JPH11236561A - Cleaning gas - Google Patents

Cleaning gas

Info

Publication number
JPH11236561A
JPH11236561A JP23933898A JP23933898A JPH11236561A JP H11236561 A JPH11236561 A JP H11236561A JP 23933898 A JP23933898 A JP 23933898A JP 23933898 A JP23933898 A JP 23933898A JP H11236561 A JPH11236561 A JP H11236561A
Authority
JP
Japan
Prior art keywords
gas
cleaning
oxygen
vol
hypofluorite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23933898A
Other languages
Japanese (ja)
Other versions
JP3014368B2 (en
Inventor
Isamu Mori
勇 毛利
Tetsuya Tamura
哲也 田村
Mitsuya Ohashi
満也 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP10239338A priority Critical patent/JP3014368B2/en
Priority to SG1998005364A priority patent/SG72905A1/en
Priority to TW087120456A priority patent/TW466266B/en
Priority to US09/208,022 priority patent/US6673262B1/en
Priority to EP98123777A priority patent/EP0924282B1/en
Priority to DE69830776T priority patent/DE69830776T2/en
Priority to KR1019980056102A priority patent/KR100299488B1/en
Priority to CN98125349A priority patent/CN1119385C/en
Publication of JPH11236561A publication Critical patent/JPH11236561A/en
Application granted granted Critical
Publication of JP3014368B2 publication Critical patent/JP3014368B2/en
Priority to US10/705,532 priority patent/US7168436B2/en
Priority to US11/543,968 priority patent/US7744769B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Detergent Compositions (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cleaning gas which enables unnecessay deposits on the inside wall of a thin-film forming apparatus, tools, etc., to be effectively removed by using hypofluorite alone or a mixture thereof with a diluent gas. SOLUTION: Hypofluorite alone, a mixture thereof with at least 1 vol.%, pref. at least 5 vol.%, still pref. at least 10 vol.%, diluent gas, or a mixture of hypofluorite with 0.4-90 vol.% oxygen or oxygen-contg. gas is used as a cleaning gas. Cleaning of unnecessary deposits in a thin-film forming apparatus is done at 10-700 deg.C pref. 20 deg.C (room temp.) to 600 deg.C. The pressure in the cleaning is not specifically limite; though, 0.1-760 Torr is pref. in plasmaless cleaning, and 1 mTorr to 10 Torr, in plasma cleaning. The cleaning gas discharged out of the thin-film forming apparatus can be easily made harmless, enabling the global warming and ozone layer depletion to be easily prevented.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、CVD法、スパッ
タリング法、ゾルゲル法、蒸着法等を用いて薄膜、厚
膜、粉体、ウイスカを製造する装置において装置内壁、
冶具等に堆積した不要な堆積物を除去するためのクリー
ニングガスに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing thin films, thick films, powders, and whiskers by using a CVD method, a sputtering method, a sol-gel method, a vapor deposition method, or the like.
The present invention relates to a cleaning gas for removing unnecessary deposits deposited on a jig or the like.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】半導
体工業を中心とした薄膜デバイス製造プロセス、光デバ
イス製造プロセスおよび超鋼材料製造プロセスなどで
は、CVD法、スパッタリング法、ゾルゲル法、蒸着法
を用いて種々の薄膜、厚膜、粉体、ウイスカなどが製造
されている。これらを製造する際には、膜、ウイスカや
粉体を堆積させるべき目的物上以外の反応器内壁、目的
物を担持する冶具等にも堆積物が生成する。不要な堆積
物が生成するとパーティクル発生の原因となるため良質
な膜、粒子、ウイスカなどを製造することが困難になる
ため随時除去しなければならない。
2. Description of the Related Art In a thin film device manufacturing process, an optical device manufacturing process and a super steel material manufacturing process mainly in the semiconductor industry, a CVD method, a sputtering method, a sol-gel method, and a vapor deposition method are used. Various thin films, thick films, powders, whiskers and the like are manufactured. When these are produced, deposits are also formed on the inner wall of the reactor other than the target on which films, whiskers and powders are to be deposited, jigs carrying the target, and the like. The generation of unnecessary deposits causes the generation of particles, which makes it difficult to produce high-quality films, particles, whiskers, etc., and must be removed as needed.

【0003】このような不要な堆積物を除去するクリー
ニングガスに求められる性能としては、クリーニング
対象物に対する反応速度が高いこと、クリーニング排
ガスの除害処理が比較的容易であること、大気中で比
較的不安定であり、地球温暖化に対する影響が小さいこ
と、等が望まれる。現状では、このような不要な堆積物
を除去するために、C26、CF4、C48、NF3、C
lF3 等のクリーニングガスが使用されているが、これ
らのガスには以下のような問題がある。
[0003] The performance required of a cleaning gas for removing such unnecessary deposits is that the reaction speed to the cleaning object is high, the detoxification treatment of the cleaning exhaust gas is relatively easy, and the cleaning gas is compared in the air. It is desired that it is unstable and has a small effect on global warming. At present, in order to remove such unnecessary deposits, C 2 F 6 , CF 4 , C 4 F 8 , NF 3 , C
While cleaning gas such lF 3 are used, these gases has the following problems.

【0004】ClF3:非常に反応性が高いため、高温
下で使用した場合やプラズマを利用した場合には通常使
われている装置材料の損傷が著しい。 NF3:300℃以上の高温でなければ反応性が低く、
配管やプラズマ領域外に堆積した不要物のクリーニング
はできない。また、除害処理のために高温が必要である
ためランニングコストが比較的高価である。
[0004] ClF 3 : Due to its extremely high reactivity, when used at high temperatures or when plasma is used, the materials of the equipment usually used are significantly damaged. NF 3 : low reactivity unless high temperature of 300 ° C. or higher,
Unnecessary substances accumulated outside the piping and plasma region cannot be cleaned. Further, since high temperatures are required for the detoxification treatment, the running cost is relatively high.

