JPH1123840A - Double refractive plate - Google Patents

Double refractive plate

Info

Publication number
JPH1123840A
JPH1123840A JP9174909A JP17490997A JPH1123840A JP H1123840 A JPH1123840 A JP H1123840A JP 9174909 A JP9174909 A JP 9174909A JP 17490997 A JP17490997 A JP 17490997A JP H1123840 A JPH1123840 A JP H1123840A
Authority
JP
Japan
Prior art keywords
vapor deposition
dielectric material
double refractive
wavelength
birefringent plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9174909A
Other languages
Japanese (ja)
Inventor
Kenzo Maejima
研三 前島
Hisashi Ito
寿 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP9174909A priority Critical patent/JPH1123840A/en
Publication of JPH1123840A publication Critical patent/JPH1123840A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polarising Elements (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a double refractive plate which efficiently functions in a wide band by specifying the relation between the phase differences of respective layers and intersecting respective delay phase axes orthogonally with each other. SOLUTION: The relation of the phase differences R of the respective layers of the double refractive plate formed by laminating dielectric materials A, B varying in the relation of the wavelength dispersion values α (α=Δn(450 nm) /Δ(650 nm) ) of a double refractive Δn is RA<RB and the respective delay phase axes thereof intersect orthogonally with each other. The double refractive plate is obtd. by depositing tantalum pentaoxide (Ta2 O5 ) which is a material to be deposited by evaporation as a lower layer 22 at a vapor deposition angle 70 deg., then changing the incident surface of vapor deposition particles by 90 deg. at the normal of the substrate, depositing lanthanum fluoride (LaF3 ) which is the material to be deposited by evaporation and film forming this material as an upper layer 21 similarly at 70 deg. of the vapor deposition angle. The dielectric materials which are materials transparent to visible light suffice. CeO2 , WO3 , Bi2 O3 , SnO2 , ZnS, NdS, NdF3 , etc., are usable in addition thereto.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、円偏光、直線偏
光、楕円偏光を必要とする光学機器及び、光学素子に適
用されるものであり、広帯域で効率的に機能する複屈折
板を提供するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is applied to optical devices and optical elements that require circularly polarized light, linearly polarized light, and elliptically polarized light, and provides a birefringent plate that functions efficiently over a wide band. Things.

【0002】[0002]

【従来の技術】従来の複屈折板のほとんどは、無機光学
単結晶、あるいは高分子延伸フィルムにより作られてい
る。しかし、無機光学単結晶は波長板として、性能、耐
久性、信頼性に優れるものの、原材料費、加工コストが
高い。
2. Description of the Related Art Most conventional birefringent plates are made of an inorganic optical single crystal or a stretched polymer film. However, although the inorganic optical single crystal is excellent in performance, durability, and reliability as a wave plate, the raw material cost and the processing cost are high.

【0003】また高分子延伸フィルムは、熱やUV光線
に対して劣化しやすく耐久性に問題があるという欠点を
有している。
[0003] Further, the stretched polymer film has a drawback that it is easily deteriorated by heat and UV rays and has a problem in durability.

【0004】一方、斜め柱状構造をもつ斜方蒸着膜(斜
方蒸着波長板)は、原理的に膜厚を調整することによっ
て任意の位相差を設定でき、大面積化が比較的容易であ
ると共に、大量生産により低コスト化の可能性がある。
On the other hand, an obliquely deposited film (obliquely deposited wave plate) having an oblique columnar structure can set an arbitrary phase difference by adjusting the film thickness in principle, and it is relatively easy to increase the area. At the same time, there is a possibility of cost reduction by mass production.

【0005】しかしながら、従来の単一材料を用いた斜
方蒸着では、位相差の波長分散特性により、波長板とし
てはある特定波長に対してのみ機能するものであった。
However, in the conventional oblique deposition using a single material, the wavelength plate functions only for a specific wavelength due to the wavelength dispersion characteristic of the phase difference.

【0006】[0006]

【発明が解決しようとする課題】前述したように従来の
単一材料で構成された斜方蒸着膜は、位相差の波長分散
特性が可視光域において入射光波長が長波長になるに連
れて概ね単調減少の曲線となるため、ある特定の単一波
長に対してのみ波長板として機能していた。
As described above, in the conventional obliquely deposited film made of a single material, the wavelength dispersion characteristic of the phase difference increases as the incident light wavelength becomes longer in the visible light region. Since the curve was almost monotonically decreasing, it functioned as a wave plate only for a specific single wavelength.

