is disposed inside the sample container 11 for stirring the liquid in the sample container 11.
With reference to FIG. 2, the operation of the first embodiment will be described.
At t1, the sample dispensing syringe and the diluent dispensing syringe are driven, and the sample and the diluent are dispensed into the sample container 12, respectively. At t2, the sample contained in the sample container 12 and the diluent are stirred by the stirring rod 33. At t3, the suction pump 18 is driven to suck the diluted sample into the flow type measurement cell 13. At t4, the introduction pipe 12
The ultrasonic sensor 14 detects air while the sample is being sucked into the flow-type measurement cell 13 via. The detection time is set in advance, and when air is detected within the range, the operation proceeds to the next operation. When air is not detected within the setting, a time-out error operation is performed. Outputs an error warning and forcibly stops the next operation.

【0014】t5において、校正液シリンジ29が駆動
し、二方電磁弁28を介して、校正液分注ノズル21か
ら、校正液を試料容器11に分注する。t5は、設定範
囲の最大時に設定されている。t6で攪拌棒33によっ
て、校正液を攪拌後、吸引ポンプ18を駆動するt7の
前に、フロー型測定セル13に滞留している試料の電位
を測定する。その後、吸引ポンプ18を駆動させて、校
正液をフロー型測定セル13に吸引し、t8で超音波セ
ンサー14でエアーを検知して、吸引ポンプ18が停止
する。試料の場合と同様に、t9でフロー型測定セル1
3に滞留している校正液を測定する。t7で測定した試
料の電位とt9で測定した電位の差から、試料の濃度を
換算する。
At t5, the calibration liquid syringe 29 is driven, and the calibration liquid is dispensed into the sample container 11 from the calibration liquid dispensing nozzle 21 via the two-way solenoid valve 28. t5 is set at the maximum of the setting range. After the calibration liquid is stirred by the stirring rod 33 at t6, the potential of the sample remaining in the flow-type measurement cell 13 is measured before t7 when the suction pump 18 is driven. Thereafter, the suction pump 18 is driven to suck the calibration liquid into the flow-type measurement cell 13, and at t8, air is detected by the ultrasonic sensor 14, and the suction pump 18 is stopped. As in the case of the sample, at t9, the flow type measurement cell 1
Measure the calibration solution remaining in 3. The sample concentration is converted from the difference between the potential of the sample measured at t7 and the potential measured at t9.

【0015】図3は、超音波センサー14の取付け構造
を示しており、超音波センサー14に設けられたスリッ
ト14aで、導入管12を挟持したものである。このよ
うに構成することにより、超音波センサー14が直接試
料や校正液等の液体に接することがないので、汚染を防
ぐことができるし、エアーの誤検知を回避することがで
きる。また、定期的にメンテナンスをする必要がない。
FIG. 3 shows a mounting structure of the ultrasonic sensor 14, wherein the introduction tube 12 is sandwiched by slits 14 a provided in the ultrasonic sensor 14. With this configuration, the ultrasonic sensor 14 does not come into direct contact with a liquid such as a sample or a calibration liquid, so that contamination can be prevented and erroneous detection of air can be avoided. Also, there is no need for regular maintenance.

【0016】本発明の第2の実施の形態について、図4
を参照して説明する。第1の実施の形態と同一部分につ
いては、同一の符号を付して、説明を省略する。図4に
おいて、超音波センサー14とフロー型測定セル13間
の導入管と吸入管17に配置された二方電磁弁34とを
バイパス管35で接続したものである。
FIG. 4 shows a second embodiment of the present invention.
This will be described with reference to FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 4, a bypass pipe 35 connects an introduction pipe between the ultrasonic sensor 14 and the flow type measurement cell 13 and a two-way solenoid valve 34 arranged in the suction pipe 17.

【0017】例えば、尿試料測定後、校正液を測定する
場合など試料容器11の尿試料のコンタミネーションを
回避するために、希釈液シリンジ25を駆動して希釈液
ノズル20から試料容器11に希釈液を分注して、試料
容器11を洗浄する。
For example, after measuring a urine sample, the diluent syringe 25 is driven to dilute the sample container 11 from the diluent nozzle 20 in order to avoid contamination of the urine sample in the sample container 11 such as when measuring a calibration solution. The sample container 11 is washed by dispensing the liquid.

