JPH1123984A - Ocular optical system and ocular image display device - Google Patents

Ocular optical system and ocular image display device

Info

Publication number
JPH1123984A
JPH1123984A JP9175772A JP17577297A JPH1123984A JP H1123984 A JPH1123984 A JP H1123984A JP 9175772 A JP9175772 A JP 9175772A JP 17577297 A JP17577297 A JP 17577297A JP H1123984 A JPH1123984 A JP H1123984A
Authority
JP
Japan
Prior art keywords
optical system
lens
eyepiece optical
eyeball
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9175772A
Other languages
Japanese (ja)
Other versions
JP3617257B2 (en
Inventor
Shinsuke Shikama
信介 鹿間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17577297A priority Critical patent/JP3617257B2/en
Priority to US09/033,482 priority patent/US5986816A/en
Publication of JPH1123984A publication Critical patent/JPH1123984A/en
Application granted granted Critical
Publication of JP3617257B2 publication Critical patent/JP3617257B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ocular video display device which permits monocularly a 110 deg. or wider angle of observation and an even and sharp video display up to the circumference and forms an ocular optical system with a high degree of freedom for a pupil position by providing an appropriate pupil diameter and eye relief and forms a magnified virtual image with this ocular optical system. SOLUTION: An optical system with a function magnifying a plane image on a two-dimensional display element to an eyeball, comprising, sequentially from the eyeball side, a 1st lens group G1 consisting of a positive meniscus lens L1 directing its concave to the eyeball side, a bi-aspherical lens L2 of a meniscus form directing its convex to the eyeball side in the neighborhood of the center and having a negative axial refractive power, and a bi-aspherical lens L3 having a positive axial refractive power and being bi-convex in the neighborhood of the center, and a 2nd lens group G2 consisting of bi-concave aspherical lens L4 having a negative axial refractive power in the neighborhood of the center. Moreover, the above-mentioned ocular optical system is installed on the ocular video image display device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、使用者の頭部もし
くは顔面に保持することが可能な頭部又は顔面装着式視
覚表示装置に適用可能な接眼光学系と、この接眼光学系
を搭載した接眼映像表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an eyepiece optical system applicable to a head or face-mounted visual display device which can be held on the head or face of a user, and to which the eyepiece optical system is mounted. The present invention relates to an eyepiece image display device.

【0002】[0002]

【従来の技術】近年、バーチャルリアリティー用、ある
いは、個人的に大画面の映像を楽しむことを目的とし
て、ヘルメット型、ゴーグル型の頭部又は顔面に保持す
る視覚表示装置が開発されている。例えば、液晶表示素
子,EL表示素子等の小型の表示素子上の像をレンズ等の
接眼光学系で眼球に拡大投影するものがある。そのよう
な接眼表示装置の光学系を図6に示す。図6において、
2次元表示素子を3、2次元表示素子3を空中に拡大投
影する接眼レンズを20、観察者Hの眼球を10とす
る。従来装置では、2次元表示素子3に形成された原画
像の拡大虚像を接眼レンズ20により形成し、眼球10
でこの拡大虚像を鑑賞するよう構成されていた。
2. Description of the Related Art In recent years, a helmet-type or goggle-type visual display device for holding on a head or face has been developed for virtual reality purposes or for personally enjoying a large-screen image. For example, there is a type in which an image on a small display element such as a liquid crystal display element or an EL display element is enlarged and projected on an eyeball by an eyepiece optical system such as a lens. FIG. 6 shows an optical system of such an eyepiece display device. In FIG.
Assume that the two-dimensional display element is 3, the eyepiece for enlarging and projecting the two-dimensional display element 3 in the air is 20, and the eyeball of the observer H is 10. In the conventional device, an enlarged virtual image of an original image formed on the two-dimensional display element 3 is formed by an eyepiece 20 and an eyeball 10 is formed.
It was configured to appreciate this enlarged virtual image.

【0003】接眼光学系の従来技術としては、顕微鏡、
双眼鏡、望遠鏡、ファインダー等の接眼レンズがある
(実公昭40−9090号公報,特開昭50−1511
63号公報,特開昭51−120231号公報,特開昭
52−72242号公報,特開平3−87709号公
報)。
[0003] Conventional techniques of eyepiece optical systems include microscopes,
There are eyepieces such as binoculars, telescopes, and viewfinders (Japanese Utility Model Publication No. 40-9090, Japanese Patent Application Laid-Open No. 50-1511).
63, JP-A-51-120231, JP-A-52-72242, JP-A-3-87709.

【0004】[0004]

【発明が解決しようとする課題】頭部もしくは顔面装着
式視覚表示装置にとって、装置全体の大きさを小さくす
ることと軽量化が装着性を向上させる上で重要である。
また、大きな画角を確保することが画面の臨場感を増す
上で必要であり、臨場感は提示画角で決まってしまうと
言っても過言でない。立体感、迫力感、没入感等の臨場
感を観察者に与えるためには対角方向で100度以上の
表示画角を実現することが望ましい。
For a head- or face-mounted visual display device, it is important to reduce the size of the entire device and to reduce the weight in order to improve the wearability.
Also, it is necessary to secure a large angle of view in order to increase the realism of the screen, and it is no exaggeration to say that the realism is determined by the presented angle of view. In order to give a viewer a sense of realism such as a three-dimensional effect, a feeling of power, and a feeling of immersion, it is desirable to realize a display angle of view of 100 degrees or more in a diagonal direction.

【0005】また、接眼光学系のアイポイントにおける
設計瞳径が小さいと、瞳の自由度が小さく、装置の最適
装着状態から少しずれるだけで観察視野周辺に暗黒部が
生じ、臨場感を損なうこととなり、好ましくない。つま
り、接眼光学系のFナンバーを小さくすることが要求さ
れる。
Also, if the design pupil diameter at the eye point of the eyepiece optical system is small, the degree of freedom of the pupil is small, and even if it is slightly deviated from the optimal mounting state of the apparatus, a dark area is generated around the observation visual field, and the sense of realism is impaired. Is not preferred. That is, it is required to reduce the F number of the eyepiece optical system.

【0006】しかし、接眼光学系の画角を大きくし、さ
らに、Fナンバーを小さくすると、光学系の周辺部を光
線が通過するため、収差の発生が大きくなり、コンパク
トな構成では収差の補正が困難となり、さらに像面湾曲
の影響もあいまって周辺画像の解像度が低下することが
問題となる。特に像面湾曲については、レンズ枚数の少
ないコンパクトな接眼レンズでは、光線高の高い箇所に
正レンズ、低い箇所に負レンズを配置して、正負のパワ
ー配分によってペッツバール和を小さくするような構成
をとることができず、その補正が困難である。
However, if the angle of view of the eyepiece optical system is increased and the F-number is further reduced, light rays pass through the periphery of the optical system, so that the occurrence of aberrations increases. It becomes difficult, and there is a problem that the resolution of the peripheral image is reduced due to the influence of the curvature of field. In particular, regarding the field curvature, a compact eyepiece with a small number of lenses has a configuration in which a positive lens is placed at a high ray height and a negative lens is placed at a low ray height, and the Petzval sum is reduced by positive and negative power distribution. It cannot be taken and its correction is difficult.