【0007】これを改善するために本発明は、斜方蒸着
により発現、機能する複屈折膜を複数種類蒸着すること
によって複屈折板を形成し、位相差の加成性を利用する
ことにより、広帯域で効率的に機能する複屈折板を提供
するものである。
In order to improve this, the present invention provides a birefringent plate formed by depositing a plurality of types of birefringent films exhibiting and functioning by oblique deposition, and utilizing the additive property of a phase difference. An object of the present invention is to provide a birefringent plate that functions efficiently in a wide band.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、複屈折率Δnの波長分散値α(α=Δn(450nm)
Δn(650nm))の関係が異なる誘電体材料を用い、αA
αBである誘電体材料A及びBを積層した複屈折板にお
いて、各層の位相差Rの関係がRA<RBであり、各遅相
軸が直交していることを特徴とする。
In order to achieve the above object, the wavelength dispersion value of the birefringence .DELTA.n (.alpha. =. DELTA.n (450 nm) /
Δn (650 nm) ) using dielectric materials having different relationships, α A >
In a birefringent plate obtained by laminating dielectric materials A and B each having α B , the relation of the retardation R of each layer is R A <R B , and the slow axes are orthogonal to each other.

【0009】また該複屈折板は、固体基板に誘電体材料
を該基板面法線に対して斜め方向から蒸着して形成した
斜方蒸着膜からなる複屈折板であって、前記蒸着膜は少
なくとも2層から成ることを特徴とする複屈折板であ
り、その作製方法において、各層の誘電体材料の基板に
対する蒸着方向を直交させて積層することを特徴とす
る。
Further, the birefringent plate is a birefringent plate comprising an obliquely deposited film formed by depositing a dielectric material on a solid substrate in a direction oblique to the normal to the substrate surface. A birefringent plate comprising at least two layers, and in a method for manufacturing the birefringent plate, the layers are stacked so that a direction of vapor deposition of a dielectric material on a substrate is orthogonal to the layer.

【0010】また蒸着に用いられる材料としては、誘電
体材料が金属酸化物、金属フッ化物及び金属硫化物のう
ち少なくとも1つを用いることを特徴とする。
Further, as a material used for vapor deposition, the dielectric material is characterized by using at least one of a metal oxide, a metal fluoride and a metal sulfide.

【0011】更に該固体基板上に誘電体材料を介しての
表面に反射防止膜が形成されていると良い。
Further, it is preferable that an anti-reflection film is formed on the surface of the solid substrate via a dielectric material.

【0012】[0012]

【発明の実施の形態】前記斜方蒸着によって形成される
複屈折板は、基板に対して斜め方向から粒子を蒸着する
ことによって斜め柱状構造膜を形成し、その基板に垂直
に入射する光線に対して複屈折性を有するものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The birefringent plate formed by the oblique vapor deposition forms an oblique columnar structure film by vapor-depositing particles from an oblique direction with respect to a substrate, and is provided for a light beam which is perpendicularly incident on the substrate. On the other hand, it has birefringence.

【0013】斜方蒸着では、蒸着の初期段階においてよ
く知られているような核形成がなされるが、核が成長し
ある程度の高さをもつようになると、図4のように斜め
方向から蒸着物質が飛来してくるために、蒸着物質の入
射方向から見て核の後ろ側に、蒸着物質が直接付着でき
ない陰ができる。これは一般にセルフ・シャドーイング
効果と呼ばれ(文献:薄膜作製応用ハンドブック参照:
株式会社エヌ・ティー・エス発行:1995年)、斜方
蒸着膜が特異な形態を示す主要因の一つである。
In oblique deposition, nucleation is formed in a well-known manner in the initial stage of deposition. However, when the nucleus grows and has a certain height, the deposition is performed from an oblique direction as shown in FIG. Since the material comes flying, behind the nucleus when viewed from the incident direction of the deposition material, there is a shadow to which the deposition material cannot directly adhere. This is generally called the self-shadowing effect (refer to the literature: Handbook for Thin Film Fabrication Application:
(NTS Co., Ltd., published in 1995), and the oblique deposition film is one of the main factors showing a unique form.

