JPH11247843A - Dynamic pressure gas journal bearing - Google Patents

Dynamic pressure gas journal bearing

Info

Publication number
JPH11247843A
JPH11247843A JP4576498A JP4576498A JPH11247843A JP H11247843 A JPH11247843 A JP H11247843A JP 4576498 A JP4576498 A JP 4576498A JP 4576498 A JP4576498 A JP 4576498A JP H11247843 A JPH11247843 A JP H11247843A
Authority
JP
Japan
Prior art keywords
dynamic pressure
grooves
bearing
generating
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4576498A
Other languages
Japanese (ja)
Inventor
Takatsugu Furubayashi
卓嗣 古林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP4576498A priority Critical patent/JPH11247843A/en
Publication of JPH11247843A publication Critical patent/JPH11247843A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively suppress the unstable vibration such as the whirling without minimizing the bearing gap by arranging three grooves for generating the dynamic pressure on the circumference with equal intervals, and setting the ratio of the circumferential length of the grooves to the circumferential length of a hill part in the prescribed range. SOLUTION: The ratio Ag:Ar is set in a range of 1:1 to 1:2, and α=Ag/Ar=1-2, where Ag is the circumferential length of grooves 2 for generating the dynamic pressure, and Ar is the circumferential length of a hill part 3 between grooves 2 adjacent to each other in the circumferential direction for generating the dynamic pressure. In a case where M=0.5 with a bearing of continuous groove type, the stable limit bearing number Λ becomes maximum when the number of the grooves (the number of the grooves for generating the dynamic pressure) N=3, and the stable limit bearing number Λ becomes smaller whether the number N of the grooves is smaller or larger than 3. The unstable vibration such as the whiling can be effectively suppressed in an area of the practical number of revolution even when the bearing gap 4 is not specially small.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軸とスリーブとの
間の軸受隙間に発生する動圧気体膜によって軸又はスリ
ーブの回転を非接触支持する動圧気体ジャーナル軸受に
関し、特に、レーザビームプリンタのポリゴンミラーモ
ータ用軸受に好適である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic pressure gas journal bearing for supporting the rotation of a shaft or a sleeve in a non-contact manner by a dynamic pressure gas film generated in a bearing gap between a shaft and a sleeve, and more particularly to a laser beam printer. Suitable for polygon mirror motor bearings.

【0002】[0002]

【従来の技術】動圧気体ジャーナル軸受として最も基本
的なものは、軸受展開面が平面となる真円形軸受である
が、ある回転数以上になるとホワールと呼ばれる自励的
な振動現象が生じて回転精度が著しく劣化するという問
題がある。特に、軸受系を鉛直方向に配置して用いる場
合が多いポリゴンミラーモータのように、回転体(軸ま
たはスリーブ)の自重等による偏心力が作用しない場合
は極低回転数領域からホワールが発生し、回転が不安定
となる。
2. Description of the Related Art The most basic type of dynamic pressure gas journal bearing is a true circular bearing having a flat bearing development surface. However, when the rotation speed exceeds a certain speed, a self-excited vibration phenomenon called a whirling occurs. There is a problem that the rotation accuracy is significantly deteriorated. In particular, when an eccentric force due to the weight of a rotating body (shaft or sleeve) does not act, such as a polygon mirror motor that often uses a bearing system arranged in a vertical direction, whirling occurs from an extremely low rotation speed region. , Rotation becomes unstable.