【0007】本発明によって提供する接眼光学系は、下
記の条件を同時に満たすものである。 (1) 対角110°以上の大きな画角 (2) 小さいFナンバー(大きな瞳径) (3) 適切なアイリリーフ(観察者の目〜接眼レンズ
第1面間の距離) (4) 良好な収差補正。 一方,上記した従来の接眼レンズは、50°〜70°程
度の比較的大きな画角を確保してはいるものの、バーチ
ャルリアリティ用途等において十分な臨場感と実使用上
の容易性を実現する上で不可欠の上記条件を同時に満た
しているとはいえない。従って、上記従来例の接眼レン
ズを接眼映像表示装置に搭載しても、大きな観察画角と
大きな瞳位置の自由度と周辺まで平坦性の良い鮮明な画
像とを同時に提供することはできない。
The eyepiece optical system provided by the present invention satisfies the following conditions at the same time. (1) Large angle of view of 110 ° or more diagonal (2) Small F-number (large pupil diameter) (3) Appropriate eye relief (distance between observer's eye and first surface of eyepiece) (4) Good Aberration correction. On the other hand, the above-mentioned conventional eyepieces, while securing a relatively large angle of view of about 50 ° to 70 °, realize sufficient realism and ease of actual use in virtual reality applications and the like. Therefore, it cannot be said that the above essential conditions are satisfied at the same time. Therefore, even if the conventional eyepiece is mounted on the eyepiece image display device, it is not possible to simultaneously provide a large observation angle of view, a large degree of freedom of the pupil position, and a clear image with good flatness to the periphery.

【0008】本発明は上記のような課題を解決するため
になされたものであり、その目的は、単眼で対角110
°以上の大きな観察画角を提示でき、適切な瞳径とアイ
リリーフを備えることで瞳位置の自由度が大きく、か
つ、周辺まで均一で鮮明な観察画像を提示できるよう収
差補正された接眼光学系を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a monocular with a diagonal of 110 degrees.
Eyepiece optics that can present a large viewing angle of view of more than °° and have an appropriate pupil diameter and eye relief to provide a large degree of freedom in pupil position, and aberration correction to present a uniform and clear observation image to the periphery Provide the system.

【0009】また、本発明の第2の目的は上記接眼光学
系を接眼レンズとして搭載した広画角で臨場感に優れ、
かつ鮮明な映像表示が可能な小型・軽量の接眼映像表示
装置を提供するものである。
A second object of the present invention is to provide the above-mentioned eyepiece optical system as an eyepiece lens with a wide angle of view and excellent realism.
An object of the present invention is to provide a small and lightweight eyepiece image display device capable of displaying clear images.

【0010】[0010]

【課題を解決するための手段】本発明に係る接眼光学系
においては、2群4枚構成のレンズ系より成り、眼球側
から順に、眼球側に凹面を向けた正メニスカスレンズL
1と中心近傍が眼球側に凸面を向けたメニスカス形状で
軸上屈折力が負の両面非球面レンズL2と中心近傍が両
凸で軸上屈折力が正の両面非球面レンズL3とより構成
される正の第1レンズ群G1,中心近傍が両凹で軸上屈
折力が負の両面非球面レンズL4より成る第2レンズ群
G2より構成され、2次元表示素子上の平面像を眼球に
虚像として拡大投影するものである。
The eyepiece optical system according to the present invention comprises a two-group, four-lens lens system, and a positive meniscus lens L having a concave surface facing the eyeball in order from the eyeball.
1 and a double-sided aspherical lens L2 having a negative axial refractive power with a meniscus shape having a convex surface facing the eyeball near the center and a biaxial aspherical lens L3 having a biaxial convex near the center and a positive axial refractive power. A first positive lens group G1, a second lens group G2 comprising a double-sided aspheric lens L4 having a biconcave portion near the center and a negative axial refraction near the center, and a planar image on the two-dimensional display element is virtually formed on the eyeball. The projection is performed as enlargement.

【0011】また、上記両面非球面レンズL2は両面の
周辺部が眼球側に凹面を向けるように湾曲した形状より
成るものである。
The double-sided aspherical lens L2 has a shape in which the peripheral portions of both surfaces are curved so that the concave surface faces the eyeball side.

【0012】また、前記G1群、G2群の軸上焦点距離
を各々f13、f4とし、全系の焦点距離をfとした場
合、 0.2<f13/f<0.4 −0.18<f4/f<−0.09 なる条件を満足するものである。
When the on-axis focal lengths of the G1 and G2 groups are f13 and f4, respectively, and the focal length of the entire system is f, 0.2 <f13 / f <0.4-0.18 < This satisfies the condition of f4 / f <−0.09.

【0013】また、前記G1群、G2群の軸上焦点距離
を各々f13、f4とした場合、 −2.9<f13/f4<−1.7 なる条件を満足するものである。
When the on-axis focal lengths of the groups G1 and G2 are f13 and f4, respectively, the condition of -2.9 <f13 / f4 <-1.7 is satisfied.

【0014】また、前記レンズL3、レンズL4の軸上
焦点距離を各々f3、f4とした場合、 −2.8<f3/f4<−1.5 なる条件を満足するものである。
When the axial focal lengths of the lenses L3 and L4 are f3 and f4, respectively, the condition of -2.8 <f3 / f4 <-1.5 is satisfied.

【0015】また、前記G1群のレンズL1,L2,L
3を構成する硝材のアッベ数の平均値をν13、及びG
2群のレンズL4を構成する硝材のアッベ数をν4とし
た場合、 ν13> 40 ν4< 30 なる条件を満足するものである。
Also, the lenses L1, L2, L of the G1 group
The average values of Abbe numbers of the glass materials constituting 3 are ν13 and G
Assuming that the Abbe number of the glass material forming the two groups of lenses L4 is ν4, the following condition is satisfied: ν13> 40ν4 <30.

【0016】また、前記レンズL3,L4を構成する硝
材のアッベ数を各々ν3,ν4とした場合、 ν3> 35 ν4< 30 なる条件を満足するものである。
When the Abbe numbers of the glass materials constituting the lenses L3 and L4 are respectively ν3 and ν4, the condition of ν3> 35 ν4 <30 is satisfied.

【0017】また、本発明の接眼映像表示装置は、原画
像を表示する1個もしくは2個の2次元表示素子と、該
2次元表示素子上の平面像の各々を眼球に虚像として拡
大投影する2次元表示素子と同個数の接眼光学系とから
なり、該接眼光学系は眼球側から順に、眼球側に凹面を
向けた正メニスカスレンズL1と中心近傍が眼球側に凸
面を向けたメニスカス形状で軸上屈折力が負の両面非球
面レンズL2と中心近傍が両凸で軸上屈折力が正の両面
非球面レンズL3より構成される正の第1レンズ群G
1,中心近傍が両凹で軸上屈折力が負の両面非球面レン
ズL4より成る第2レンズ群G2より構成するものであ
る。
Further, the eyepiece image display apparatus of the present invention provides one or two two-dimensional display elements for displaying an original image, and enlarges and projects each of the two-dimensional display elements on the two-dimensional display element to the eyeball as a virtual image. The eyepiece optical system includes the same number of eyepiece optical systems as the two-dimensional display element. The eyepiece optical system has, in order from the eyeball side, a positive meniscus lens L1 having a concave surface facing the eyeball side and a meniscus shape having a center near the convex surface facing the eyeball side. A first positive lens group G composed of a double-sided aspheric lens L2 having a negative axial refractive power and a double-sided aspheric lens L3 having a biaxial convex portion near the center and a positive axial refractive power.
1. A second lens group G2 comprising a double-sided aspheric lens L4 having a biconcave portion near the center and a negative on-axis refractive power.

【0018】[0018]

【発明の実施の形態】以下図面を参照して、本発明の接
眼映像表示装置に用いられる接眼光学系の実施の形態に
ついて説明する。図1〜図2は各々実施の形態1〜2の
接眼光学系の断面図である。また、図1〜図2は各々後
に記載する数値実施例1〜2に対応するものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an eyepiece optical system used in an eyepiece image display device according to the present invention will be described below with reference to the drawings. 1 and 2 are sectional views of the eyepiece optical systems according to Embodiments 1 and 2, respectively. 1 and 2 correspond to Numerical Examples 1 and 2 described later, respectively.