【0014】このセルフ・シャドーイング効果によって
基板面法線から測って蒸着角θより小さい角度αで傾斜
した柱状組織が成長する。この柱状組織は粒子の入射面
と平行な方向に粗く、垂直な方向に密に分布しているた
め、前者方向で屈折率が最小、後者方向で屈折率が最大
となり、蒸着粒子の入射方向から見て光学的異方性媒質
を形成している。これにより基板面法線方向から入射す
る光線に対しても、屈折率楕円体の断面は楕円体となり
複屈折が生じる。
By this self-shadowing effect, a columnar structure inclined at an angle α smaller than the deposition angle θ as measured from the normal to the substrate surface grows. Since this columnar structure is coarse in the direction parallel to the incident surface of the particles and densely distributed in the perpendicular direction, the refractive index is the smallest in the former direction, the refractive index is the largest in the latter direction, and from the incident direction of the deposited particles. Seemingly, it forms an optically anisotropic medium. As a result, the cross section of the refractive index ellipsoid becomes an ellipsoid even for a light ray incident from the normal direction of the substrate surface, and birefringence occurs.

【0015】更に位相差の波長分散特性の異なる材料を
用い、該複屈折膜の遅相軸が基板表面で直交するように
斜方蒸着膜を形成し、多層構造に積層する。ここで遅相
軸は、該複屈折媒体の光学軸つまり該基板に対する蒸着
方向と一致するため、該基板表面で蒸着方向を直交させ
れば良く、つまり図3において蒸発源31で所望の膜厚
を形成した後、続いて蒸発源34から異なる材料を同様
に所望の膜厚を形成すればよい。
Further, an oblique deposition film is formed by using materials having different wavelength dispersion characteristics of the phase difference so that the slow axis of the birefringent film is orthogonal to the substrate surface, and is laminated in a multilayer structure. Here, since the slow axis coincides with the optical axis of the birefringent medium, that is, the direction of vapor deposition on the substrate, the direction of vapor deposition may be made orthogonal to the surface of the substrate. That is, in FIG. Then, a different material from the evaporation source 34 may be similarly formed to a desired film thickness.

【0016】これにより、蒸着材料の異なる複屈折膜の
位相差の加成性を利用することにより、該複屈折膜の波
長分散特性を改善し、広帯域波長板を実現することが可
能となる。
Thus, by utilizing the additivity of the phase difference between the birefringent films of different vapor deposition materials, the wavelength dispersion characteristics of the birefringent films can be improved, and a broadband wave plate can be realized.

【0017】尚、各蒸着膜の膜厚、蒸着角(基板表面に
対する法線と蒸着粒子の飛来する方向)は、該蒸着膜に
要求される位相差により異なり、所望の波長板として機
能するように最適化する必要がある。
The thickness and the deposition angle (the normal to the substrate surface and the direction in which the deposited particles fly) of each deposited film differ depending on the phase difference required for the deposited film, and may function as a desired wavelength plate. Need to be optimized.

【0018】[0018]

【実施例】以下、具体的な実施例により本発明を説明す
る。図1は、本発明に用いられる蒸着装置の一例を示す
真空蒸着装置の側面図である。
The present invention will be described below with reference to specific examples. FIG. 1 is a side view of a vacuum evaporation apparatus showing an example of an evaporation apparatus used in the present invention.

【0019】図1に示す真空蒸着装置について説明する
と、この真空蒸着装置は図示していない排気ポンプによ
り内部を真空に排気されるベルジャー16と、各種蒸着
材料を蒸発させるための蒸発源15と、その上部に設け
られた基板ホルダー12等から構成されている。尚、蒸
発源15に関しては、その種類を問わず抵抗加熱や、電
子ビーム、レーザービーム等を用いて局部的に加熱する
ものを用いてもかまわない。
The vacuum evaporation apparatus shown in FIG. 1 will be described. The vacuum evaporation apparatus has a bell jar 16 whose inside is evacuated by an exhaust pump (not shown), an evaporation source 15 for evaporating various evaporation materials, and It is composed of a substrate holder 12 and the like provided on the upper part. Regarding the evaporation source 15, any type may be used, regardless of its type, such as resistance heating, heating locally using an electron beam, a laser beam, or the like.

【0020】また、ベルジャー16の内部は、排気孔1
4を介して図示していない排気ポンプと連結されてお
り、排気ポンプによって10-6Torrオーダーまで排気で
きるようになっている。
The inside of the bell jar 16 is provided with the exhaust hole 1.
The pump 4 is connected to an exhaust pump (not shown) through the pump 4 so that the exhaust pump can exhaust air to the order of 10 -6 Torr.