【0005】C26、CF4、C48:配管やプラズマ
領域外に堆積した不要物のクリーニングはできない。ま
た、プラズマクリーニングするとフロロカーボン系の化
合物が堆積する。フロロカーボンの堆積量を減ずるため
酸素を添加すると酸化物の発生が起こる。非常に安定な
化合物でありクリーニング後の排ガスの処理が困難であ
り、処理のために高温が必要であるためランニングコス
トが比較的高価である。また、環境中に安定に存在し地
球温暖化係数が高いため環境への悪影響を及ぼす。
[0005] C 2 F 6, CF 4, C 4 F 8: can not clean the unnecessary substances deposited on the outside of pipes and the plasma region. When plasma cleaning is performed, a fluorocarbon compound is deposited. Oxidation occurs when oxygen is added to reduce the amount of fluorocarbon deposited. It is a very stable compound, and it is difficult to treat the exhaust gas after cleaning. Since the treatment requires a high temperature, the running cost is relatively high. In addition, since it is stable in the environment and has a high global warming potential, it has an adverse effect on the environment.

【0006】[0006]

【課題を解決するための具体的手段】本発明者らは、上
記の問題点に鑑み鋭意検討の結果、CVD法、スパッタ
リング法、ゾルゲル法、蒸着法を用いて薄膜、厚膜、粉
体、ウイスカなどを製造する装置において、装置内壁、
冶具等に堆積した不要な堆積物を効率的に除去するため
のクリーニングガスを見いだし、本発明に至ったもので
ある。
The present inventors have conducted intensive studies in view of the above problems, and have found that thin films, thick films, powders, and the like can be obtained by using a CVD method, a sputtering method, a sol-gel method, or an evaporation method. In equipment for manufacturing whiskers, etc., the inner wall of the equipment,
The present invention has found a cleaning gas for efficiently removing unnecessary deposits deposited on a jig or the like, and has reached the present invention.

【0007】すなわち、本発明は、装置内に堆積した、
あるいはシリコンウエハ上や硝子基板上に堆積した不要
な堆積物と反応させて除去し、装置外に排出するための
ガスであって、ハイポフルオライトを100%または希
釈ガスで1vol%以上に希釈したガスからなることを
特徴とするクリーニングガスであり、また、少なくとも
酸素または酸素含有化合物ガスを含有し、その酸素また
は酸素含有化合物ガスをハイポフルオライトとの合計容
量の0.4〜90vol%の割合で含有することを特徴
とするクリーニングガスを提供するものである。
That is, the present invention relates to a method of depositing
Alternatively, it is a gas for reacting and removing unnecessary deposits deposited on a silicon wafer or a glass substrate and discharging the same outside the apparatus. Hypofluorite was diluted to 100% or 1 vol% or more with a diluting gas. A cleaning gas, comprising at least oxygen or an oxygen-containing compound gas, wherein the oxygen or the oxygen-containing compound gas is in a ratio of 0.4 to 90 vol% of the total volume of the gas and the hypofluorite. The present invention provides a cleaning gas characterized in that the cleaning gas is contained.

【0008】本発明で使用されるハイポフルオライト
は、CF4、C26、C48、NF3等よりも解離しやす
く、ClF3よりも反応性が低いという特徴を有する。
例えば、トリフルオロメチルハイポフルオライトの場
合、酸素に結合したフッ素(CF 3O−F)の結合解離
エネルギーは、43.5kcal/molであり、NF
3(NF2−F=61kcal)より活性なフッ素を放出
しやすく、ClF3(ClF 2−F=37kcal/mo
l)より安定である。このため、F2やClF3程ではな
いがフッ素化力を有しプラズマレスでもクリーニングを
行うことができ、CF4などの既存のプラズマクリーニ
ングガスでは不可能であったプラズマ領域外に堆積した
汚染物質もガス化除去できる。さらにClF3と比較す
ると腐食性は著しく小さいため、通常使用されている装
置材料の損傷も軽減される。また、装置外に排出される
クリーニングガスは、水やアルカリ水溶液で容易に分解
でき、アルカリスクラバー等で除害が可能であるためそ
のまま環境中に放出されることはなく地球環境に悪影響
を及ぼすこともない。すなわち、本発明によると従来の
クリーニングガスが抱えていた問題点を一掃することが
できるものである。
The hypofluorite used in the present invention
Is CFFour, CTwoF6, CFourF8, NFThreeEasier to dissociate than etc.
And ClFThreeIt has the characteristic that the reactivity is lower than that.
For example, for trifluoromethyl hypofluorite
When fluorine bonded to oxygen (CF ThreeBond dissociation of OF)
The energy is 43.5 kcal / mol, NF
Three(NFTwo-F = 61 kcal) releases more active fluorine
Easy to do, ClFThree(ClF Two-F = 37 kcal / mo
l) More stable. Therefore, FTwoAnd ClFThreeNot enough
However, it has fluorinating power and can be cleaned even without plasma
Can be done, CFFourExisting plasma cleaners such as
Deposited outside the plasma region which was not possible with
Pollutants can also be gasified and removed. Further ClFThreeCompare with
Is extremely low in corrosiveness, so that normally used equipment
Damage to the mounting material is also reduced. It is also discharged outside the device
Cleaning gas is easily decomposed with water or alkaline aqueous solution
Can be removed with an alkaline scrubber, etc.
As it is not released into the environment as it is, it has an adverse effect on the global environment
Also does not affect. That is, according to the present invention,
Cleaning the problems that cleaning gas had
You can do it.

【0009】本発明において、クリーニングが可能な物
質は、B、P、W、Si、Ti、V、Nb、Ta、S
e、Te、Mo、Re、Os、Ru、Ir、Sb、G
e、Au、Ag、As、Cr及びその化合物、具体的に
は、酸化物、窒化物、炭化物及びこれらの合金が挙げら
れる。
In the present invention, the substances that can be cleaned include B, P, W, Si, Ti, V, Nb, Ta, and S.
e, Te, Mo, Re, Os, Ru, Ir, Sb, G
e, Au, Ag, As, Cr and compounds thereof, specifically, oxides, nitrides, carbides and alloys thereof.