【0019】実施の形態1〜2の各断面図の構成は図面
上では類似の構成であるので、代表例として実施の形態
1を示す図1について以下に説明し、実施の形態2につ
いては構成の説明を省略する。 <実施の形態1 (第1の発明)>図1において、1は観
察者の眼球の瞳孔にあたる接眼光学系の入射瞳、2は本
発明による接眼光学系、3は原画像を表示するLCD(L
iquid Crystal Display)、ELD(Electroluminescent
Display)、FED(Field Emission Display)、 CRT
(Cathode Ray Tube)等の2次元表示素子(画像表示面)
である。
Since the structures of the sectional views of the first and second embodiments are similar to each other in the drawings, FIG. 1 showing the first embodiment will be described below as a representative example, and the structure of the second embodiment will be described. Is omitted. <First Embodiment (First Invention)> In FIG. 1, reference numeral 1 denotes an entrance pupil of an eyepiece optical system corresponding to a pupil of an observer's eyeball, 2 denotes an eyepiece optical system according to the present invention, and 3 denotes an LCD (displaying an original image). L
iquid Crystal Display), ELD (Electroluminescent
Display), FED (Field Emission Display), CRT
(Cathode Ray Tube) and other two-dimensional display elements (image display surface)
It is.

【0020】接眼光学系2は、入射瞳1側から順に、第
1レンズ群G1,第2レンズ群G2の順に配置されてい
る。G1群は、入射瞳側1に凹面を向けた正メニスカス
レンズL1と、中心近傍の両面が眼球側に凸面を向けた
メニスカス形状で軸上屈折力が負の両面非球面レンズL
2と、中心近傍が両凸で軸上屈折力が正の両面非球面レ
ンズL3とから構成され、正の屈折力を有する。また、
G2群は中心近傍が両凹で軸上屈折力が負の両面非球面
レンズL4より構成され、負の屈折力を有する。
The eyepiece optical system 2 is arranged from the entrance pupil 1 side in the order of a first lens group G1 and a second lens group G2. The G1 group includes a positive meniscus lens L1 having a concave surface facing the entrance pupil side 1 and a double-sided aspheric lens L having a meniscus shape with both surfaces near the center having a convex surface facing the eyeball and having a negative axial refractive power.
2 and a double-sided aspheric lens L3 having a biaxial convex portion near the center and a positive axial refractive power, and has a positive refractive power. Also,
The G2 group is composed of a double-sided aspheric lens L4 having a biaxial concave portion near the center and a negative axial refractive power, and has a negative refractive power.

【0021】色収差の低減のために、正レンズG1群を構
成するL1,L2,L3には低分散硝材が使用され、負
レンズであるL4には高分散硝材が使用されている。L
1,L2,L3を構成する硝材のアッベ数平均値をν1
3とし、L4を構成する硝材のアッベ数をν4とする
と、ν13,ν4は以下の不等式(1),(2)を同時
に満たすことで色収差を良好に補正している。 ν13> 40 (1) ν4< 30 (2) また、G1群の正の屈折力の殆どがL3にあるので、L
3,L4を構成する硝材のアッベ数をν3,ν4とする
と、ν3,ν4は以下の不等式(3),(4)を同時に
満たすことで色収差が良好に補正される。 ν3> 35 (3) ν4< 30 (4)
In order to reduce chromatic aberration, a low dispersion glass material is used for L1, L2 and L3 constituting the positive lens G1, and a high dispersion glass material is used for L4 which is a negative lens. L
The average value of Abbe number of the glass material constituting 1, L2, L3 is ν1
Assuming that the Abbe number of the glass material constituting L4 is ν4, ν13 and ν4 satisfy the following inequalities (1) and (2) at the same time, and chromatic aberration is well corrected. ν13> 40 (1) ν4 <30 (2) Also, since most of the positive refractive power of the G1 group is in L3, L3
Assuming that the Abbe number of the glass material forming 3, L4 is ν3, ν4, chromatic aberration is favorably corrected by satisfying the following inequalities (3), (4) at the same time. ν3> 35 (3) ν4 <30 (4)

【0022】レンズL2は中心近傍の両面が眼球側に凸
面を向けたメニスカス形状で、中心近傍が負のパワーを
有する両面非球面レンズより構成されている。L2は周
辺部が両面共入射瞳1側(眼球側)に凹面を向けるよう
に湾曲する構成であり、大きな傾斜を有する周辺光線に
対する入射角を小さく保っている。
The lens L2 has a meniscus shape with convex surfaces facing the eyeball on both sides near the center, and a double-sided aspheric lens having negative power near the center. L2 has a configuration in which both peripheral portions are curved so that the concave surface is directed toward the entrance pupil 1 side (eyeball side) on both sides, and the incident angle with respect to peripheral rays having a large inclination is kept small.

【0023】また、前記G1群(レンズL1〜L3),
G2群(レンズL4)の軸上焦点距離を各々f13,f
4とし、全系の焦点距離をfとした場合、下記(5),
(6)式を満足している。 0.2<f13/f<0.4 (5) −0.18<f4/f<−0.09 (6) (5)式,(6)式は、本発明による接眼光学系のパワ
ー配分を規定するものである。(5)式の上限値を超え
ると、G1群の正のパワーが弱くなって軸上色収差が補
正過剰になる。また(5)式の下限値を超えるとG1群
の正のパワーが強くなって、適切なバックフォーカル長
が確保できなくなり表示素子の配置が困難になるととも
に、軸上色収差が補正不足になり、また軸外の高次収差
の補正が困難となる。(6)式の上限値を超えると、G
2群の負のパワーが強くなって、軸上色収差が補正過剰
になるとともに、レンズL4の作成精度,配置精度が厳
しくなって実用性がなくなる。また軸外の高次収差の補
正が困難になる。(6)式の下限値を超えると、G2群
の負のパワーが弱くなって、適切なバックフォーカル長
が確保できなくなり表示素子の配置が困難になるととも
に、軸上色収差が補正不足となる。
The G1 group (lenses L1 to L3),
The on-axis focal lengths of the G2 group (lens L4) are f13 and f13, respectively.
Assuming that the focal length of the entire system is f, the following (5),
The expression (6) is satisfied. 0.2 <f13 / f <0.4 (5) -0.18 <f4 / f <-0.09 (6) Equations (5) and (6) represent power distribution of the eyepiece optical system according to the present invention. Is defined. When the value exceeds the upper limit of the expression (5), the positive power of the G1 group becomes weak, and the axial chromatic aberration is overcorrected. When the value exceeds the lower limit of the expression (5), the positive power of the group G1 becomes strong, so that an appropriate back focal length cannot be secured, the arrangement of the display element becomes difficult, and the axial chromatic aberration is insufficiently corrected. Further, it becomes difficult to correct off-axis high-order aberrations. When the value exceeds the upper limit of the expression (6), G
The negative power of the second lens unit becomes strong, the axial chromatic aberration is overcorrected, and the production accuracy and the arrangement accuracy of the lens L4 become severe, and the practicality is lost. Also, it becomes difficult to correct off-axis high-order aberrations. When the value exceeds the lower limit of the expression (6), the negative power of the group G2 becomes weak, so that an appropriate back focal length cannot be secured, and the arrangement of the display element becomes difficult, and the axial chromatic aberration is insufficiently corrected.