【0003】上記のホワールを防止するため、例えば図
3に示すようなヘリングボーン形の動圧発生用溝を軸の
外周面やスリーブの内周面に形成することが知られてい
る。同図に示す構成では、軸1の外周面に多数のヘリン
グボーン形の動圧発生用溝2が円周等間隔に形成され、
スリーブ5の内周面が平滑に形成されている。スリーブ
5が固定で、軸1が回転する場合は、軸1が同図の矢印
の方向に回転する。逆に、軸1が固定で、スリーブ5が
回転する場合は、スリーブ5が同図の矢印と逆方向に回
転する。軸1又はスリーブ5の回転に伴う動圧発生用溝
2の作用によって、軸受周辺の気体(空気)が軸受隙間
に向けて引き込まれ、軸受隙間内に動圧気体膜が形成さ
れる(動圧作用)。そして、その動圧気体膜によって、
軸1又はスリーブ5はホワール等の不安定振動を生じる
ことなく回転自在に非接触支持される。
In order to prevent the above-mentioned whirl, it is known to form a herringbone-shaped groove for generating dynamic pressure as shown in FIG. 3 on the outer peripheral surface of a shaft or the inner peripheral surface of a sleeve. In the configuration shown in the figure, a number of herringbone-shaped grooves 2 for generating dynamic pressure are formed on the outer peripheral surface of the shaft 1 at equal circumferential intervals.
The inner peripheral surface of the sleeve 5 is formed smoothly. When the sleeve 5 is fixed and the shaft 1 rotates, the shaft 1 rotates in the direction of the arrow in FIG. Conversely, when the shaft 1 is fixed and the sleeve 5 rotates, the sleeve 5 rotates in the direction opposite to the arrow in FIG. By the action of the dynamic pressure generating groove 2 accompanying rotation of the shaft 1 or the sleeve 5, gas (air) around the bearing is drawn toward the bearing gap, and a dynamic pressure gas film is formed in the bearing gap (dynamic pressure). Action). And by the dynamic pressure gas film,
The shaft 1 or the sleeve 5 is rotatably supported in a non-contact manner without causing unstable vibration such as whirl.

【0004】[0004]

【発明が解決しようとする課題】ヘリングボーン形の動
圧発生用溝を形成した動圧気体ジャーナル軸受は、鉛直
配置された場合でも安定した軸支持機能を有するもので
あるが、10〜20本程度の動圧発生用溝をエッチン
グ、転造、レーザー加工等によって数μmオーダの深さ
で形成する必要があり、そのため製造コストが高くつく
という問題がある。また、ヘリングボーン形の動圧発生
用溝を形成した場合、軸又はスリーブの回転が一方向に
制限されるため、組み込み方向の確認が必要になって、
組立作業が複雑化する。
A hydrodynamic gas journal bearing in which a herringbone type hydrodynamic groove is formed has a stable shaft support function even when it is vertically arranged. It is necessary to form a groove for generating dynamic pressure to a depth of the order of several μm by etching, rolling, laser processing, or the like, which causes a problem that the manufacturing cost is high. Also, if a herringbone-shaped groove for generating dynamic pressure is formed, the rotation of the shaft or sleeve is limited to one direction, so it is necessary to check the installation direction,
Assembly work is complicated.

【0005】一方、動圧発生用溝の形状として、へリン
グボーン形に代えて形状の簡単な軸方向溝形を採用する
試みもなされたが、ホワール等の不安定振動に対する抑
制効果を得るためには軸受隙間を極めて小さくしなけれ
ばならず、軸の外周面やスリーブの内周面の真円度や表
面あらさといった加工精度上の問題が生じ、現実的な解
決策とはなっていないのが実状である。
On the other hand, attempts have been made to adopt a simple axial groove instead of the herringbone shape as the shape of the dynamic pressure generating groove. However, in order to obtain an effect of suppressing unstable vibration such as whirl. In this case, the bearing clearance must be extremely small, causing problems in machining accuracy such as roundness and surface roughness of the outer peripheral surface of the shaft and the inner peripheral surface of the sleeve, and is not a practical solution. Is the actual situation.