【0021】図1に示す装置を用い、固体基板11に、
蒸着材料である五酸化タンタル(Ta25)を、蒸着角
70゜で下層22として成膜した後、図2に示すように
蒸着粒子の入射面を基板法線において90゜変えて蒸着
材料フッ化ランタン(LaF3)蒸着し、その際の蒸着
角を同様に70゜で上層21として成膜して図2に示す
複屈折板を得た。
Using the apparatus shown in FIG. 1, a solid substrate 11 is
After depositing tantalum pentoxide (Ta 2 O 5 ) as a deposition material at a deposition angle of 70 ° as the lower layer 22, as shown in FIG. Lanthanum fluoride (LaF 3 ) was vapor-deposited, and the vapor deposition angle at that time was similarly set to 70 ° to form a film as the upper layer 21 to obtain the birefringent plate shown in FIG.

【0022】以下に示す実施例では、誘電体材料として
五酸化タンタル(Ta25)とフッ化ランタン(LaF
3)を用いたが、これらは可視光に対して透明な材料で
あればよく、その他にCeO2、WO3、Bi23、Sn
2、ZnS、NdF3等を用いることができるが、各蒸
着膜の位相差の波長分散特性を考慮した上で、位相差の
加成性を利用し最適化可能な誘電体材料を選ばなければ
ならない。
In the following embodiments, tantalum pentoxide (Ta 2 O 5 ) and lanthanum fluoride (LaF) are used as dielectric materials.
Although 3 ) was used, these may be any material that is transparent to visible light, and may be CeO 2 , WO 3 , Bi 2 O 3 , Sn
O 2 , ZnS, NdF 3, etc. can be used. However, in consideration of the wavelength dispersion characteristics of the phase difference of each vapor-deposited film, a dielectric material that can be optimized by using the additivity of the phase difference must be selected. Must.

【0023】また、蒸着膜は多層構造にしても良いが、
各層において柱状組織が十分成長していること、更に位
相差の波長分散特性が適切となるよう各層の膜厚を最適
化する必要がある。
The deposited film may have a multilayer structure.
It is necessary to optimize the thickness of each layer so that the columnar structure is sufficiently grown in each layer and the wavelength dispersion characteristics of the retardation are appropriate.

【0024】以下具体的な実施例を説明する。尚本実施
例では、その製造方法の一例について述べるがこれに限
るものではない。 (実施例1)図1において、固体基板11にガラス基板
を用い、該ガラス基板に対して蒸着粒子が傾き角θ=7
0゜で入射するように設定した。蒸着材料にはTa25
(五酸化タンタル)を用いた。蒸着材料Ta25のαA
=Δn(450nm)/Δn(650nm)は、1.18であった。蒸
発物質Ta25を抵抗加熱用ボートに電流を流すことに
よって加熱して蒸発させ、五酸化タンタルの薄膜を入射
光波長λ=550nmでの位相差RA(550nm)=1
37.5nmになるように、膜厚1.7μm形成した。
A specific embodiment will be described below. In this embodiment, an example of the manufacturing method will be described, but the present invention is not limited to this. (Example 1) In FIG. 1, a glass substrate was used as the solid substrate 11, and the deposition particles had an inclination angle θ = 7 with respect to the glass substrate.
It was set to enter at 0 °. Ta 2 O 5
(Tantalum pentoxide) was used. Α A of evaporation material Ta 2 O 5
= Δn (450 nm) / Δn (650 nm) was 1.18. The evaporating substance Ta 2 O 5 is heated and evaporated by passing a current through a resistance heating boat, and the thin film of tantalum pentoxide is converted into a phase difference RA (550 nm) = 1 at an incident light wavelength λ = 550 nm.
A film having a thickness of 1.7 μm was formed to have a thickness of 37.5 nm.

【0025】次に、該ガラス基板を蒸着粒子の入射面が
基板面において、前記入射面に垂直になるように設置し
(図3参照)、傾き角θ=70度に設定した。蒸着材料
にLaF3(フッ化ランタン)を入れ、同様に抵抗加熱
用ボートによって加熱して蒸発させ、フッ化ランタンの
薄膜を入射光波長λ=550nmでの位相差RB(550nm)
275nmになるように、4.0μm積層した。蒸着材
料LaF3のαB=Δn(450nm)/Δn(650nm)は、1.0
4であった。さらに該蒸着膜の上に、MgF2を約0.
17μm形成し、反射防止膜とした。
Next, the glass substrate was set so that the incident surface of the vapor deposition particles was perpendicular to the incident surface on the substrate surface (see FIG. 3), and the inclination angle θ was set to 70 °. LaF 3 (lanthanum fluoride) is put into the vapor deposition material, similarly heated and evaporated by a resistance heating boat, and a thin film of lanthanum fluoride is converted into a phase difference R B (550 nm) at an incident light wavelength λ = 550 nm =
The film was laminated to a thickness of 4.0 μm so that the thickness became 275 nm. Α B = Δn (450 nm) / Δn (650 nm) of the vapor deposition material LaF 3 is 1.0
It was 4. Further, MgF 2 was added to the vapor-deposited film in a thickness of about 0.1 μm.
17 μm was formed to form an antireflection film.