【0010】本発明において、用いるハイポフルオライ
トとは、分子中に少なくとも1つOF基を有する化合物
であり、分子中にハロゲン元素やエーテル基、アルコー
ル基、カルボニル基、カルボキシル基、エステル基、ア
ミン基、アミド基等を有するものも含まれる。しかしな
がら、ハイポフルオライト類は、フッ素化力が極めて強
いため、還元性の基やエネルギー的に不安定な結合を有
するものは、クリーニングガスとしては好ましくなく、
具体的には、CF3OF、CF2(OF)2、CF3CF2
OF、CH3COOF、(CF33COF、CF2HCF
2OF、(CF3CF2)(CF32COF、CH3OF、
CFH2OF、CF2HOF、CF3CF2CF2OF、
(CF32CFOF等が好ましい。また、ハイポフルオ
ライトであれば何れでも使用することが可能であり、ハ
ロゲン化炭化水素基やエーテル、アルコール、カルボン
酸、エステル、アミン、アミド等の誘導体であっても良
い。また、分子中に2個以上のOF基を有する化合物も
同様の反応性を有するため使用できる。しかしながら、
ハイポフルオライトは、上述したようにフッ素化力が極
めて強いため、還元性の基やエネルギー的に不安定な結
合を有するものは実用的ではなく、上述したようなハイ
ポフルオライトが好ましい。
In the present invention, the hypofluorite used is a compound having at least one OF group in a molecule, and includes a halogen element, an ether group, an alcohol group, a carbonyl group, a carboxyl group, an ester group, an amine group in a molecule. And those having an amide group or the like. However, since hypofluorites have extremely strong fluorinating power, those having a reducing group or an energetically unstable bond are not preferable as a cleaning gas,
Specifically, CF 3 OF, CF 2 (OF) 2 , CF 3 CF 2
OF, CH 3 COOF, (CF 3 ) 3 COF, CF 2 HCF
2 OF, (CF 3 CF 2 ) (CF 3 ) 2 COF, CH 3 OF,
CFH 2 OF, CF 2 HOF, CF 3 CF 2 CF 2 OF,
(CF 3 ) 2 CFOF is preferred. Any hypofluorite can be used, and it may be a halogenated hydrocarbon group or a derivative such as an ether, alcohol, carboxylic acid, ester, amine, or amide. Further, a compound having two or more OF groups in a molecule has the same reactivity and can be used. However,
Since the hypofluorite has an extremely strong fluorinating power as described above, a hypofluorite having a reducing group or an energetically unstable bond is not practical, and the above-described hypofluorite is preferable.

【0011】本発明においては、ハイポフルオライトの
みを用いることによりチャンバ内部と排気系配管に堆積
したCVD反応時の副生成物とシリコンウエハや硝子基
板に堆積するのと同じ膜種の不要な堆積物は完全にクリ
ーニングできるが、本発明で述べたガスは、マルチチャ
ンバ型CVD装置や各種バッチ型CVD装置、エピタキ
シャル成長用CVD装置などのクリーニングガスとして
適応可能である。ガスの励起方式は特に限定されず、例
えば、高周波、マイクロ波などを装置形態に合わせて使
用すればよい。また、ガスを反応器内部で励起させても
良いし、反応器の外部で励起させ、ラジカルあるいはイ
オンを反応器に導入するリーモートプラズマ方式でも実
施可能である。また、He、N2、Arなどの不活性ガ
スあるいはO2やCO2、CO、NO、NO2、N2Oなど
の酸素含有化合物ガスと適切な割合で混合して使用して
も良い。しかし、酸素を含有しない堆積物を繰り返しク
リーニングすると排気系配管の低温部に極微量ではある
が白色の有機フッ化物が堆積する。この現象は、ハイポ
フルオライトから生成するCF3+、CF3 +、CF 2 +
どのイオンやラジカルによる重合物と考えられる。そこ
で、鋭意検討の結果、酸素または酸素含有化合物ガス、
例えばCO2、CO、NO、NO2、N2Oなどをハイポ
フルオライトと混合することにより防止できることも見
出した。CO 2、COに関しては、重合物の生成原因元
素の一つであるCを含むが、Oを含有していることか
ら、Fラジカルの長寿命化が図れるため、重合物の生成
が起こりにくくなっている可能性がある。特にハイポフ
ルオライトに混合する酸素または酸素含有化合物ガスの
割合は、0.4〜90vol%が好ましい。酸素濃度が
0.4vol%以下であるとカーボンが反応器壁や配管
中に残留し、90vol%以上になると堆積物表面の酸
化が優先的に起こるためクリーニング速度が低下するた
め好ましくない。
In the present invention, the hypofluorite
Deposition in the chamber and exhaust piping
By-products during CVD reaction and silicon wafer or glass substrate
Unnecessary deposits of the same film type deposited on the plate are completely cleared.
Although the gas described in the present invention can be
Member type CVD equipment, various batch type CVD equipment, epitaxy
As a cleaning gas for CVD equipment for char growth
Be adaptable. The gas excitation method is not particularly limited.
For example, high frequency, microwave, etc. are used according to the device form.
Just use it. Also, if the gas is excited inside the reactor,
Good, and excited outside the reactor,
A remote plasma method that introduces ON into the reactor
It is possible. He, NTwoInert gas such as, Ar
Or OTwoAnd COTwo, CO, NO, NOTwo, NTwoO etc.
Mixed with the oxygen-containing compound gas in the appropriate ratio
Is also good. However, repeatedly depositing oxygen-free sediments
Very small amount in low temperature part of exhaust piping when leaning
However, white organic fluoride is deposited. This phenomenon is
CF generated from fluoriteThreeO+, CFThree +, CF Two +What
Any ion or radical is considered to be a polymer. There
As a result of intensive studies, oxygen or oxygen-containing compound gas,
For example, COTwo, CO, NO, NOTwo, NTwoO and hypo
We also see that mixing with fluorite can prevent this.
Issued. CO TwoRegarding CO and CO
Contains C which is one of the elements, but contains O
From the above, it is possible to extend the life of the F radical, so that a polymer is produced.
May be less likely to occur. Especially Hypov
Of oxygen or oxygen-containing compound gas mixed with luolite
The ratio is preferably from 0.4 to 90 vol%. Oxygen concentration
If the content is less than 0.4 vol%, carbon will be generated on the reactor wall and piping.
Remains in the sediment, and when it reaches 90 vol% or more, the acid on the sediment surface
Cleaning speed is reduced due to
Not preferred.