【0006】そこで、本発明は、ホワール等の不安定振
動に対して高い抑制効果があり、しかも軸受隙間を極小
に設定する必要のない構成を提供しようとするものであ
る。
Accordingly, an object of the present invention is to provide a configuration which has a high effect of suppressing unstable vibration such as whirl and does not require the bearing clearance to be set to a minimum.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、軸の外周面又はスリーブの内周面のいず
れか一方に3本の軸方向の動圧発生用溝を円周等間隔に
形成し、かつ、各動圧発生用溝の円周方向長さと、円周
方向に隣り合った動圧発生用溝間の丘部の円周方向長さ
との比を1:1〜1:2の範囲内にした。
In order to achieve the above object, the present invention provides three axial dynamic pressure generating grooves on one of an outer peripheral surface of a shaft and an inner peripheral surface of a sleeve. The ratio between the circumferential length of each of the dynamic pressure generating grooves formed at intervals and the circumferential length of the hill between the circumferentially adjacent dynamic pressure generating grooves is 1: 1 to 1: 1. : Within the range of 2.

【0008】ここで、軸方向の動圧発生用溝は、軸の外
周面又はスリーブの内周面における軸受部分の軸方向全
域に連続して形成しても良いし、あるいは、軸方向に断
続的に形成しても良い。この3本の動圧発生用溝を円周
等間隔に配列し、その円周方向長さと丘部の円周方向長
さとの比を1:1〜1:2の範囲内に設定することによ
り、軸受隙間を極小にすることなく、ホワール等の不安
定振動を効果的に抑制することが可能となる。このよう
な動圧気体ジャーナル軸受は、鉛直方向に配置された場
合でも安定した軸受機能を発揮する。また、軸方向の動
圧発生用溝は形状が簡単であり、本数も3本と少なくて
良いため、製造コストの低減になる。さらに、へリング
ボーン形の動圧発生用溝を設けた構成に比べ、回転体の
回転方向を問わないので、組み込み作業も容易である。
Here, the groove for generating dynamic pressure in the axial direction may be formed continuously in the entire axial direction of the bearing portion on the outer peripheral surface of the shaft or the inner peripheral surface of the sleeve, or may be intermittently formed in the axial direction. May be formed. The three dynamic pressure generating grooves are arranged at equal circumferential intervals, and the ratio between the circumferential length and the circumferential length of the hill portion is set within a range of 1: 1 to 1: 2. In addition, unstable vibration such as whirl can be effectively suppressed without minimizing the bearing gap. Such a dynamic pressure gas journal bearing exerts a stable bearing function even when it is arranged vertically. Further, the shape of the axial dynamic pressure generating groove is simple, and the number of grooves may be as small as three, so that the manufacturing cost is reduced. Furthermore, as compared with a configuration in which a herringbone-shaped groove for generating dynamic pressure is provided, the rotating body does not matter in the rotating direction, so that the assembling work is easy.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施形態を図1お
よび図2を参照して説明する。なお、図中のクロスハッ
チングを施した部分は溝領域を表している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The cross-hatched portions in the figure represent the groove regions.

【0010】図1(A)に示すように、軸1の外周面に
3本の軸方向の動圧発生用溝2と丘部3とを円周方向に
交互に設け、軸1とスリーブ5とを僅かな軸受隙間4を
介して嵌合している。図1(B)は軸1の外周面の展開
図で、円周方向に同一寸法形状の3本の動圧発生用溝2
が等間隔で形成されている。スリーブ5の内周面は平滑
面である。尚、図1は、動圧発生用溝2を軸1の外周面
における軸受部分の軸方向全域にわたって連続して形成
した場合を例示しているが、図2に示すように、動圧発
生用溝2を軸方向に断続的に形成しても良い。また、動
圧発生用溝をスリーブ5の内周面に形成し、軸1の外周
面を平滑面としても良い。
As shown in FIG. 1 (A), three axial dynamic pressure generating grooves 2 and hills 3 are alternately provided on the outer peripheral surface of the shaft 1 in the circumferential direction. Are fitted through a slight bearing gap 4. FIG. 1B is a development view of the outer peripheral surface of the shaft 1, and three dynamic pressure generating grooves 2 having the same size and shape in the circumferential direction.
Are formed at equal intervals. The inner peripheral surface of the sleeve 5 is a smooth surface. FIG. 1 illustrates a case where the dynamic pressure generating groove 2 is formed continuously over the entire axial direction of the bearing portion on the outer peripheral surface of the shaft 1, but as shown in FIG. The groove 2 may be formed intermittently in the axial direction. Further, a groove for generating dynamic pressure may be formed on the inner peripheral surface of the sleeve 5 and the outer peripheral surface of the shaft 1 may be a smooth surface.