【0026】(比較例1)実施例1と同様にして、固体
基板11にガラス基板を用い、該ガラス基板に対して蒸
着粒子が傾き角θ=70゜で入射するように設定し、蒸
発物質Ta25を抵抗加熱用ボートに電流を流すことに
よって加熱して蒸発させ、五酸化タンタルの薄膜を入射
光波長λ=550nmでの位相差RA(550nm)=137.5
nmになるように膜厚1.7μm形成することにより、
Ta25を単一材料として用い、斜方蒸着膜1層のみか
らなるλ/4波長板を得た。
(Comparative Example 1) In the same manner as in Example 1, a glass substrate was used as the solid substrate 11, and the evaporation particles were set so as to enter the glass substrate at an inclination angle θ = 70 °. Ta 2 O 5 is heated and evaporated by passing an electric current through a resistance heating boat, and a thin film of tantalum pentoxide is converted into a phase difference R A (550 nm) at an incident light wavelength λ = 550 nm of 137.5.
By forming a film having a thickness of 1.7 μm to be
Using Ta 2 O 5 as a single material, a λ / 4 wavelength plate consisting of only one obliquely deposited film was obtained.

【0027】実施例1と比較例1で得られたλ/4波長
板の波長分散特性を図5及び図6に示す。
FIGS. 5 and 6 show the wavelength dispersion characteristics of the λ / 4 wavelength plates obtained in Example 1 and Comparative Example 1. FIG.

【0028】(実施例1の効果)図6において、理想的
な広帯域λ/4波長板として機能するためには、各波長
に対してΔnd/λが0.25となれば良い。ここで本
実施例と比較例を比べると、青色の波長(λ=480n
m)において、0.31→0.28となり約50%、ま
た赤色の波長(λ=656nm)においては、0.20
→0.21となり約20%それぞれ改善され、広帯域で
機能性に優れたλ/4波長板として提供することができ
る。
(Effect of Embodiment 1) In FIG. 6, Δnd / λ should be 0.25 for each wavelength in order to function as an ideal broadband λ / 4 wavelength plate. Here, when comparing the present example with the comparative example, the blue wavelength (λ = 480 n
m) is 0.31 → 0.28, which is about 50%, and 0.20 at the red wavelength (λ = 656 nm).
→ 0.21, which is improved by about 20%, and can be provided as a λ / 4 wavelength plate excellent in functionality over a wide band.

【0029】(実施例2)図1において、蒸着材料にT
25を入れ同様に斜方蒸着を行い、ガラス基板上に、
入射光波長λ=550nmでの位相差RA(550nm)=68.
8nmになるように、厚さ0.85μmのTa25薄膜
を形成し、同様に該ガラス基板を蒸着粒子の入射面が基
板面において、前記入射面に垂直になるように設置し
(図3参照)斜方蒸着行い、厚さ2.0μmのLaF3
蒸着膜を積層した。更に前期同様MgF2を、入射光波
長λ=550nmでの位相差RA(550nm)=137.5nm
になるように、約0.17μm形成し反射防止膜を形成
した。
(Example 2) In FIG.
a 2 O 5 was added and oblique vapor deposition was performed in the same manner.
Phase difference R A (550 nm) at incident light wavelength λ = 550 nm = 68.
A Ta 2 O 5 thin film having a thickness of 0.85 μm is formed so as to have a thickness of 8 nm, and the glass substrate is similarly placed such that the incident surface of the vapor deposition particles is perpendicular to the incident surface on the substrate surface (see FIG. 3) LaF 3 with 2.0 μm thickness by oblique deposition
A deposited film was laminated. Further, as in the previous case, MgF 2 was replaced with a phase difference RA (550 nm) of 137.5 nm at an incident light wavelength λ = 550 nm.
Was formed to a thickness of about 0.17 μm to form an antireflection film.

【0030】(比較例2)実施例2と同様にして、蒸着
材料にTa25を入れ同様に斜方蒸着を行い、ガラス基
板上に、入射光波長λ=550nmでの位相差RA(550nm)
=68.8nmになるように、厚さ0.85μmのTa
25薄膜を形成することにより、Ta25を単一材料と
して用い、斜方蒸着膜1層のみからなるλ/8波長板を
得た。
(Comparative Example 2) In the same manner as in Example 2, Ta 2 O 5 was added to the vapor deposition material and oblique vapor deposition was performed in the same manner, and a phase difference RA at an incident light wavelength λ = 550 nm was formed on a glass substrate. (550nm)
= 0.85 μm of Ta so that = 68.8 nm
By forming a 2 O 5 thin film, a λ / 8 wavelength plate consisting of only one obliquely deposited film was obtained using Ta 2 O 5 as a single material.