【0012】本発明におけるクリーニングガスは、除去
すべき堆積物の種類、厚み及び薄膜等を製造する装置に
使用されている材料の種類を考慮して、ハイポフルオラ
イトあるいはハイポフルオライトと酸素または酸素含有
化合物ガスとの混合ガスそのものを用いるか、あるいは
窒素、アルゴン、ヘリウム等の不活性ガスで希釈して用
いるか、適宜選択すればよい。希釈して用いる場合に
は、ハイポフルオライトの濃度は1vol%以上、好ま
しくは5vol%以上、更に好ましくは10vol%以
上がよい。1vol%以下に希釈すると反応速度が低下
するため好ましくない。
The cleaning gas used in the present invention is formed of hypofluorite or hypofluorite and oxygen or oxygen in consideration of the type of deposit to be removed, the thickness, and the type of material used in an apparatus for producing a thin film or the like. It may be appropriately selected to use a mixed gas itself with the contained compound gas or to dilute it with an inert gas such as nitrogen, argon, or helium. When diluted and used, the concentration of hypofluorite is 1 vol% or more, preferably 5 vol% or more, and more preferably 10 vol% or more. Dilution to 1 vol% or less is not preferable because the reaction rate is reduced.

【0013】また、反応条件に関しても特に制限される
ことはなく、前述のとおり対象材料を考慮して適時選択
される。通常、クリーニングを行う温度は、10℃以上
700℃以下、好ましくは20℃(室温)以上600℃
以下がよい。温度が700℃を越えると反応器材料への
腐蝕が激しくなり好ましくなく、10℃以下になると反
応速度が遅くなり好ましくない。圧力は、特に制限され
ることはないが、通常プラズマレスクリーニングでは、
0.1Torr以上760Torr以下で、プラズマク
リーニングでは、1mTorr以上10Torr以下が
好ましい。
The reaction conditions are not particularly limited, and are appropriately selected in consideration of the target material as described above. Usually, the temperature at which the cleaning is performed is from 10 ° C. to 700 ° C., preferably from 20 ° C. (room temperature) to 600 ° C.
The following is good. If the temperature exceeds 700 ° C., corrosion of the reactor material becomes severe, which is not preferable. If the temperature is lower than 10 ° C., the reaction rate becomes slow, which is not preferable. The pressure is not particularly limited, but usually in plasma rescreening,
The pressure is preferably 0.1 Torr or more and 760 Torr or less, and in plasma cleaning, it is preferably 1 mTorr or more and 10 Torr or less.

【0014】[0014]

【実施例】以下、実施例により本発明を詳細に説明する
が、本発明はかかる実施例に限定されるものではない。
EXAMPLES The present invention will be described below in detail with reference to examples, but the present invention is not limited to these examples.

【0015】実施例1〜4 表面を熱酸化させたシリコンウエハ上に、SiH4の熱
分解により多結晶シリコンを200μm成膜し、これら
のテストピースをプラズマCVD装置の下部電極上に設
置し、CF3OF、CF3CF2OF、(CF33CO
F、CF2(OF) 2のそれぞれのガスを、ガス圧力:
0.5Torr、ガス流量:100SCCM、20℃の
条件下で、テストピースを設置した下部電極に高周波電
力を印加して30秒間エッチングを行った(高周波電源
周波数:13.56MHz、印加電力:0.2W/cm
2 、電極間距離:10mm)。エッチング速度の測定結
果を表1に示した。
Examples 1 to 4 SiH was placed on a silicon wafer whose surface was thermally oxidized.FourHeat of
Decomposition to form a polycrystalline silicon film of 200 μm.
The test piece on the lower electrode of the plasma CVD device.
Place, CFThreeOF, CFThreeCFTwoOF, (CFThree)ThreeCO
F, CFTwo(OF) TwoFor each gas, gas pressure:
0.5 Torr, gas flow rate: 100 SCCM, 20 ° C.
Under the conditions, the lower electrode on which the test piece was
Etching was performed for 30 seconds by applying force (high frequency power supply
Frequency: 13.56 MHz, applied power: 0.2 W / cm
Two , Distance between electrodes: 10 mm). Measurement of etching rate
The results are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

【0017】実施例5〜44、比較例1 表面を熱酸化させたシリコンウエハ上に、SiH4の熱
分解により多結晶シリコンを200μm成膜し、これら
のテストピースをプラズマCVD装置の下部電極上に設
置し、種々のガスをガス圧力:10Torr、ガス流
量:100SCCM、20℃から700℃の温度条件下
で、高周波電力を印加せずに30秒間エッチングを行っ
た。エッチング速度の測定結果を表2、表3に示した。
Examples 5 to 44 and Comparative Example 1 Polysilicon was deposited to a thickness of 200 μm on a silicon wafer whose surface was thermally oxidized by thermal decomposition of SiH 4 , and these test pieces were placed on the lower electrode of a plasma CVD apparatus. And etching was performed for 30 seconds at a gas pressure of 10 Torr, a gas flow rate of 100 SCCM, and a temperature condition of 20 ° C. to 700 ° C. without applying high frequency power. Tables 2 and 3 show the measurement results of the etching rate.