【0011】1本の動圧発生用溝2の円周方向長さをA
g、円周方向に隣り合った動圧発生用溝2の間の丘部3
の円周方向長さをArとして、両者の比率を、 Ag:Ar=1:1〜1:2 α=Ag/Ar=1〜2 の範囲に設定している。
The circumferential length of one dynamic pressure generating groove 2 is A
g, hill portion 3 between circumferentially adjacent grooves 2 for generating dynamic pressure
Is defined as Ar, and the ratio between the two is set in the range of Ag: Ar = 1: 1 to 1: 2 α = Ag / Ar = 1 to 2.

【0012】図4〜図7は、上記構成とした場合の効果
を実証するために行った解析結果を示すもので、その解
析対象は、軸(固定軸)の外周面に軸方向の動圧発生用
溝が形成され、その軸の外周面にラジアル軸受隙間を介
して嵌合されたスリーブが回転する形式であり、この軸
受系を鉛直に設置したものである。また、動圧発生用溝
の本数は1本から6本までを対象とし、図中に表記が無
い場合は、安定限界ベアリング数Λが0.5以下で、実
用上、ホワール等の不安定振動の抑制効果が期待できな
いと判断した場合である。ここで、ベアリング数とは無
次元された物理量であり、回転数に正比例し平均軸受半
径隙間の2乗に反比例する。図4〜図7に示したベアリ
ング数(Λ=1〜8程度)は、特に精密な加工で軸受隙
間を極小にしなくても通常の量産加工で得られる軸受隙
間と、実用的な回転数の組合せで与えられる程度のもの
である。各図に示したMは無次元化された回転スリーブ
の質量であり、この無次元化質量を固定して回転数を徐
々に増加させていくと、ホワールが発生し始める限界の
ベアリング数が存在する。なお、溝深さと平均半径軸受
隙間との比率は、ここでは1:1としている。
FIGS. 4 to 7 show the results of analysis performed to verify the effect of the above configuration. The analysis target is the dynamic pressure in the axial direction on the outer peripheral surface of the shaft (fixed shaft). This is a type in which a generating groove is formed, and a sleeve fitted to the outer peripheral surface of the shaft via a radial bearing gap rotates, and this bearing system is installed vertically. The number of grooves for generating dynamic pressure is from 1 to 6, and unless indicated in the figure, the number of stable limit bearings 0.5 is 0.5 or less, and unstable vibration such as whirl is practical. This is a case where it is determined that the suppression effect of the above cannot be expected. Here, the number of bearings is a dimensionless physical quantity, which is directly proportional to the rotational speed and inversely proportional to the square of the average bearing radial gap. The number of bearings shown in FIGS. 4 to 7 (Λ = 1 to about 8) is the same as the bearing gap obtained by ordinary mass production processing without minimizing the bearing gap by precision machining, and the practical rotation speed. It is a degree given in combination. M shown in each figure is the mass of the non-dimensionalized rotating sleeve. When this non-dimensionalized mass is fixed and the rotation speed is gradually increased, there is a limit number of bearings at which whirling starts to occur. I do. The ratio between the groove depth and the average radius bearing gap is set to 1: 1 here.