【0031】実施例2と比較例2で得られたλ/8波長
板の波長分散特性を図7及び図8に示す。
FIGS. 7 and 8 show the wavelength dispersion characteristics of the λ / 8 wave plate obtained in Example 2 and Comparative Example 2. FIG.

【0032】(実施例2の効果)図8において、理想的
な広帯域λ/8波長板として機能するためには、各波長
に対してΔnd/λが0.125となれば良い。ここで
本実施例と比較例を比べると、青色の波長(λ=480
nm)において、0.153→0.138となり約50
%、また赤色の波長(λ=656nm)においては、
0.100→0.107となり約30%それぞれ改善さ
れ、広帯域で機能性に優れたλ/8波長板として提供す
ることができる。
(Effect of Embodiment 2) In FIG. 8, in order to function as an ideal broadband λ / 8 wavelength plate, Δnd / λ should be 0.125 for each wavelength. Here, when the present embodiment and the comparative example are compared, the blue wavelength (λ = 480)
nm), it becomes 0.153 → 0.138, which is about 50
%, And at the red wavelength (λ = 656 nm),
0.100 → 0.107, which is improved by about 30%, and can be provided as a λ / 8 wavelength plate having excellent functionality over a wide band.

【0033】[0033]

【発明の効果】以上、要するに本発明は、位相差の波長
分散特性が異なる誘電体材料を用いた斜方蒸着膜を利用
する複屈折板であって、少なくとも2層から構成され、
各遅相軸が直交し積層構造を形成したものである。
As described above, the present invention is basically a birefringent plate using an obliquely deposited film using a dielectric material having a different wavelength dispersion characteristic of retardation, and is composed of at least two layers.
Each of the slow axes is orthogonal to form a laminated structure.

【0034】実施例に詳述したように、本発明の複屈折
板を用いた波長板は、従来の機能を維持しながらも、単
一波長に対する波長板としての機能だけでなく、広帯域
においても効率的に機能するよう改善されたものであ
る。
As described in detail in the embodiments, the wave plate using the birefringent plate of the present invention not only functions as a wave plate for a single wavelength but also in a wide band while maintaining the conventional function. It has been improved to work efficiently.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の複屈折板製造方法を実施するための
真空蒸着装置の1例を示す側面図である。
FIG. 1 is a side view showing one example of a vacuum evaporation apparatus for carrying out a method for producing a birefringent plate of the present invention.

【図2】 本発明の複屈折板の積層構造を示す図であ
る。
FIG. 2 is a diagram showing a laminated structure of a birefringent plate of the present invention.

【図3】 本発明の蒸着角θと基板の位置関係を示す図
である。
FIG. 3 is a diagram showing a positional relationship between a deposition angle θ and a substrate according to the present invention.

【図4】 本発明の蒸着角θと柱状構造の傾斜角αの関
係を示す図である。
FIG. 4 is a diagram showing a relationship between a deposition angle θ and an inclination angle α of a columnar structure according to the present invention.

【図5】 本発明の実施例1の波長板の波長分散特性を
示す図である。
FIG. 5 is a diagram illustrating wavelength dispersion characteristics of the wave plate according to the first embodiment of the present invention.

【図6】 同実施例の波長板の機能性の波長分散特性を
示す図である。
FIG. 6 is a diagram showing wavelength dispersion characteristics of the functionality of the wave plate of the example.

【図7】 本発明の実施例2の波長板の波長分散特性を
示す図である。
FIG. 7 is a diagram illustrating a wavelength dispersion characteristic of a wave plate according to a second embodiment of the present invention.

【図8】 同実施例の波長板の機能性の波長分散特性を
示す図である。
FIG. 8 is a diagram showing the wavelength dispersion characteristics of the functionality of the wave plate of the example.

【符号の説明】[Explanation of symbols]

11 ・・・固体基板 12 ・・・基板ホルダー 13 ・・・加熱用電源 14 ・・・排気孔 15 ・・・蒸発源 16 ・・・ベルジャー 17 ・・・蒸着材料 18 ・・・蒸発粒子 21 ・・・上層蒸着膜 22 ・・・下層蒸着膜 23 ・・・固体基板 24 ・・・上層蒸着膜の遅相軸 25 ・・・下層蒸着膜の遅相軸 26 ・・・基板面法線 31 ・・・蒸発源 32 ・・・固体基板 33 ・・・斜方蒸着膜 34 ・・・蒸発源 41 ・・・固体基板 42 ・・・入射角θ 43 ・・・柱状組織の傾斜角α 44 ・・・蒸着物質の入射方向 45 ・・・柱状組織の傾斜方向 46 ・・・基板面法線 47 ・・・斜方蒸着膜 DESCRIPTION OF SYMBOLS 11 ... Solid substrate 12 ... Substrate holder 13 ... Heating power supply 14 ... Exhaust hole 15 ... Evaporation source 16 ... Bell jar 17 ... Evaporation material 18 ... Evaporated particles 21 ··· Upper layer deposited film 22 ··· Lower layer deposited film 23 ··· Solid substrate 24 ··· Slow axis of upper layer deposited film 25 ··· Slow axis of lower layer deposited film 26 ··· Normal to substrate surface 31 ··· ..Evaporation source 32: solid substrate 33: obliquely deposited film 34: evaporation source 41: solid substrate 42: incident angle θ 43: inclination angle α of columnar structure 44・ Injection direction of deposition material 45 ・ ・ ・ Inclination direction of columnar structure 46 ・ ・ ・ Substrate surface normal 47 ・ ・ ・ Oblique deposition film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複屈折率Δnの波長分散値α(α=Δn
(450nm)/Δn(650nm))の関係が、αA>αBである誘電
体材料A及びBを固体基板上に積層した複屈折板におい
て、各層の位相差Rの関係がRA<RBであり、各遅相軸
が直交していることを特徴とする複屈折板。
1. A wavelength dispersion value α (α = Δn) of a birefringence index Δn.
(450 nm) / Δn (650 nm) ) In a birefringent plate in which dielectric materials A and B satisfying α A > α B are laminated on a solid substrate, the relationship of the phase difference R of each layer is R A <R. B. A birefringent plate, wherein each slow axis is orthogonal.
【請求項2】 誘電体材料が該固体基板面法線に対して
斜め方向から蒸着して形成した斜方蒸着膜からなる誘電
体材料である請求項1記載の複屈折板。
2. The birefringent plate according to claim 1, wherein the dielectric material is a dielectric material comprising an obliquely deposited film formed by being deposited obliquely with respect to the normal to the solid substrate surface.
【請求項3】 誘電体材料が金属酸化物、金属フッ化物
及び金属硫化物のうち少なくとも1つからなる誘電体材
料である請求項1又は2記載の複屈折板。
3. The birefringent plate according to claim 1, wherein the dielectric material is a dielectric material comprising at least one of a metal oxide, a metal fluoride, and a metal sulfide.
【請求項4】 固体基板上に誘電体材料を介して、反射
防止膜が形成されていることを特徴とする、請求項1記
載の複屈折板。
4. The birefringent plate according to claim 1, wherein an antireflection film is formed on the solid substrate via a dielectric material.
【請求項5】 少なくとも2層の誘電体材料から成る複
屈折板の作製方法において、各層の誘電体材料の基板に
対する蒸着方向を直交させて作製することを特徴とする
複屈折板の作製方法。
5. A method for producing a birefringent plate comprising at least two layers of a dielectric material, wherein the method comprises producing the dielectric material of each layer in a direction perpendicular to the substrate.
JP9174909A 1997-06-30 1997-06-30 Double refractive plate Pending JPH1123840A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9174909A JPH1123840A (en) 1997-06-30 1997-06-30 Double refractive plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9174909A JPH1123840A (en) 1997-06-30 1997-06-30 Double refractive plate

Publications (1)

Publication Number Publication Date
JPH1123840A true JPH1123840A (en) 1999-01-29

Family

ID=15986824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9174909A Pending JPH1123840A (en) 1997-06-30 1997-06-30 Double refractive plate

Country Status (1)