【0024】また、前記G1群、G2群の軸上焦点距離
を各々f13、f4とした場合、下記(7)式を満足す
る。 −2.9<f13/f4<−1.7 (7) (7)式はG1群と、G2群の焦点距離の比の範囲を制
限するものである。(7)式の下限値を超えるとG2群
の負のパワーが相対的に強くなる。この結果、G2群
(レンズL4)で生じる高次の軸外収差の補正が困難に
なり、また軸上色収差が補正過剰となる。(7)式の上
限値を超えるとG1群の正のパワーが相対的に強くな
り、全系のバックフォーカル長の確保が困難になるとと
もにG1群で生じる高次の軸外収差の補正が困難にな
る。
When the on-axis focal lengths of the groups G1 and G2 are f13 and f4, respectively, the following equation (7) is satisfied. -2.9 <f13 / f4 <-1.7 (7) Equation (7) restricts the range of the ratio of the focal lengths of the G1 group and the G2 group. When the value exceeds the lower limit of the expression (7), the negative power of the group G2 becomes relatively strong. As a result, it becomes difficult to correct higher-order off-axis aberrations generated in the G2 group (lens L4), and axial chromatic aberration is over-corrected. When the value exceeds the upper limit of the expression (7), the positive power of the G1 group becomes relatively strong, so that it is difficult to secure the back focal length of the entire system, and it is difficult to correct a high-order off-axis aberration generated in the G1 group. become.

【0025】また、前記レンズL3,L4の軸上焦点距
離を各々f3,f4とした場合、下記(8)式を満足す
る。 −2.8<f3/f4<−1.5 (8) (8)式はG1群のパワーを支配するレンズL3と、G
2群を構成するレンズL4の焦点距離の比の範囲を制限
するものである。(8)式の下限値を超えるとレンズL
4の負のパワーが相対的に強くなる。この結果、レンズ
L4で生じる高次の軸外収差の補正が困難になり、また
軸上色収差が補正過剰となる。また、レンズL4の作成
精度,配置精度が厳しくなり実用性を失う。(8)式の
上限値を超えるとレンズL3の正のパワーが相対的に強
くなり、全系のバックフォーカル長の確保が困難になる
とともにレンズL3で生じる高次の軸外収差の補正が困
難になる。また、レンズL3の作成精度,配置精度が厳
しくなり実用性を失う。
When the axial focal lengths of the lenses L3 and L4 are f3 and f4, respectively, the following expression (8) is satisfied. -2.8 <f3 / f4 <-1.5 (8) Equation (8) indicates that the lens L3 which controls the power of the G1 group and the lens L3
This limits the range of the ratio of the focal lengths of the lenses L4 constituting the two groups. If the lower limit of the expression (8) is exceeded, the lens L
The negative power of 4 becomes relatively strong. As a result, it becomes difficult to correct high-order off-axis aberrations generated in the lens L4, and axial chromatic aberration is over-corrected. In addition, the production accuracy and the arrangement accuracy of the lens L4 become severe, and the practicality is lost. When the value exceeds the upper limit of the expression (8), the positive power of the lens L3 becomes relatively strong, so that it is difficult to secure the back focal length of the entire system, and it is difficult to correct the high-order off-axis aberration generated in the lens L3. become. In addition, the production accuracy and the arrangement accuracy of the lens L3 become severe, and the practicality is lost.

【0026】以下、実施の形態1〜2に対応する数値実
施例を示す。各数値実施例の断面図は各々図1〜2に対
応する。又、表の記号の意味は以下の通りである。
Hereinafter, numerical examples corresponding to the first and second embodiments will be described. The cross-sectional views of each numerical example correspond to FIGS. The meanings of the symbols in the table are as follows.

【0027】 EPD:入射瞳径 (開口絞りASTの開口径と等しい) f: 全系の焦点距離 (mm) F/#:Fナンバ (無限共役時) ω :入射瞳側半画角 (無限共役時) m :入射瞳から数えた面番号 ri :入射瞳から数えて第i面の曲率半径(mm) di :入射瞳から数えて第i面から第i+1面に至る
距離(厚さ,空気間隔; (mm)) ni :入射瞳から数えて第i面直後の媒質の波長58
7.6nm(d線)における屈折率 νi :入射瞳面から数えて第i面直後の媒質のアッベ
数 AST:開口絞り面(入射瞳面と等価) ASP:非球面 上記焦点距離、Fナンバ、半画角は波長546nmにお
ける値である。また、上記ASPで示された非球面の形
状は、(9)式,(10)式で定義される。 Z=(h2 /r)/{1+〔1−(1+K)・(h/r)21/2 } +A4h4 +A6h6 +A8h8+A10h10 (9) h2 =X2 +Y2 (10) 但し、rは中心曲率半径,Kは円錐定数,A4,A6,
A8,A10は各々4次,6次,8次,10次の非球面
係数、hは光軸Zからの高さである。又、非球面の中心
は座標系(X,Y,Z)の原点に位置し、光軸はZ方向に
合わせられているものとする。
EPD: entrance pupil diameter (equal to the aperture diameter of the aperture stop AST) f: focal length of the entire system (mm) F / #: F number (when infinite conjugate) ω: entrance pupil side half angle of view (infinite conjugate) Time) m: surface number counted from entrance pupil ri: radius of curvature of i-th surface counted from entrance pupil (mm) di: distance from i-th surface to i + 1-th surface counted from entrance pupil (thickness, air space) (Mm)) ni: wavelength 58 of the medium immediately after the i-th surface counted from the entrance pupil
Refractive index at 7.6 nm (d-line) νi: Abbe number of the medium immediately after the i-th surface counted from the entrance pupil plane AST: Aperture stop plane (equivalent to the entrance pupil plane) ASP: Aspheric surface The above focal length, F number, The half angle of view is a value at a wavelength of 546 nm. The shape of the aspheric surface indicated by the ASP is defined by the equations (9) and (10). Z = (h 2 / r) / {1+ [1- (1 + K) · ( h / r) 2 ] 1/2} + A4h 4 + A6h 6 + A8h 8 + A10h 10 (9) h 2 = X 2 + Y 2 (10) Where r is the center radius of curvature, K is the conic constant, A4, A6,
A8 and A10 are the fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients, respectively, and h is the height from the optical axis Z. It is also assumed that the center of the aspheric surface is located at the origin of the coordinate system (X, Y, Z), and the optical axis is aligned in the Z direction.