【0018】[0018]

【表2】 [Table 2]

【0019】[0019]

【表3】 [Table 3]

【0020】実施例45 TEOS(テトラエチルシリケート)と酸素を原料とし
てプラズマCVDを行った。装置器壁には、約0.05
〜20μmの厚さのSiO2が堆積していた。この装置
内にCF3OF、CF2(OF)2、CF3CF2OF、
(CF33COF、CF2HOFのそれぞれのガスを、
ガス圧力:1Torr、ガス流量:100SCCMで流
し、20℃の条件下で、下部電極に高周波電力を印加し
て20分間クリーニングを行った(高周波電源周波数:
13.56MHz、印加電力:0.2W/cm2 、電極
間距離:50mm)。クリーニング後、反応器内を観察
したところSiO2は完全に除去されていた。
Example 45 Plasma CVD was performed using TEOS (tetraethyl silicate) and oxygen as raw materials. About 0.05 on the device wall
220 μm thick SiO 2 had been deposited. CF 3 OF, CF 2 (OF) 2 , CF 3 CF 2 OF,
Each gas of (CF 3 ) 3 COF and CF 2 HOF is
The gas was flowed at a gas pressure of 1 Torr and a gas flow rate of 100 SCCM, and cleaning was performed for 20 minutes by applying high-frequency power to the lower electrode at 20 ° C. (high-frequency power supply frequency:
13.56 MHz, applied power: 0.2 W / cm 2 , distance between electrodes: 50 mm). When the inside of the reactor was observed after cleaning, SiO 2 was completely removed.

【0021】実施例46 Wを熱CVDで成膜するコールドウオール式装置におい
て、W膜を成膜した。反応器内部に設置されたヒータ付
近は、500℃、ガス拡散板は、40℃、反応器壁は、
20〜300℃にそれぞれなっており、不要なW膜が装
置内の各所に堆積していた。W膜は、最も厚く堆積して
いたところで約120μm堆積していた。また、配管中
には、Wの酸化物粉体も堆積していた。この装置中にC
3OFを1SLM、30分間流通させた。その後、内
部を観察したところ反応器の内部および配管中のW膜及
び酸化タングステン粉体は、完全に除去できていた。ガ
スをCF2(OF)2、CF3CF2OF、(CF33CO
Fにそれぞれ変えて同様の実験を行ったところ、W膜及
び酸化タングステン粉体は、完全に除去できていた。
Example 46 A W film was formed in a cold wall type apparatus for forming W by thermal CVD. The vicinity of the heater installed inside the reactor is 500 ° C, the gas diffusion plate is 40 ° C, and the reactor wall is
The temperature was 20 to 300 ° C., and unnecessary W films were deposited at various points in the apparatus. The W film was deposited at a thickness of about 120 μm where it was deposited most thickly. Further, oxide powder of W was also deposited in the pipe. C in this device
F 3 OF was passed through 1 SLM for 30 minutes. Thereafter, when the inside was observed, the W film and the tungsten oxide powder in the inside of the reactor and in the piping were completely removed. The gas is CF 2 (OF) 2 , CF 3 CF 2 OF, (CF 3 ) 3 CO
When the same experiment was performed by changing each to F, the W film and the tungsten oxide powder were completely removed.

【0022】実施例47 熱CVDで、W膜、WSi膜、TiC膜、Ta25膜を
ニッケル基板上(L10mm×D20mm×t2mm)
に50μm成膜した。これら4種のテストピースをプラ
ズマCVD装置の下部電極上に設置し、CF3OFをガ
ス圧力:0.5Torr、ガス流量:100SCCMで
流し、20℃の条件下で、テストピースを設置した下部
電極に高周波電力を印加して10分間エッチングを行っ
た(高周波電源周波数:13.56MHz、印加電力:
0.2W/cm2 、電極間距離:50mm)。その後、
テストピースをCVD装置内から取り出しX線マイクロ
アナライザで分析したところ、W、Si、Ti、Taの
ピークは認められなかった。
Example 47 A W film, a WSi film, a TiC film, and a Ta 2 O 5 film were formed on a nickel substrate by thermal CVD (L10 mm × D20 mm × t2 mm).
Was formed to a thickness of 50 μm. These four types of test pieces were placed on the lower electrode of a plasma CVD apparatus, and CF 3 OF was flowed at a gas pressure of 0.5 Torr and a gas flow rate of 100 SCCM. Was etched for 10 minutes by applying high-frequency power (high-frequency power supply frequency: 13.56 MHz, applied power:
0.2 W / cm 2 , distance between electrodes: 50 mm). afterwards,
When the test piece was taken out of the CVD apparatus and analyzed with an X-ray microanalyzer, no W, Si, Ti or Ta peak was observed.

【0023】実施例48 熱CVDで、Mo膜、Re膜、Nb膜をニッケル基板上
(L10mm×D20mm×t2mm)に50μm成膜
した。これら3種のテストピースをプラズマCVD装置
の下部電極上に設置し、CF3OFをガス圧力:0.5
Torr、ガス流量:100SCCMで流し、20℃の
条件下で、テストピースを設置した下部電極に高周波電
力を印加して3分間エッチングを行った(高周波電源周
波数:13.56MHz、印加電力:0.2W/cm
2 、電極間距離:50mm)。その後、テストピースを
CVD装置内から取り出しX線マイクロアナライザで分
析したところ、Mo、Re、Nbのピークは認められな
かった。
Example 48 A Mo film, a Re film, and an Nb film were formed on a nickel substrate (L10 mm × D20 mm × t2 mm) by thermal CVD to a thickness of 50 μm. These three test pieces were placed on the lower electrode of a plasma CVD apparatus, and CF 3 OF was supplied with a gas pressure of 0.5.
Torr, gas flow rate: 100 SCCM, etching was performed for 3 minutes at 20 ° C. by applying high-frequency power to the lower electrode on which the test piece was installed (high-frequency power supply frequency: 13.56 MHz, applied power: 0. 2W / cm
2 , distance between electrodes: 50 mm). Thereafter, the test piece was taken out of the CVD apparatus and analyzed with an X-ray microanalyzer. As a result, no Mo, Re, or Nb peak was observed.