【0013】図4は連続溝形軸受(図1に示す形態の軸
受)で、M=0.5とした場合の解析結果を示す。同図
によれば、溝本数(動圧発生用溝の本数)N=3とした
場合に安定限界ベアリング数Λが極大となり、溝本数N
が3より少なくても多くても安定限界ベアリング数Λが
低下することがわかる。また、溝本数N=3の場合、動
圧発生用溝と丘部の円周方向長さの比率αの値が1:1
または1:2のときに安定限界ベアリング数Λが最大値
となる。つまり、円周方向長さを、比率αが1:1の動
圧発生用溝より短くしても(比率α=1:3)、比率α
が1:2の動圧発生用溝より長くしても(比率α=2:
1)、安定限界ベアリング数Λが低下することがわか
る。
FIG. 4 shows an analysis result of a continuous groove type bearing (bearing of the form shown in FIG. 1) when M = 0.5. According to the drawing, when the number of grooves (the number of grooves for generating dynamic pressure) N = 3, the number of bearings at the stability limit Λ becomes maximum, and the number of grooves N
It can be understood that the stability limit bearing number 低下 is reduced even if the number is smaller or larger than 3. When the number of grooves N = 3, the value of the ratio α of the circumferential length between the groove for generating dynamic pressure and the hill portion is 1: 1.
Or, when the ratio is 1: 2, the stability limit bearing number Λ becomes the maximum value. That is, even if the circumferential length is shorter than the dynamic pressure generation groove having the ratio α of 1: 1 (ratio α = 1: 3), the ratio α
Is longer than the dynamic pressure generating groove of 1: 2 (ratio α = 2:
1) It can be seen that the number of stable limit bearings Λ decreases.

【0014】図5と図6は連続溝形軸受(図1に示す形
態の軸受)で、図5はM=0.75、図6はM=1.0
とした場合の解析結果を示す。両図の場合も、やはり溝
本数N=3とした場合に安定限界ベアリング数Λが極大
となり、それぞれにおいて動圧発生用溝と丘部の円周方
向長さの比率αの値が1:1または1:2のときに安定
限界ベアリング数Λが最大値となっている。なお、図6
においては、比率αの値が2:1の場合に、どの溝本数
に対しても安定化効果が認められなかった。
FIGS. 5 and 6 show continuous groove bearings (bearings of the form shown in FIG. 1). FIG. 5 shows M = 0.75 and FIG. 6 shows M = 1.0.
The results of the analysis in the case of are shown. In both cases, when the number of grooves N = 3, the stability limit bearing number Λ is maximized, and in each case, the value of the ratio α between the groove for generating dynamic pressure and the circumferential length of the hill is 1: 1. Or, when the ratio is 1: 2, the number of stable limit bearings Λ is the maximum value. FIG.
In the case of, when the value of the ratio α was 2: 1, no stabilizing effect was observed for any number of grooves.

【0015】図7は部分溝形軸受(図2に示す形態の軸
受)で、M=0.75とした場合の解析結果を示す。
尚、図2(B)に示す動圧発生用溝2と丘部3の軸方向
長さBgとBrの比率は1:1としている。この場合
も、溝本数N=3として動圧発生用溝と丘部の円周方向
長さの比率αが1:1または1:2のときに、若干の差
が認められるが安定限界ベアリング数Λが最大となって
いる。また、比率αの値が2:1の場合には、どの溝本
数に対しても安定化効果が認められない。
FIG. 7 shows an analysis result of a partial groove type bearing (bearing of the form shown in FIG. 2) when M = 0.75.
The ratio between the axial lengths Bg and Br of the dynamic pressure generating groove 2 and the hill portion 3 shown in FIG. 2B is 1: 1. In this case also, when the number of grooves N = 3 and the ratio α of the circumferential length between the dynamic pressure generating groove and the hill is 1: 1 or 1: 2, a slight difference is recognized, but the number of bearings at the stability limit is small. Λ is the largest. When the value of the ratio α is 2: 1, no stabilizing effect is observed for any number of grooves.

【0016】[0016]