【0028】 <数値実施例1> ---------------------------------------------------------------------- EPD=6mm f=23.88mm F/♯=3.98 ω=56deg ---------------------------------------------------------------------- m ri di ni νi 1 Infinity 1.0500000E+01 AST 2 -1.4253915E+03 6.6410927E+00 1.8830 40.8 3 -2.8672968E+01 2.6000000E-01 4 5.3917303E+01 4.8000000E+00 1.7859 43.9 ASP 5 3.4516169E+01 2.6000000E-01 ASP 6 4.2691875E+01 9.0846706E+00 1.8160 46.6 ASP 7 -5.7620008E+00 9.1463357E-01 ASP 8 -2.6408060E+01 4.0047884E+00 2.0029 23.5 ASP 9 4.2509951E+00 ASP ---------------------------------------------------------------------- <Aspherical Coefficient> m K A4 A6 A8 4 -8.6715465E+01 2.44550404E-05 -1.80003173E-08 2.60086290E-10 5 -3.8066772E+02 -7.18603862E-05 4.32218393E-07 -7.41664635E-10 6 -4.6399300E+01 1.25572634E-06 4.32654878E-09 4.72105636E-13 7 -1.2292602E+01 -1.34748564E-06 -4.71037014E-09 1.81619927E-11 8 1.7008447E-01 4.24395933E-06 8.00589242E-08 -6.75823231E-11 9 -1.6119969E+01 1.44171082E-05 -1.66560073E-08 -1.40848891E-11 ---------------------------------------------------------------------- m A10 4 -6.02486611E-13 5 2.74225659E-13 6 2.31201158E-15 7 2.46177364E-14 8 8.90023730E-14 9 -1.59706873E-13 ----------------------------------------------------------------------<Numerical Example 1> ----------------------------------------- ----------------------------- EPD = 6mm f = 23.88mm F / ♯ = 3.98 ω = 56deg --- -------------------------------------------------- ----------------- m ri di ni νi 1 Infinity 1.0500000E + 01 AST 2 -1.4253915E + 03 6.6410927E + 00 1.8830 40.8 3 -2.8672968E + 01 2.6000000E- 01 4 5.3917303E + 01 4.8000000E + 00 1.7859 43.9 ASP 5 3.4516169E + 01 2.6000000E-01 ASP 6 4.2691875E + 01 9.0846706E + 00 1.8160 46.6 ASP 7 -5.7620008E + 00 9.1463357E-01 ASP 8 -2.6408060E +01 4.0047884E + 00 2.0029 23.5 ASP 9 4.2509951E + 00 ASP ----------------------------------- ----------------------------------- <Aspherical Coefficient> m K A4 A6 A8 4 -8.6715465E + 01 2.44550404E-05 -1.80003173E-08 2.60086290E-10 5 -3.8066772E + 02 -7.18603862E-05 4.32218393E-07 -7.41664635E-10 6 -4.6399300E + 01 1.25572634E-06 4.32654878E-09 4.72105636E- 13 7 -1.2292602E + 01 -1.34748564E-06 -4.71037014E-09 1.81619927E-11 8 1.700844 7E-01 4.24395933E-06 8.00589242E-08 -6.75823231E-11 9 -1.6119969E + 01 1.44171082E-05 -1.66560073E-08 -1.40848891E-11 -------------- -------------------------------------------------- ------ m A10 4 -6.02486611E-13 5 2.74225659E-13 6 2.31201158E-15 7 2.46177364E-14 8 8.90023730E-14 9 -1.59706873E-13 ---------- -------------------------------------------------- ----------

【0029】 <数値実施例2> ---------------------------------------------------------------------- EDP=6mm f=25.55mm F/♯=4.25 ω=56deg ---------------------------------------------------------------------- m ri di ni νi 1 Infinity 1.0500000E+01 AST 2 -1.4310488E+03 7.1921813E+00 1.8160 46.6 3 -2.6886586E+01 2.6000000E-01 4 5.4423821E+01 4.8000000E+00 1.7880 47.5 ASP 5 2.7726058E+01 2.6000000E-01 ASP 6 4.0922715E+01 8.6250000E+00 1.8830 40.8 ASP 7 -5.9636066E+00 1.1016488E+00 ASP 8 -2.8798947E+01 3.6627207E+00 1.9229 20.9 ASP 9 3.3170294E+00 ASP ---------------------------------------------------------------------- <Aspherical Coefficient> m K A4 A6 A8 4 -6.8375875E+01 2.36125101E-05 -1.19817332E-08 2.09551207E-10 5 -2.9123669E+02 -7.00821014E-05 4.31134653E-07 -7.43067511E-10 6 -9.5992459E+01 2.64362107E-06 5.40376339E-09 1.74429353E-13 7 -1.3775561E+01 -2.53033321E-06 -4.42407645E-09 1.96394225E-11 8 3.4435029E-01 -1.81371860E-06 8.25545578E-08 -7.25019843E-11 9 -1.2455198E+01 1.53727156E-05 -6.90665830E-09 -1.61666005E-11 ---------------------------------------------------------------------- m A10 4 -4.74993787E-13 5 2.98203250E-13 6 -3.79650769E-15 7 2.22965057E-14 8 8.09368097E-14 9 -2.64664661E-13 ----------------------------------------------------------------------<Numerical Example 2> ----------------------------------------- ----------------------------- EDP = 6mm f = 25.55mm F / ♯ = 4.25 ω = 56deg --- -------------------------------------------------- ----------------- m ri di ni νi 1 Infinity 1.0500000E + 01 AST 2 -1.4310488E + 03 7.1921813E + 00 1.8160 46.6 3 -2.6886586E + 01 2.6000000E- 01 4 5.4423821E + 01 4.8000000E + 00 1.7880 47.5 ASP 5 2.7726058E + 01 2.6000000E-01 ASP 6 4.0922715E + 01 8.6250000E + 00 1.8830 40.8 ASP 7 -5.9636066E + 00 1.1016488E + 00 ASP 8 -2.8798947E +01 3.6627207E + 00 1.9229 20.9 ASP 9 3.3170294E + 00 ASP ----------------------------------- ----------------------------------- <Aspherical Coefficient> m K A4 A6 A8 4 -6.8375875E + 01 2.36125101E-05 -1.19817332E-08 2.09551207E-10 5 -2.9123669E + 02 -7.00821014E-05 4.31134653E-07 -7.43067511E-10 6 -9.5992459E + 01 2.64362107E-06 5.40376339E-09 1.74429353E- 13 7 -1.3775561E + 01 -2.53033321E-06 -4.42407645E-09 1.96394225E-11 8 3.44350 29E-01 -1.81371860E-06 8.25545578E-08 -7.25019843E-11 9 -1.2455198E + 01 1.53727156E-05 -6.90665830E-09 -1.61666005E-11 ------------- -------------------------------------------------- ------- m A10 4 -4.74993787E-13 5 2.98203250E-13 6 -3.79650769E-15 7 2.22965057E-14 8 8.09368097E-14 9 -2.64664661E-13 -------- -------------------------------------------------- ------------

【0030】次に各数値実施例に関する、レンズ系各部
の焦点距離,焦点距離の比,アッベ数の平均値を下表に
まとめて示す。但し、表の記号の意味は以下の通りであ
る。 f : 全系の焦点距離(mm) f1: レンズL1の焦点距離(mm) f2: レンズL2の軸上焦点距離(mm) f3: レンズL3の軸上焦点距離(mm) f4: レンズL4(G2群)の軸上焦点距離(mm) f13: G1群(レンズL1〜L3)の合成軸上焦点距
離(mm) ν13: レンズL1,L2,L3を構成する硝材のア
ッベ数の平均値 上記の各種焦点距離は波長546nmにおける値であ
る。
Next, the following table summarizes the focal length of each part of the lens system, the ratio of the focal length, and the average value of the Abbe number in each numerical example. However, the meanings of the symbols in the table are as follows. f: focal length of the entire system (mm) f1: focal length of lens L1 (mm) f2: axial focal length of lens L2 (mm) f3: axial focal length of lens L3 (mm) f4: lens L4 (G2) Group 13) on-axis focal length (mm) f13: Combined on-axis focal length (mm) of group G1 (lenses L1 to L3) ν13: Average value of Abbe numbers of glass materials forming lenses L1, L2, and L3 The focal length is a value at a wavelength of 546 nm.

【0031】 ---------------------------------------------------------------------- 例 f f1 f2 f3 f4 f13 f4/f f13/f f13/f4 ---------------------------------------------------------------------- 1 23.88 32.87 -136.3 6.76 -3.39 7.38 -0.14 0.31 -2.18 2 25.54 33.33 -77.53 6.42 -3.02 7.05 -0.12 0.28 -2.33 ---------------------------------------------------------------------- 例 f3/f4 ν13 ---------------------------------------------------------------------- 1 -1.99 43.8 2 -2.13 45.0 --------------------------------------------------------------------------------------------------------------------- ----------------------- Example f f1 f2 f3 f4 f13 f4 / f f13 / f f13 / f4 ----------- -------------------------------------------------- --------- 1 23.88 32.87 -136.3 6.76 -3.39 7.38 -0.14 0.31 -2.18 2 25.54 33.33 -77.53 6.42 -3.02 7.05 -0.12 0.28 -2.33 ------------- -------------------------------------------------- ------- Example f3 / f4 ν13 -------------------------------------- -------------------------------- 1 -1.99 43.8 2 -2.13 45.0 ---------- -------------------------------------------------- ----------

【0032】図3〜図4に上記数値実施例1〜2に対応
する横収差図を示す。EYはメリジオナル断面内、EX
はサジッタル断面内の収差を示す。WL1,WL2,W
L3は各々波長470nm,546nm,610nmに
対する曲線であり、4種類の入射画角(無限遠入射)に
対して小さな共役側(画像表示素子3)の面上の横収差を
プロットした。図3〜図4より、本願の数値実施例はい
ずれも良好に横収差,色収差補正されており、対角11
0°以上の広画角で高解像な拡大虚像の形成が可能であ
ることがわかる。
FIGS. 3 and 4 show lateral aberration diagrams corresponding to Numerical Examples 1 and 2. FIG. EY is inside the meridional section, EX
Indicates an aberration in the sagittal section. WL1, WL2, W
L3 is a curve for wavelengths of 470 nm, 546 nm, and 610 nm, respectively, and plots lateral aberrations on the surface on the small conjugate side (image display element 3) with respect to four types of incident angles of view (incident at infinity). From FIGS. 3 and 4, the numerical examples of the present invention are all well corrected for lateral aberration and chromatic aberration,
It is understood that a high-resolution enlarged virtual image can be formed at a wide angle of view of 0 ° or more.

【0033】<実施の形態3 (接眼映像表示装置)>次
に、上記実施の形態1〜2で述べた接眼光学系を実装し
た接眼映像表示装置の構成について図により説明する。
図5は本発明の実施の形態3である接眼映像表示装置を
示す構成図である。図において、2は実施の形態1,2
にて説明した接眼光学系、3は2次元表示素子、10は
観察者Hの眼球、20は接眼光学系2を実装した接眼光
学装置、30L,30Rは2次元表示素子3と接眼光学
装置20から成る表示ユニット、50は左右の表示ユニ
ット30L,30Rを観察者Hの頭部に固定するための
ベルト機構である。2次元表示素子3は従来例を示す図
6と同様にLCD,ELD,FED,CRT等の小型表
示素子が用いられる。これらのうちLCDを用いる場
合、LCDは自発光でない表示素子ゆえ、例えば蛍光
灯,LED,EL等からなる光源(図示省略)が表示素
子3に組み込まれている。また、ELD,FED,CR
T等の自発光表示素子を2次元表示素子に用いる場合に
は、このような光源の組み込みは不要である。
<Embodiment 3 (Eyepiece Image Display Device)> Next, the configuration of an eyepiece image display device equipped with the eyepiece optical system described in the first and second embodiments will be described with reference to the drawings.
FIG. 5 is a configuration diagram showing an eyepiece image display device according to Embodiment 3 of the present invention. In the figure, reference numeral 2 denotes the first and second embodiments.
3, a two-dimensional display element, 10 an eyeball of an observer H, 20 an eyepiece optical apparatus having the eyepiece optical system 2 mounted thereon, and 30 L and 30 R a two-dimensional display element 3 and an eyepiece optical apparatus 20. Is a belt mechanism for fixing the left and right display units 30L and 30R to the head of the observer H. As the two-dimensional display element 3, a small display element such as an LCD, an ELD, an FED, or a CRT is used as in the conventional example shown in FIG. When an LCD is used among these, since the LCD is a display element that does not emit light, a light source (not shown) including, for example, a fluorescent lamp, an LED, and an EL is incorporated in the display element 3. Also, ELD, FED, CR
When a self-luminous display element such as T is used for a two-dimensional display element, it is not necessary to incorporate such a light source.

【0034】2次元表示素子3の画像形成面に形成され
た原画像は、接眼光学系2により拡大虚像に変換され、
眼球10でこの拡大虚像を鑑賞する。図5の接眼表示装
置は第1の発明の接眼光学系2を実装しているので、1
10°以上の大きな観察画角を提示でき、適切な瞳径と
アイリリーフを備えることで瞳位置の自由度が大きく、
かつ、周辺まで均一で鮮明な観察画像を提示できる。こ
の結果、広画角で臨場感に優れ、かつ鮮明な映像表示が
可能である。
The original image formed on the image forming surface of the two-dimensional display element 3 is converted into an enlarged virtual image by the eyepiece optical system 2,
The magnified virtual image is viewed with the eyeball 10. Since the eyepiece display device of FIG. 5 is equipped with the eyepiece optical system 2 of the first invention, 1
A large viewing angle of view of 10 ° or more can be presented, and by providing an appropriate pupil diameter and eye relief, the degree of freedom of the pupil position is large,
In addition, a uniform and clear observation image can be presented to the periphery. As a result, a clear image can be displayed with a wide angle of view and excellent realism.

【0035】左右各々の目に呈示される画像を100%
重ねあわせても第1の発明による接眼光学系の画角は全
角で110°以上と十分大きい。しかし公知のように水
平方向外側に左右の提示画像をずらして表示すること
で、水平画角を拡大することができる。このために、
(1)画像表示素子3の中心を接眼光学系2の光軸に対し
て水平方向にシフトさせ虚像を水平方向外側に移動させ
る、(2)接眼光学装置20と2次元表示素子3を組み合
わせた表示ユニット(30L,30R)全体を各々水平
面内で傾斜させ虚像形成位置を見かけ上外側方向に移動
させる、等の方法で左右の目に対応する形成画像を左右
方向外側にシフトするのが望ましい。左右の拡大表示画
像を100%重ね合せた状態で双方の2次元表示素子に
同一の画像を表示しても十分表示画像の画角が大きいの
で臨場感のよい結果が得られる。さらに、左右の拡大画
像を100%重ね合せた場合、及び水平方向外側にシフ
トして重ね合せた場合のいずれにおいても、左右の2次
元表示素子に両眼視差画像を表示すれば、立体視の効果
によりさらに臨場感が高まる。
100% of the image presented to each eye
Even when they are superimposed, the angle of view of the eyepiece optical system according to the first invention is sufficiently large at 110 ° or more in all angles. However, by shifting the left and right presentation images outward in the horizontal direction as is well known, the horizontal angle of view can be enlarged. For this,
(1) The center of the image display element 3 is shifted in the horizontal direction with respect to the optical axis of the eyepiece optical system 2 to move the virtual image outward in the horizontal direction. (2) The eyepiece optical device 20 and the two-dimensional display element 3 are combined. It is desirable to shift the formed images corresponding to the left and right eyes outward in the left-right direction by a method of inclining the entire display unit (30L, 30R) in a horizontal plane and moving the virtual image forming position apparently outward. Even if the same image is displayed on both two-dimensional display elements in a state where the left and right enlarged display images are overlapped by 100%, a sufficiently realistic result can be obtained because the display image has a sufficiently large angle of view. Further, in both cases where the left and right enlarged images are superimposed by 100% and horizontally superimposed and superimposed, if the binocular parallax images are displayed on the left and right two-dimensional display elements, stereoscopic vision can be obtained. The effect further enhances the realism.