【0024】実施例49 スパッタリングで、TiN膜、Ti膜をニッケル基板上
(L10mm×D20mm×t2mm)に5μm成膜し
た。これら2種のテストピースをプラズマCVD装置の
下部電極上に設置し、CF3OFガスを圧力:0.5T
orr、ガス流量:100SCCMで流し、20℃の条
件下で、テストピースを設置した下部電極に高周波電力
を印加して10分間エッチングを行った(高周波電源周
波数:13.56MHz、印加電力:0.2W/cm
2 、電極間距離:50mm)。その後、テストピースを
CVD装置内から取り出しX線マイクロアナライザで分
析したところ、Tiのピークは認められなかった。
Example 49 A 5 μm thick TiN film and a Ti film were formed on a nickel substrate (L10 mm × D20 mm × t2 mm) by sputtering. These two test pieces were placed on the lower electrode of a plasma CVD apparatus, and CF 3 OF gas was supplied at a pressure of 0.5 T.
orr, gas flow rate: 100 SCCM, etching was performed for 10 minutes at 20 ° C. by applying high-frequency power to the lower electrode on which the test piece was installed (high-frequency power supply frequency: 13.56 MHz, applied power: 0. 2W / cm
2 , distance between electrodes: 50 mm). Thereafter, the test piece was taken out of the CVD apparatus and analyzed with an X-ray microanalyzer. As a result, no Ti peak was observed.

【0025】実施例50 真空蒸着で、Au膜、Ag膜、Cr膜をニッケル基板上
(L10mm×D20mm×t2mm)に2μm成膜し
た。これら3種のテストピースをプラズマCVD装置の
下部電極上に設置し、CF3OFガスを圧力:0.5T
orr、ガス流量:10SCCMで流し、20℃の条件
下で、テストピースを設置した下部電極に高周波電力を
印加して10分間エッチングを行った(高周波電源周波
数:13.56MHz、印加電力:0.315W/cm
2 、電極間距離:50mm)。その後、テストピースを
CVD装置内から取り出しX線マイクロアナライザで分
析したところ、Au、Ag、Crのピークは認められな
かった。
Example 50 An Au film, an Ag film, and a Cr film were formed in a thickness of 2 μm on a nickel substrate (L10 mm × D20 mm × t2 mm) by vacuum evaporation. These three types of test pieces were placed on the lower electrode of a plasma CVD apparatus, and CF 3 OF gas was supplied at a pressure of 0.5 T.
orr, gas flow rate: 10 SCCM, etching was performed for 10 minutes at 20 ° C. by applying high-frequency power to the lower electrode on which the test piece was installed (high-frequency power supply frequency: 13.56 MHz, applied power: 0. 315W / cm
2 , distance between electrodes: 50 mm). Thereafter, the test piece was taken out of the CVD apparatus and analyzed with an X-ray microanalyzer. As a result, no Au, Ag, or Cr peak was observed.

【0026】実施例51 市販のP(黄リン)、Ta、As、Ge、Se、Bの粉
体をニッケル製のポート内に5mgずつとり、ポートを
プラズマCVD装置の下部電極上に設置し、CF3OF
をガス圧力:1Torr、ガス流量:10SCCMで流
し、20℃の条件下で、テストピースを設置した下部電
極に高周波電力を印加して10分間エッチング(高周波
電源周波数:13.56MHz、印加電力:0.315
W/cm 2 、電極間距離:50mm)した。その後、ポ
ート内及び装置内を観察したが粉体は、完全に除去でき
ていた。
Example 51 Commercially available powders of P (yellow phosphorus), Ta, As, Ge, Se and B
Take 5 mg of the body into a nickel port and place the port
Installed on the lower electrode of the plasma CVD device, CFThreeOF
At a gas pressure of 1 Torr and a gas flow rate of 10 SCCM.
Under the condition of 20 ° C,
Apply high frequency power to the pole and etch for 10 minutes (high frequency
Power frequency: 13.56 MHz, applied power: 0.315
W / cm Two , Distance between electrodes: 50 mm). Then,
Observation of the inside of the sheet and the inside of the device showed that the powder
I was

【0027】実施例52〜64 SiH4を原料としてシリコンを成膜する装置にCF3
Fガスを導入し、反応器中に堆積したシリコン、ポリシ
ラン粉及びプラズマ領域外である配管中のポリシラン粉
のプラズマクリーニングを繰り返し試みた。反応条件
は、CF3OFのガス流量:1SLM、圧力:1Tor
r、30分、温度は装置内に分布があるが配管内は20
℃、反応器中は40〜400℃である。酸素,窒素流量
と反応器内部の観察結果を表4に記す。表4中の○は、
反応器内、配管内が完全にクリーニングでき、かつ有機
フッ化物の堆積が起こっていなかった場合、△は、反応
器内、配管内は完全にクリーニングできているが配管部
(特に低温部)に皮膜状あるいは粉状の有機フッ化物の
堆積が認められた場合、□は、成膜反応によりポリシラ
ン粉が酸化されシリコン酸化物となり堆積していた場
合、をそれぞれ示す。なお、何れの条件においても反応
器内はクリーニングできていた。
Embodiments 52-64 CF 3 O was used in an apparatus for forming a silicon film using SiH 4 as a raw material.
F gas was introduced, and plasma cleaning of silicon and polysilane powder deposited in the reactor and polysilane powder in piping outside the plasma region was repeatedly attempted. The reaction conditions were as follows: CF 3 OF gas flow rate: 1 SLM, pressure: 1 Torr
r, 30 minutes, the temperature is distributed in the apparatus,
℃, 40-400 ℃ in the reactor. Table 4 shows the oxygen and nitrogen flow rates and the observation results inside the reactor. ○ in Table 4 indicates
If the inside of the reactor and the piping were completely cleaned, and no deposition of organic fluoride was occurring, △ indicates that the inside of the reactor and the piping was completely cleaned but the piping (particularly the low-temperature part) In the case where deposition of a film-like or powdery organic fluoride was observed, the symbol □ indicates that the polysilane powder was oxidized by the film forming reaction to deposit silicon oxide, respectively. Note that the reactor could be cleaned under any of the conditions.