Country Link
JP (1) JPH1123840A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083326A (en) * 1999-07-13 2001-03-30 Sumitomo Chem Co Ltd Composite phase-contrast plate
JP2006171327A (en) * 2004-12-15 2006-06-29 Fuji Photo Film Co Ltd Phase difference compensation element, and liquid crystal display device and liquid crystal projector using same
JP2006235543A (en) * 2005-02-28 2006-09-07 Sony Corp Reflecting polarizer, manufacturing method and machine thereof, and liquid crystal display
WO2007007858A1 (en) * 2005-07-11 2007-01-18 Fujifilm Corporation Phase difference compensating element, liquid crystal device, and projection type display apparatus
WO2011148465A1 (en) * 2010-05-25 2011-12-01 ソニーケミカル&インフォメーションデバイス株式会社 Wave plate and wave plate manufacturing method
JP2012256024A (en) * 2011-05-16 2012-12-27 Dexerials Corp Phase difference element
JP2013137394A (en) * 2011-12-28 2013-07-11 Nippon Zeon Co Ltd Method for manufacturing retardation film
US10317599B2 (en) 2015-03-19 2019-06-11 Dexerials Corporation Wavelength plate and optical device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001083326A (en) * 1999-07-13 2001-03-30 Sumitomo Chem Co Ltd Composite phase-contrast plate
JP2006171327A (en) * 2004-12-15 2006-06-29 Fuji Photo Film Co Ltd Phase difference compensation element, and liquid crystal display device and liquid crystal projector using same
JP4595586B2 (en) * 2005-02-28 2010-12-08 ソニー株式会社 REFLECTIVE POLARIZER AND METHOD FOR MANUFACTURING THE SAME, APPARATUS FOR PRODUCING REFLECTIVE POLARIZER, AND LIQUID CRYSTAL DISPLAY
JP2006235543A (en) * 2005-02-28 2006-09-07 Sony Corp Reflecting polarizer, manufacturing method and machine thereof, and liquid crystal display
WO2007007858A1 (en) * 2005-07-11 2007-01-18 Fujifilm Corporation Phase difference compensating element, liquid crystal device, and projection type display apparatus
US7760275B2 (en) 2005-07-11 2010-07-20 Fujifilm Corporation Phase difference compensating element, liquid crystal device, and projection type display apparatus
JP2007017890A (en) * 2005-07-11 2007-01-25 Fujifilm Holdings Corp Phase difference compensating element, liquid crystal apparatus and projection type display apparatus
TWI396907B (en) * 2005-07-11 2013-05-21 Fujifilm Corp Phase difference compensation element, and liquid crystal device and projective display device
WO2011148465A1 (en) * 2010-05-25 2011-12-01 ソニーケミカル&インフォメーションデバイス株式会社 Wave plate and wave plate manufacturing method
JP5490891B2 (en) * 2010-05-25 2014-05-14 デクセリアルズ株式会社 Wave plate and method for manufacturing the wave plate
US9989687B2 (en) 2010-05-25 2018-06-05 Dexerials Corporation Wave plate having consistent birefringence properties across the visible spectrum and manufacturing method for same
JP2012256024A (en) * 2011-05-16 2012-12-27 Dexerials Corp Phase difference element
JP2013137394A (en) * 2011-12-28 2013-07-11 Nippon Zeon Co Ltd Method for manufacturing retardation film
US10317599B2 (en) 2015-03-19 2019-06-11 Dexerials Corporation Wavelength plate and optical device

Similar Documents

Publication Publication Date Title
US6072629A (en) Polarizer devices and methods for making the same
US4874664A (en) Birefringent plate and manufacturing method for the same
US7848020B2 (en) Thin-film design for positive and/or negative C-plate
CN108227061B (en) Phase difference compensation element, liquid crystal display device, and projection type image display device
JP2003315552A (en) Integrated optical element
JPH0642582B2 (en) Dielectric multilayer coating film
JPH1123840A (en) Double refractive plate
US6967776B2 (en) Polarizing filter and optical device using the same
Wang et al. Design and experimental approach of optical reflection filters with graded refractive index profiles
JPH11337733A (en) Double refractive plate and its manufacture
CN105988158B (en) Wavelength plate and optical device
JP2007310052A (en) Wavelength plate
WO2019102902A1 (en) Optical element and projection-type image display apparatus
JPH075316A (en) Diffraction grating type polarizer and its production
JP3623032B2 (en) Birefringent plate and optical system using the same
CN114488357A (en) Anisotropic light absorption device based on multilayer film and preparation method thereof
JP2000171607A (en) Highly dense multilayered thin film and its film forming method
JPH05134115A (en) Double refraction member
KR100968208B1 (en) Circularly polarized light conversion element and brightness enhancing element and the fabrication method thereof
US3421811A (en) Coated optical devices
JPS5997105A (en) Interference type polarizer
JP2005044937A (en) Solid-state imaging device
JPH1068801A (en) Antireflection film
KR100232147B1 (en) Polarization device and its manufacturing method
Fan et al. Optical circular dichroism of vacuum-deposited film stacks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061107