【0036】なお、接眼光学装置20と2次元表示素子
3は、実際の装置では一体に組み込まれ、さらに装置全
体を観察者Hの頭部に固定するベルト機構50が設けら
れている。しかし表示ユニット30L,30Rを共通の
匡体に収めた覗き込み型の接眼表示装置を構成する場
合、必ずしもベルト機構50は必要でない。また、接眼
光学装置20と2次元表示素子3の光軸方向間隔、及び
表示ユニット30L,30R間の間隔は、観察者Hの目
の特性及び瞳孔間隔に応じて適宜調整する機構(図示省
略)を備えることで、観察者毎に最適の表示特性が提供
できる。さらに、図5では接眼光学装置20と2次元表
示素子3を2組設け両眼で鑑賞する接眼映像表示装置を
示したが、接眼光学装置20と2次元表示素子3を1組
設けた構成により単眼で鑑賞する装置にも変形可能であ
る。
The eyepiece optical device 20 and the two-dimensional display element 3 are integrated into an actual device, and a belt mechanism 50 for fixing the entire device to the head of the observer H is provided. However, the belt mechanism 50 is not always necessary when a viewing type eyepiece display device in which the display units 30L and 30R are housed in a common housing is formed. A mechanism (not shown) for appropriately adjusting the distance between the eyepiece optical device 20 and the two-dimensional display element 3 in the optical axis direction and the distance between the display units 30L and 30R according to the characteristics of the eyes of the observer H and the pupil distance. , The optimum display characteristics can be provided for each observer. Further, FIG. 5 shows an eyepiece image display device in which two sets of the eyepiece optical device 20 and the two-dimensional display element 3 are provided and the image is viewed with both eyes. It can be modified to a device for monocular viewing.

【0037】[0037]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に示すような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0038】本発明に係る接眼光学系は、下記の条件を
同時に満たすものである。 (1) 対角110°以上の大きな画角 (2) 小さいFナンバー(大きな瞳径) (3) 適切なアイリリーフ(観察者の目〜接眼レンズ
第1面間の距離) (4) 良好な収差補正。 この結果、本発明に係る接眼光学系によれば、単眼で1
10°以上の大きな観察画角を提示でき、適切な瞳径と
アイリリーフを備えることで瞳位置の自由度が大きく、
かつ、周辺まで均一で鮮明な観察画像を提示できるよう
収差補正された接眼光学系を実現できる。
The eyepiece optical system according to the present invention satisfies the following conditions at the same time. (1) Large angle of view of 110 ° or more diagonal (2) Small F-number (large pupil diameter) (3) Appropriate eye relief (distance between observer's eye and first surface of eyepiece) (4) Good Aberration correction. As a result, according to the eyepiece optical system according to the present invention, one eye can be used.
A large viewing angle of view of 10 ° or more can be presented, and by providing an appropriate pupil diameter and eye relief, the degree of freedom of the pupil position is large,
In addition, it is possible to realize an eyepiece optical system that is aberration-corrected so that a uniform and clear observation image can be presented to the periphery.

【0039】また、本発明の接眼映像表示装置によれ
ば、上記接眼光学系を接眼レンズとして搭載した広画角
で臨場感に優れ、かつ鮮明な映像表示が可能な小型・軽
量の装置が得られる。
Further, according to the eyepiece image display device of the present invention, a small and lightweight device which has the above-mentioned eyepiece optical system as an eyepiece lens, has a wide angle of view, is excellent in realism, and can display a clear image can be obtained. Can be

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施の形態1である接眼光学系の断
面図である。
FIG. 1 is a sectional view of an eyepiece optical system according to a first embodiment of the present invention.

【図2】 本発明の実施の形態2である接眼光学系の断
面図である。
FIG. 2 is a sectional view of an eyepiece optical system according to a second embodiment of the present invention.

【図3】 本発明の数値実施例1の接眼光学系の横収差
図である。
FIG. 3 is a lateral aberration diagram of the eyepiece optical system according to Numerical Example 1 of the present invention.

【図4】 本発明の数値実施例2の接眼光学系の横収差
図である。
FIG. 4 is a lateral aberration diagram of the eyepiece optical system according to Numerical Example 2 of the present invention.

【図5】 本発明の実施の形態3である接眼映像表示装
置を示す構成図である。
FIG. 5 is a configuration diagram illustrating an eyepiece image display device according to a third embodiment of the present invention.

【図6】 従来の接眼映像表示装置の構成図である。FIG. 6 is a configuration diagram of a conventional eyepiece image display device.

【符号の説明】[Explanation of symbols]

1 入射瞳(観察者の眼球位置)、2 接眼光学系、3
2次元表示素子、10 眼球、20 接眼光学装置、
30L 左表示ユニット、30R右表示ユニット、50
ベルト機構、G1 第1レンズ群、G2 第2レンズ
群。
1 entrance pupil (eyeball position of observer), 2 eyepiece optical system, 3
2D display device, 10 eyeballs, 20 eyepiece optical devices,
30L left display unit, 30R right display unit, 50
Belt mechanism, G1 first lens group, G2 second lens group.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 2次元表示素子上の平面像を眼球に虚像
として拡大投影する機能を有する光学系で、該光学系は
眼球側から順に、眼球側に凹面を向けた正メニスカスレ
ンズL1と中心近傍が眼球側に凸面を向けたメニスカス
形状で軸上屈折力が負の両面非球面レンズL2と中心近
傍が両凸で軸上屈折力が正の両面非球面レンズL3とよ
り構成される正の第1レンズ群G1,中心近傍が両凹で
軸上屈折力が負の両面非球面レンズL4より成る第2レ
ンズ群G2より構成されることを特徴とする接眼光学
系。
1. An optical system having a function of enlarging and projecting a planar image on a two-dimensional display element as a virtual image onto an eyeball, the optical system comprising, in order from the eyeball side, a positive meniscus lens L1 having a concave surface facing the eyeball side and a center. A two-sided aspherical lens L2 having a meniscus shape having a convex surface facing the eyeball side and having a negative axial refractive power and a double-sided aspherical lens L3 having a biaxial convex portion and a positive axial refractive power near the center. An eyepiece optical system comprising: a first lens group G1; and a second lens group G2 including a double-sided aspheric lens L4 having a biconcave portion near the center and a negative on-axis refractive power.
【請求項2】 上記両面非球面レンズL2は両面の周辺
部が眼球側に凹面を向けるように湾曲した形状であるこ
とを特徴とする、請求項1記載の接眼光学系。
2. The eyepiece optical system according to claim 1, wherein the double-sided aspherical lens L2 has a shape in which peripheral portions of both surfaces are curved so as to face a concave surface toward the eyeball side.
【請求項3】 前記G1群,G2群の軸上焦点距離を各
々f13,f4とし、全系の焦点距離をfとした場合、 0.2<f13/f< 0.4 −0.18<f4/f<−0.09 なる条件を満足する請求項1記載の接眼光学系。
3. When the on-axis focal lengths of the groups G1 and G2 are f13 and f4, respectively, and the focal length of the entire system is f, 0.2 <f13 / f <0.4−0.18 < 2. The eyepiece optical system according to claim 1, wherein a condition of f4 / f <-0.09 is satisfied.
【請求項4】 前記G1群,G2群の軸上焦点距離を各
々f13,f4とした場合、 −2.9<f13/f4<−1.7 なる条件を満足する請求項1記載の接眼光学系。
4. The eyepiece optical system according to claim 1, wherein, when the on-axis focal lengths of the G1 group and the G2 group are f13 and f4, respectively, a condition of -2.9 <f13 / f4 <-1.7 is satisfied. system.
【請求項5】 前記レンズL3,L4の軸上焦点距離を
各々f3,f4とした場合、 −2.8<f3/f4<−1.5 なる条件を満足する請求項1記載の接眼光学系。
5. The eyepiece optical system according to claim 1, wherein when the axial focal lengths of the lenses L3 and L4 are f3 and f4, respectively, the following condition is satisfied: -2.8 <f3 / f4 <-1.5. .
【請求項6】 前記G1群のレンズL1,L2,L3を
構成する硝材のアッベ数の平均値をν13、及びG2群
のレンズL4を構成する硝材のアッベ数をν4とした場
合、 ν13> 40 ν4< 30 を満足することを特徴とする請求項1記載の接眼光学
系。
6. When the average value of Abbe numbers of glass materials forming the lenses L1, L2, and L3 of the G1 group is ν13 and the Abbe number of glass materials forming the lens L4 of the G2 group is ν4, ν13> 40. 2. The eyepiece optical system according to claim 1, wherein ν4 <30 is satisfied.
【請求項7】 前記レンズL3,L4を構成する硝材の
アッベ数を各々ν3,ν4とした場合、 ν3> 35 ν4< 30 を満足することを特徴とする請求項1記載の接眼光学
系。
7. The eyepiece optical system according to claim 1, wherein when the Abbe numbers of the glass materials forming the lenses L3 and L4 are respectively ν3 and ν4, ν3> 35 ν4 <30 is satisfied.
【請求項8】 原画像を表示する1個もしくは2個の2
次元表示素子と、該2次元表示素子上の平面像の各々を
眼球に虚像として拡大投影する前記2次元表示素子と同
個数の接眼光学系とからなり、該接眼光学系は眼球側か
ら順に、眼球側に凹面を向けた正メニスカスレンズL1
と中心近傍が眼球側に凸面を向けたメニスカス形状で軸
上屈折力が負の両面非球面レンズL2と中心近傍が両凸
で軸上屈折力が正の両面非球面レンズL3とより構成さ
れる正の第1レンズ群G1,中心近傍が両凹で軸上屈折
力が負の両面非球面レンズL4より成る第2レンズ群G
2より構成されることを特徴とする接眼映像表示装置。
8. One or two of two images for displaying an original image
A two-dimensional display element, and the same number of eyepiece optical systems as the two-dimensional display element for enlarging and projecting each of the planar images on the two-dimensional display element as a virtual image on the eyeball, the eyepiece optical systems in order from the eyeball side, Positive meniscus lens L1 with concave surface facing eyeball
A two-sided aspherical lens L2 having a negative meniscus shape with a negative axial refractive power near the center and a convex surface facing the eyeball side, and a double-sided aspherical lens L3 having a biaxial convex near the center and a positive axial refractive power. A first positive lens group G1 and a second lens group G composed of a double-sided aspheric lens L4 having a biconcave portion near the center and a negative on-axis refractive power.
2. An eyepiece image display device comprising:
JP17577297A 1997-03-10 1997-07-01 Eyepiece optical system and eyepiece image display device Expired - Fee Related JP3617257B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17577297A JP3617257B2 (en) 1997-07-01 1997-07-01 Eyepiece optical system and eyepiece image display device
US09/033,482 US5986816A (en) 1997-03-10 1998-03-03 Eyepiece optical system and eyepiece image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17577297A JP3617257B2 (en) 1997-07-01 1997-07-01 Eyepiece optical system and eyepiece image display device