【0018】洗浄後の希釈液は、バイパス管35から三
方電磁弁34を介して、吸引ポンプ18によって排出さ
れる。その後、校正液シリンジ29を駆動して、校正液
ノズル21から校正液を試料容器11に分注する。以
下、第1の実施の形態と同様の工程を繰り返す。この実
施の形態によれば、濃度差の著しく大きい血清と尿サン
プル等をランダムに測定する場合、試料容器11のコン
タミネーションを回避することができる。
The diluted liquid after the washing is discharged from the bypass pipe 35 via the three-way solenoid valve 34 by the suction pump 18. After that, the calibration liquid syringe 29 is driven to dispense the calibration liquid from the calibration liquid nozzle 21 into the sample container 11. Hereinafter, the same steps as those of the first embodiment are repeated. According to this embodiment, contamination of the sample container 11 can be avoided when randomly measuring a serum and urine sample or the like having a significantly large concentration difference.

【0019】本発明の第3の実施の形態について、図5
を参照して説明する。第1の実施の形態と同一部分につ
いては、同一の符号を付して、説明を省略する。超音波
センサー14を、フロー型測定セル13と吸引ポンプ1
8を接続している吸入管17に配置したものである。さ
らに、導入管12は、試料或いは校正液の分注精度も加
味して、超音波センサー14の検知範囲で、試料の最後
部(液とエアの境界)が導入管中に位置するような長さ
に設定されている。このように構成することによって、
試料容器11内に試料が残留しないので、濃度差が少な
い血清測定の場合は、導入管12の長さによるコンタミ
ネーションを考慮する必要がなく、迅速に測定を行なう
ことができる。
FIG. 5 shows a third embodiment of the present invention.
This will be described with reference to FIG. The same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. The ultrasonic sensor 14 is connected to the flow type measurement cell 13 and the suction pump 1
8 is arranged in a suction pipe 17 connecting the same. Further, taking into account the dispensing accuracy of the sample or the calibration liquid, the introduction tube 12 has such a length that the rearmost portion of the sample (the boundary between the liquid and the air) is located in the introduction tube in the detection range of the ultrasonic sensor 14. Is set to With this configuration,
Since no sample remains in the sample container 11, in the case of serum measurement with a small concentration difference, it is not necessary to consider contamination due to the length of the introduction tube 12, and the measurement can be performed quickly.

【0020】上述した実施の形態において、超音波セン
サーの代りに、光センサーを使用することもできる。
In the above embodiment, an optical sensor can be used instead of the ultrasonic sensor.

【0021】[0021]

【発明の効果】電解質濃度分析装置において、測定精度
を低下させることなく、必要最小量の試料を用いて、多
数の試料を短時間で処理することができる。
According to the present invention, it is possible to process a large number of samples in a short time by using a minimum amount of samples without deteriorating measurement accuracy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態を示す概略図。FIG. 1 is a schematic diagram showing a first embodiment of the present invention.

【図2】本発明の第1の実施の形態のタイムチャート
図。
FIG. 2 is a time chart according to the first embodiment of the present invention.

【図3】本発明の第1の実施の形態の一部を示す図。FIG. 3 is a diagram showing a part of the first embodiment of the present invention.

【図4】本発明の第2の実施の形態を示す概略図。FIG. 4 is a schematic view showing a second embodiment of the present invention.

【図5】本発明の第3の実施の形態を示す概略図。FIG. 5 is a schematic view showing a third embodiment of the present invention.

【図6】従来の電解質濃度分析装置を示す概略図。FIG. 6 is a schematic diagram showing a conventional electrolyte concentration analyzer.

【符号の説明】[Explanation of symbols]

11 試料容器 12 導入管 13 フロー型測定セル 14 超音波センサー 18 吸引ポンプ 19 試料分注ノズル 20 希釈液分注ノズル 21 校正液分注ノズル 35 バイパス管 DESCRIPTION OF SYMBOLS 11 Sample container 12 Introducing tube 13 Flow type measuring cell 14 Ultrasonic sensor 18 Suction pump 19 Sample dispensing nozzle 20 Diluent dispensing nozzle 21 Calibration solution dispensing nozzle 35 Bypass tube

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】サンプル、希釈液及び校正液を収容するた
めの試料保持部と、イオン電極を備えたフロー型測定セ
ルを有する測定部と、試料保持部中の試料を測定部に導
く吸引手段と、試料保持部と測定部とを接続する試料導
入管とを備える電解質濃度分析装置において、試料保持
部と測定部とを接続する導入管の外側に、導入管中の試
料液面と空気層の境界を検知するためのセンサーを配置
したことを特徴とする電解質濃度分析装置。
1. A sample holding section for containing a sample, a diluting liquid and a calibration liquid, a measuring section having a flow type measuring cell provided with an ion electrode, and a suction means for guiding a sample in the sample holding section to the measuring section. And an electrolyte concentration analyzer having a sample introduction tube connecting the sample holding unit and the measurement unit, wherein a sample liquid surface in the introduction tube and an air layer are provided outside the introduction tube connecting the sample holding unit and the measurement unit. An electrolyte concentration analyzer, wherein a sensor for detecting a boundary of the object is arranged.
【請求項2】サンプル、希釈液及び校正液を収容するた
めの試料保持部と、イオン電極を備えたフロー型測定セ
ルを有する測定部と、試料保持部中の試料を測定部に導
く吸引手段と、試料保持部と測定部とを接続する試料導
入管とを備える電解質濃度分析装置において、測定部と
吸引手段とを接続する吸引管の外側に、吸引管中の試料
液面と空気層の境界を検知するためのセンサーを配置し
たことを特徴とする電解質濃度分析装置。
2. A sample holding section for storing a sample, a diluting liquid and a calibration liquid, a measuring section having a flow type measuring cell provided with an ion electrode, and a suction means for guiding a sample in the sample holding section to the measuring section. And an electrolyte concentration analyzer having a sample introduction pipe connecting the sample holding section and the measurement section, wherein the outside of the suction pipe connecting the measurement section and the suction means, the sample liquid surface in the suction pipe and the air layer An electrolyte concentration analyzer comprising a sensor for detecting a boundary.
【請求項3】上記センサーが超音波センサーであること
を特徴とする請求項1または2記載の電解質濃度分析装
置。
3. The electrolyte concentration analyzer according to claim 1, wherein said sensor is an ultrasonic sensor.
【請求項4】上記測定部に並列に側路部を設けたことを
特徴とする請求項1記載の電解質濃度分析装置。
4. The electrolyte concentration analyzer according to claim 1, wherein a bypass is provided in parallel with said measuring section.
JP4712498A 1998-02-27 1998-02-27 Electrolyte concentration analyzing apparatus Pending JPH11248666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4712498A JPH11248666A (en) 1998-02-27 1998-02-27 Electrolyte concentration analyzing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4712498A JPH11248666A (en) 1998-02-27 1998-02-27 Electrolyte concentration analyzing apparatus

Publications (1)

Publication Number Publication Date
JPH11248666A true JPH11248666A (en) 1999-09-17

Family

ID=12766413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4712498A Pending JPH11248666A (en) 1998-02-27 1998-02-27 Electrolyte concentration analyzing apparatus

Country Status (1)

Country Link
JP (1) JPH11248666A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873915B1 (en) 2007-11-01 2008-12-12 주식회사 아이센스 Solution bag for apparatus for chemical measurement of blood

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100873915B1 (en) 2007-11-01 2008-12-12 주식회사 아이센스 Solution bag for apparatus for chemical measurement of blood
WO2009057970A3 (en) * 2007-11-01 2009-07-02 I Sens Inc Solution bag for apparatus for chemically analyzing blood
US8475744B2 (en) 2007-11-01 2013-07-02 I-Sens, Inc. Solution bag for apparatus for chemically analyzing blood

Similar Documents

Publication Publication Date Title
US8721966B2 (en) Chemical analyzer, method for dispensing and dilution cup
US9513305B2 (en) Multiple cleaning stations for a dispensing probe
JPWO2009001463A1 (en) Cleaning device, suction nozzle clogging detection method, and automatic analyzer
JPWO2009001464A1 (en) Cleaning device, cleaning nozzle clogging detection method, and automatic analyzer
CN110869769B (en) Test suite, test method and dispensing device
JPH01141357A (en) Sample partial injection method for automatic analyzing device
JPH11304797A (en) Biochemical automatic analysis device
JP2783449B2 (en) Analyzer line control system
JP3120180U (en) Automatic analyzer
JP2000321270A (en) Urine analyzer
JPH11304799A (en) Reagent sampling shortage detection mechanism in whole blood globule immunity measuring device
JPH11248666A (en) Electrolyte concentration analyzing apparatus
JP2001305145A (en) Autoanalyzer
US11879902B2 (en) Test method and dispensing device
EP3767301A1 (en) Automatic analysis device
JP7167037B2 (en) Abnormal detection method for automatic analyzer and specimen pipetting mechanism
CN114323783B (en) Sampling method, sampling assembly and sample analyzer
JPH04204378A (en) Immune reaction automatic analyzer
JPH0526144B2 (en)
JP3952182B2 (en) Liquid level detection method in dispenser
JPH04138368A (en) Reaction container
JPH03181861A (en) Automatic analyser
JP2022133527A (en) Automatic analysis device
JPH0226056Y2 (en)
JPS6394149A (en) System for measuring concentration of electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050228

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070222

A131 Notification of reasons for refusal

Effective date: 20070306

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20070626

Free format text: JAPANESE INTERMEDIATE CODE: A02