【発明の効果】本発明によれば、軸受隙間を特に小さく
しなくても実用回転数の領域でホワール等の不安定振動
を効果的に抑止することができ、特に、高回転精度が要
求されたポリゴンモータ用として好適な軸受を得ること
ができる。また、軸方向の動圧発生用溝は形状が簡単で
あり、本数も3本と少なくて良いため、製造コストの低
減になる。さらに、へリングボーン形の動圧発生用溝を
設けた構成に比べ、回転体の回転方向を問わないので、
組み込み作業も容易である。
According to the present invention, unstable vibration such as whirl can be effectively suppressed in the range of practical rotation speed without particularly reducing the bearing clearance, and particularly high rotation accuracy is required. A suitable bearing for a polygon motor can be obtained. Further, the shape of the axial dynamic pressure generating groove is simple, and the number of grooves may be as small as three, so that the manufacturing cost is reduced. Furthermore, since the rotating direction of the rotating body does not matter, compared with the configuration in which the herringbone type groove for generating dynamic pressure is provided,
Installation work is also easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す図で、同図(A)は
動圧気体ジャーナル軸受の断面図、同図(B)は軸の外
周面の展開図である。
1A and 1B are diagrams showing an embodiment of the present invention, wherein FIG. 1A is a cross-sectional view of a hydrodynamic gas journal bearing, and FIG. 1B is a developed view of an outer peripheral surface of a shaft.

【図2】本発明の他の実施形態を示す図で、同図(A)
は動圧気体ジャーナル軸受の断面図、同図(B)は軸の
外周面の展開図である。
FIG. 2 is a diagram showing another embodiment of the present invention, wherein FIG.
FIG. 1 is a sectional view of a dynamic pressure gas journal bearing, and FIG. 1B is a developed view of an outer peripheral surface of a shaft.

【図3】従来のヘリングボーン形の動圧発生用溝を形成
した動圧気体ジャーナル軸受の断面図である。
FIG. 3 is a cross-sectional view of a conventional hydrodynamic gas journal bearing in which a herringbone type hydrodynamic groove is formed.

【図4】本発明の効果を実証するためのグラフ図で、連
続溝形軸受(図1に示す形態)で無次元化質量M=0.
5とした場合の溝本数Nと安定限界ベアリング数Λの関
係を示し、αは動圧発生用溝と丘部の円周方向長さの比
率である。
FIG. 4 is a graph for demonstrating the effect of the present invention, wherein the continuous grooved bearing (the configuration shown in FIG. 1) has a dimensionless mass M = 0.
5 shows the relationship between the number N of grooves and the number 限界 of bearings at the stability limit, where α is the ratio between the groove for generating dynamic pressure and the length of the hill in the circumferential direction.

【図5】本発明の効果を実証するためのグラフ図で、連
続溝形軸受(図1に示す形態)で無次元化質量M=0.
75とした場合の溝本数Nと安定限界ベアリング数Λの
関係を示す。
FIG. 5 is a graph for demonstrating the effect of the present invention, wherein the continuous grooved bearing (the configuration shown in FIG. 1) has a dimensionless mass M = 0.
The relationship between the number of grooves N and the number of stable limit bearings 75 when 75 is set is shown.

【図6】本発明の効果を実証するためのグラフ図で、連
続溝形軸受(図1に示す形態)で無次元化質量M=1.
0とした場合の溝本数Nと安定限界ベアリング数Λの関
係を示す。
FIG. 6 is a graph for demonstrating the effects of the present invention, and shows a dimensionless mass M = 1.
The relationship between the number N of grooves and the number ベ ア リ ン グ of stability limit bearings when the number is set to 0 is shown.

【図7】本発明の効果を実証するためのグラフ図で、部
分溝形軸受(図2に示す形態の軸受)で無次元化質量M
=0.75とした場合の溝本数Nと安定限界ベアリング
数Λの関係を示す。
FIG. 7 is a graph for demonstrating the effect of the present invention, and shows a non-dimensional mass M with a partially grooved bearing (the bearing having the form shown in FIG. 2).
The relationship between the number of grooves N and the number of bearings at the stability limit Λ when = 0.75 is shown.

【符号の説明】[Explanation of symbols]

1 軸 2 動圧発生用溝 3 丘部 Ag 動圧発生用溝の円周方向長さ Ar 丘部の円周方向長さ Bg 動圧発生用溝の軸方向長さ Br 丘部の軸方向長さ 4 軸受隙間 5 スリーブ Reference Signs 1 shaft 2 groove for generating dynamic pressure 3 hill Ag circumferential length of groove for generating dynamic pressure Ar circumferential length of groove for hill Bg axial length of groove for generating dynamic pressure Br axial length of hill S 4 Bearing clearance 5 Sleeve

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 軸とスリーブとを僅かな軸受隙間を介し
て嵌合した動圧気体ジャーナル軸受において、軸の外周
面又はスリーブの内周面のいずれか一方に3本の軸方向
の動圧発生用溝を円周等間隔に形成し、かつ、各動圧発
生用溝の円周方向長さと、円周方向に隣り合った動圧発
生用溝間の丘部の円周方向長さとの比を1:1〜1:2
の範囲内にしたことを特徴とする動圧気体ジャーナル軸
受。
In a dynamic pressure gas journal bearing in which a shaft and a sleeve are fitted through a small bearing gap, three axial dynamic pressures are applied to either the outer peripheral surface of the shaft or the inner peripheral surface of the sleeve. The grooves for generation are formed at equal circumferential intervals, and the length in the circumferential direction of each groove for generating dynamic pressure and the length in the circumferential direction of the hill between the grooves for dynamic pressure adjacent to each other in the circumferential direction. The ratio is 1: 1 to 1: 2
A dynamic pressure gas journal bearing characterized by being within the range of.
【請求項2】 レーザビームプリンタのポリゴンミラー
モータに用いられる請求項1記載の動圧気体ジャーナル
軸受。
2. The dynamic pressure gas journal bearing according to claim 1, which is used for a polygon mirror motor of a laser beam printer.
JP4576498A 1998-02-26 1998-02-26 Dynamic pressure gas journal bearing Withdrawn JPH11247843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4576498A JPH11247843A (en) 1998-02-26 1998-02-26 Dynamic pressure gas journal bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4576498A JPH11247843A (en) 1998-02-26 1998-02-26 Dynamic pressure gas journal bearing

Publications (1)

Publication Number Publication Date
JPH11247843A true JPH11247843A (en) 1999-09-14

Family

ID=12728370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4576498A Withdrawn JPH11247843A (en) 1998-02-26 1998-02-26 Dynamic pressure gas journal bearing

Country Status (1)

Country Link
JP (1) JPH11247843A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295457A (en) * 2001-03-30 2002-10-09 Nippon Densan Corp Dynamic pressure bearing device, rotational drive, recording device and manufacturing method of dynamic pressure bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295457A (en) * 2001-03-30 2002-10-09 Nippon Densan Corp Dynamic pressure bearing device, rotational drive, recording device and manufacturing method of dynamic pressure bearing device

Similar Documents

Publication Publication Date Title
US5007747A (en) Radial roller bearing
US4747705A (en) Power shaped multipad hydrodynamic journal bearing
US6672767B2 (en) Dynamic bearing device and motor having the same
US5704718A (en) Sintered oil-impregnated bearing and method for manufacturing same
US5709480A (en) Hemispherical fluid bearing
JP4602497B2 (en) Bearing device and spindle motor assembly using the same
JPH10131955A (en) Journal bearing device
JP2003184888A (en) Roller bearing
US5997180A (en) Circumferential flow type dynamic pressure bearing
JPH11247843A (en) Dynamic pressure gas journal bearing
JPH05215128A (en) Bering device
JPH0651224A (en) Optical scanning device
JP2002213248A (en) Bearing device of turbocharger
WO1996038679A1 (en) High-speed rotary body
JPH0215726B2 (en)
JPH017849Y2 (en)
JP5499327B2 (en) Rolling bearing
JPH0289807A (en) Non-round bearing
JP2945256B2 (en) Dynamic pressure gas bearing and method of manufacturing the dynamic pressure gas bearing
JPH11101224A (en) Dynamic pressure gas journal bearing
JP2000055055A5 (en)
JP2001248635A (en) Dynamic pressure fluid bearing device
JP3693749B2 (en) Thrust dynamic pressure bearing
KR100224605B1 (en) Journal fluid bearing apparatus
JP2023184104A (en) Hydrodynamic bearing and fluid hydrodynamic bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050510