Publications (2)

Publication Number Publication Date
JPH1123984A true JPH1123984A (en) 1999-01-29
JP3617257B2 JP3617257B2 (en) 2005-02-02

Family

ID=16002000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17577297A Expired - Fee Related JP3617257B2 (en) 1997-03-10 1997-07-01 Eyepiece optical system and eyepiece image display device

Country Status (1)

Country Link
JP (1) JP3617257B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259477A (en) * 2005-03-18 2006-09-28 Olympus Corp Ocular optical system and relay finder optical system
WO2013027855A1 (en) 2011-08-25 2013-02-28 リコー光学株式会社 Eyepiece lens system and image observation device
KR101421199B1 (en) * 2013-03-12 2014-07-22 주식회사 세코닉스 Lens system for head mounted display
JPWO2016063600A1 (en) * 2014-10-20 2017-09-07 株式会社クリュートメディカルシステムズ Visual inspection device and head-mounted display device
WO2020026749A1 (en) * 2018-07-31 2020-02-06 ソニー株式会社 Display device
JP2020024363A (en) * 2018-07-31 2020-02-13 ソニー株式会社 Display device
CN112630974A (en) * 2020-12-31 2021-04-09 深圳纳德光学有限公司 Large-field-angle eyepiece optical system and head-mounted display device
CN112666711A (en) * 2020-12-31 2021-04-16 深圳纳德光学有限公司 Diopter-adjustable eyepiece optical system and head-mounted display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101388980B1 (en) * 2012-08-21 2014-04-24 주식회사 도담시스템스 Head mounted display apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259477A (en) * 2005-03-18 2006-09-28 Olympus Corp Ocular optical system and relay finder optical system
WO2013027855A1 (en) 2011-08-25 2013-02-28 リコー光学株式会社 Eyepiece lens system and image observation device
US9323040B2 (en) 2011-08-25 2016-04-26 Ricoh Industrial Solutions Inc. Eyepiece lens system and image observation device
KR101421199B1 (en) * 2013-03-12 2014-07-22 주식회사 세코닉스 Lens system for head mounted display
US10111585B2 (en) 2014-10-20 2018-10-30 Crewt Medical Systems, Inc. Vision testing device and head mount type display device
EP3210525A4 (en) * 2014-10-20 2018-07-25 Crewt Medical Systems Inc. Vision examination device and head-mounted display device
JPWO2016063600A1 (en) * 2014-10-20 2017-09-07 株式会社クリュートメディカルシステムズ Visual inspection device and head-mounted display device
WO2020026749A1 (en) * 2018-07-31 2020-02-06 ソニー株式会社 Display device
JP2020024363A (en) * 2018-07-31 2020-02-13 ソニー株式会社 Display device
US11467410B2 (en) 2018-07-31 2022-10-11 Sony Corporation Display apparatus with non-overlap image region
CN112630974A (en) * 2020-12-31 2021-04-09 深圳纳德光学有限公司 Large-field-angle eyepiece optical system and head-mounted display device
CN112666711A (en) * 2020-12-31 2021-04-16 深圳纳德光学有限公司 Diopter-adjustable eyepiece optical system and head-mounted display device
CN112666711B (en) * 2020-12-31 2024-05-28 深圳纳德光学有限公司 Diopter-adjustable eyepiece optical system and head-mounted display device

Also Published As

Publication number Publication date
JP3617257B2 (en) 2005-02-02

Similar Documents

Publication Publication Date Title
JP3387338B2 (en) Eyepiece optical system and eyepiece image display device
JP3537230B2 (en) Eyepiece optical system and image display device using the same
JP3599828B2 (en) Optical device
US5677797A (en) Method for correcting field curvature
US5995291A (en) Optical system and optical device comprising diffractive optical element
JP3155360B2 (en) Visual display device
US20160363758A1 (en) Observation optical system, and image displaying apparatus having the same
JPH06324285A (en) Visual display device
JP2006519421A (en) Diffractive lens
WO1996018126A1 (en) Head-mount display and optical system used for the same
US11327274B2 (en) Observation optical system and observation apparatus including the same
WO2017022670A1 (en) Eyepiece optical system and electronic viewfinder
US6985302B2 (en) Projection zoom lens and optical projector provided with the same
US5986816A (en) Eyepiece optical system and eyepiece image display device
US6480338B1 (en) Eyepiece optical system and image display apparatus
JP3617257B2 (en) Eyepiece optical system and eyepiece image display device
JPH0990270A (en) Head-or face-mounted type picture display device
JP3647185B2 (en) Eyepiece optical system and eyepiece image display device
KR100926324B1 (en) Eyepiece lens system for binocular
JP3304497B2 (en) Eyepiece for visual display
JPH06250113A (en) Head mounted display device
JP3262889B2 (en) Visual display device
JP4757990B2 (en) Projection lens
EP0611976B1 (en) Keplerian zoom finder optical system
JPH11133315A (en) Eyepiece and virtual image presenting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040402

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

LAPS Cancellation because of no payment of annual fees