【0028】[0028]

【表4】 [Table 4]

【0029】実施例65〜70 SiH4を原料としてシリコンを成膜する装置にCF3
Fガスと酸素含有化合物ガスを導入し、反応器中に堆積
したシリコン、ポリシラン粉及びプラズマ領域外である
配管中のポリシラン粉のプラズマクリーニングを繰り返
し試みた。反応条件は、CF3OFのガス流量:1SL
M、圧力:1Torr、30分、温度は装置内に分布が
あるが配管内は20℃、反応器中は40〜400℃であ
る。酸素含有化合物ガスの種類と流量及び反応器内部の
観察結果を表5に示した。表5中の○は、反応器内、配
管内が完全にクリーニングでき、かつ有機フッ化物の堆
積が起こっていなかった場合を表す。
Examples 65 to 70 CF 3 O was used in an apparatus for forming a silicon film using SiH 4 as a raw material.
By introducing F gas and an oxygen-containing compound gas, plasma cleaning of silicon and polysilane powder deposited in the reactor and polysilane powder in piping outside the plasma region was repeatedly attempted. The reaction conditions were as follows: CF 3 OF gas flow rate: 1 SL
M, pressure: 1 Torr, 30 minutes, temperature is distributed in the apparatus, but 20 ° C. in the piping and 40 to 400 ° C. in the reactor. Table 5 shows the types and flow rates of the oxygen-containing compound gas and the observation results inside the reactor. In Table 5,。 indicates the case where the inside of the reactor and the inside of the pipe could be completely cleaned and the deposition of organic fluoride did not occur.

【0030】[0030]

【表5】 [Table 5]

【0031】実施例71 反応器壁に熱CVDによってW膜が10〜20μm堆積
した装置にマイクロ波によりガスを励起させることが可
能な機構を配管を介して反応器に取り付け、マイクロ波
プラズマによるリモートプラズマクリーニングを行っ
た。ガスとしてCF3OFを使用した結果、反応器内部
は完全にクリーニングされており、配管内に堆積してい
た粉体(Wとその酸化物との混合物)も完全にクリーニ
ングできていた。 (条件) マイクロ波出力:50W(13.56MHz) ガス圧力 :0.1Torr CF3OF流量 :1000SCCM 基板温度 :18℃ 時間 :10分
Example 71 A device capable of exciting a gas by microwaves in a device in which a W film was deposited on a reactor wall by thermal CVD by 10 to 20 μm by a microwave was attached to the reactor via a pipe, and remote control by microwave plasma was performed. Plasma cleaning was performed. As a result of using CF 3 OF as the gas, the inside of the reactor was completely cleaned, and the powder (mixture of W and its oxide) deposited in the pipe was also completely cleaned. (Conditions) Microwave output: 50 W (13.56 MHz) Gas pressure: 0.1 Torr CF 3 OF Flow rate: 1000 SCCM Substrate temperature: 18 ° C. Time: 10 minutes

【0032】実施例72 反応器壁に熱CVDによってW膜が10〜20μm堆積
した装置にマイクロ波によりガスを励起させることが可
能な機構を配管を介して反応器に取り付け、マイクロ波
プラズマによるリモートプラズマクリーニングを行っ
た。ガスとしてCF2(OF)2を使用した結果、反応器
内部は完全にクリーニングされており、配管内に堆積し
ていた粉体(Wとその酸化物との混合物)も完全にクリ
ーニングできていた。 (条件) マイクロ波出力:50W(13.56MHz) ガス圧力 :0.1Torr CF2(OF)2流量 :1000SCCM 基板温度 :18℃ 時間 :10分
Example 72 A mechanism capable of exciting gas by microwave was attached to a reactor via a pipe in a device in which a W film was deposited on a reactor wall by thermal CVD by 10 to 20 μm, and remote control by microwave plasma was performed. Plasma cleaning was performed. As a result of using CF 2 (OF) 2 as a gas, the inside of the reactor was completely cleaned, and the powder (mixture of W and its oxide) deposited in the pipe was also completely cleaned. . (Conditions) Microwave output: 50 W (13.56 MHz) Gas pressure: 0.1 Torr CF 2 (OF) 2 Flow rate: 1000 SCCM Substrate temperature: 18 ° C. Time: 10 minutes

【0033】[0033]

【発明の効果】本発明は、半導体工業におけるデバイス
製造装置等において、装置内壁、治具、配管等に堆積し
た不要な堆積物を除去するクリーニングガスであり、プ
ラズマクリーニング、プラズマレスクリーニングの双方
が可能であり、また、該装置外に排出したクリーニング
ガスの除害が容易であるため地球温暖化やオゾン破壊の
心配がないクリーニングガスを提供するものである。
The present invention is a cleaning gas for removing unnecessary deposits deposited on the inner walls, jigs, pipes and the like of a device in a device manufacturing apparatus in the semiconductor industry. It is also possible to provide a cleaning gas that is possible and easy to remove the cleaning gas discharged out of the apparatus, so that there is no concern about global warming and ozone destruction.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 21/3065 H01L 21/304 645C 21/304 645 C11D 7/02 // C11D 7/02 7/38 7/38 17/00 17/00 H01L 21/302 F ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI H01L 21/3065 H01L 21/304 645C 21/304 645 C11D 7/02 // C11D 7/02 7/38 7/38 17/00 17/00 H01L 21/302 F

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 薄膜形成装置内に生成した不要な堆積物
と反応させて除去し、装置外に排出するためのガスであ
って、ハイポフルオライトを100%または希釈ガスで
1vol%以上に希釈したガスからなることを特徴とす
るクリーニングガス。
1. A gas for reacting and removing unnecessary deposits generated in a thin film forming apparatus and discharging the same outside the apparatus, wherein hypofluorite is diluted to 100% or 1 vol% or more with a diluting gas. A cleaning gas, comprising a purified gas.
【請求項2】 少なくとも酸素または酸素含有化合物ガ
スを含有することを特徴とする請求項1記載のクリーニ
ングガス。
2. The cleaning gas according to claim 1, wherein the cleaning gas contains at least oxygen or an oxygen-containing compound gas.
【請求項3】 酸素または酸素含有化合物ガスをハイポ
フルオライトとの合計容量の0.4〜90vol%の割
合で含有することを特徴とする請求項2記載のクリーニ
ングガス。
3. The cleaning gas according to claim 2, wherein oxygen or an oxygen-containing compound gas is contained at a ratio of 0.4 to 90 vol% of the total capacity with hypofluorite.
JP10239338A 1997-12-18 1998-08-26 Cleaning gas Expired - Fee Related JP3014368B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP10239338A JP3014368B2 (en) 1997-12-18 1998-08-26 Cleaning gas
SG1998005364A SG72905A1 (en) 1997-12-18 1998-12-09 Gas for removing deposit and removal method using same
TW087120456A TW466266B (en) 1997-12-18 1998-12-09 Gas for removing deposit and removal method using same
US09/208,022 US6673262B1 (en) 1997-12-18 1998-12-09 Gas for removing deposit and removal method using same
DE69830776T DE69830776T2 (en) 1997-12-18 1998-12-14 Gas for removing deposits and their use
EP98123777A EP0924282B1 (en) 1997-12-18 1998-12-14 Gas for removing a deposit and its use
KR1019980056102A KR100299488B1 (en) 1997-12-18 1998-12-18 Sediment Removal Gas and Sediment Removal Method Using the Gas
CN98125349A CN1119385C (en) 1997-12-18 1998-12-18 Gas for removing deposit and removal method using same
US10/705,532 US7168436B2 (en) 1997-12-18 2003-11-12 Gas for removing deposit and removal method using same
US11/543,968 US7744769B2 (en) 1997-12-18 2006-10-06 Gas for removing deposit and removal method using same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP34953697 1997-12-18
JP9-349536 1997-12-18
JP10239338A JP3014368B2 (en) 1997-12-18 1998-08-26 Cleaning gas

Publications (2)

Publication Number Publication Date
JPH11236561A true JPH11236561A (en) 1999-08-31
JP3014368B2 JP3014368B2 (en) 2000-02-28

Family

ID=26534199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10239338A Expired - Fee Related JP3014368B2 (en) 1997-12-18 1998-08-26 Cleaning gas

Country Status (1)

Country Link
JP (1) JP3014368B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117083A (en) * 1999-12-27 2011-06-16 Semiconductor Energy Lab Co Ltd Method of fabricating light emission device
WO2012014565A1 (en) * 2010-07-28 2012-02-02 セントラル硝子株式会社 Plasma cleaning method for parallel plate electrodes
WO2012114611A1 (en) * 2011-02-22 2012-08-30 セントラル硝子株式会社 Cleaning gas and remote plasma cleaning method using same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686157B2 (en) 2004-09-29 2011-05-18 株式会社東芝 Cleaning method for film forming apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117083A (en) * 1999-12-27 2011-06-16 Semiconductor Energy Lab Co Ltd Method of fabricating light emission device
US8968823B2 (en) 1999-12-27 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a light emitting device
US9559302B2 (en) 1999-12-27 2017-01-31 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a display device
WO2012014565A1 (en) * 2010-07-28 2012-02-02 セントラル硝子株式会社 Plasma cleaning method for parallel plate electrodes
WO2012114611A1 (en) * 2011-02-22 2012-08-30 セントラル硝子株式会社 Cleaning gas and remote plasma cleaning method using same

Also Published As

Publication number Publication date
JP3014368B2 (en) 2000-02-28

Similar Documents

Publication Publication Date Title
US7744769B2 (en) Gas for removing deposit and removal method using same
JP3400293B2 (en) CVD apparatus and cleaning method thereof
KR100760891B1 (en) Method for enhancing fluorine utilization
TW583736B (en) Plasma cleaning gas and plasma cleaning method
JP2002280376A (en) Method and apparatus of cleaning cvd apparatus
WO2004082008A1 (en) Cvd apparatus and method for cleaning cvd apparatus
WO2011068038A1 (en) Cleaning gas
JP2904723B2 (en) Cleaning gas
JP6952766B2 (en) Dry etching method or dry cleaning method
JP3014368B2 (en) Cleaning gas
JP2000265275A (en) Cleaning method
JP4320389B2 (en) CVD chamber cleaning method and cleaning gas used therefor
JPS62127397A (en) Nitrogen trifluoride as in-site detergent and method for washing ship shaped container and pipe using the same
JP3468412B2 (en) Cleaning gas
JP2776700B2 (en) Cleaning method of ammonium silicofluoride
JP3555737B2 (en) Cleaning gas
JP2003229365A (en) Mixed cleaning gas composition
JP3183846B2 (en) Cleaning gas and etching gas
JP2768666B2 (en) Method for removing deposits in thin film forming apparatus
JP2002184765A (en) Cleaning gas
JP3827869B2 (en) Semiconductor manufacturing apparatus and cleaning method thereof
JP2003144905A (en) Gas cleaning method
JP3152386B2 (en) Cleaning method for tantalum oxide manufacturing equipment
JP2000038673A (en) Cleaning gas
JP2006024709A (en) Method of cleaning chamber

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121217

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees