JPH11236281A - Production of inorganic material - Google Patents

Production of inorganic material

Info

Publication number
JPH11236281A
JPH11236281A JP4032798A JP4032798A JPH11236281A JP H11236281 A JPH11236281 A JP H11236281A JP 4032798 A JP4032798 A JP 4032798A JP 4032798 A JP4032798 A JP 4032798A JP H11236281 A JPH11236281 A JP H11236281A
Authority
JP
Japan
Prior art keywords
emulsion
coating
inorganic material
polyvinylidene chloride
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4032798A
Other languages
Japanese (ja)
Inventor
Masahiro Kashida
雅弘 樫田
Yukio Shimada
幸雄 嶋田
Takaya Nibu
貴也 丹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP4032798A priority Critical patent/JPH11236281A/en
Publication of JPH11236281A publication Critical patent/JPH11236281A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/483Polyacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4838Halogenated polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively inhibit alkaline material leaching from the surface of a fiber reinforced cement-base inorg. material, by coating the surface of the inorg. material with an emulsion contg. polyvinylidene chloride as an essential component. SOLUTION: The emulsion contg. polyvinylidene chloride as an essential component may be an emulsion which is commercially available as an aq. or solvent emulsion and the amt. of the resin component is 5-80 wt.%. The coating weight of the emulsion is 10-200 g/m<2> . An acrylic emulsion having crosslinkable groups may be used in place of the emulsion contg. polyvinylidene chloride. The acrylic emulsion is an emulsion of acrylic resin having crosslinkable groups such as epoxy, amino, carbonyl, carboxyl or hydrazide groups in its molecular chain and forms a dense coating because a crosslinked network structure is formed. A commercially available emulsion contg. 5-80 wt.% acrylic resin may be used. The coating weight is 20-200 g/m<2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、無機質材
の製造方法に関するものである。さらに詳しくは、この
出願の発明は、外装材や瓦等の建材として有用な、表面
からのアルカリ溶出を抑えた繊維補強セメント系無機質
材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an inorganic material. More specifically, the invention of this application relates to a method for producing a fiber-reinforced cement-based inorganic material that is useful as a building material such as an exterior material or a roof tile and that suppresses alkali elution from the surface.

【0002】[0002]

【従来の技術】従来より、補強繊維を配合したセメント
系無機質材が、外装材、瓦等の建材として用いられてき
ている。セメントを主成分としたこれらの無機質材は、
セメントに含まれるアルカリ物質のために、製品が水に
濡れるとアルカリ分が溶出し、付着水がアルカリ性にな
るため、施工時や施工後に付着水に触れると肌荒れ等が
生じるという問題がある。また、製品そのものも、アル
カリ水の蒸発後にアルカリ分のみが製品の表面に残り、
白っぽい変色が生じる(白化)とう問題がある。
2. Description of the Related Art Conventionally, cement-based inorganic materials containing reinforcing fibers have been used as building materials such as exterior materials and tiles. These inorganic materials mainly composed of cement,
Due to the alkali substance contained in the cement, when the product gets wet with water, the alkaline component is eluted, and the attached water becomes alkaline. Therefore, there is a problem in that the skin becomes rough when touching the attached water during or after construction. Also, in the product itself, only the alkali content remains on the product surface after evaporation of the alkaline water,
There is a problem that whitish discoloration occurs (whitening).

【0003】このような問題に対処するため、従来で
は、セメント系無機質材の製造工程における混和成分の
調節や成形後の養生条件の変更により、セメント水和後
の硬化体のアルカリ分を抑えて表面からのアルカリ溶出
の不都合を解消することが検討されてきている。また、
硬化体の表面に樹脂シーラーを塗布して、表面に形成さ
れた塗膜によってアルカリ溶出を抑えることが試みられ
てきている。
[0003] To cope with such a problem, conventionally, the alkali content of the hardened material after hydration of cement is suppressed by adjusting the mixing components in the production process of the cement-based inorganic material and changing the curing conditions after molding. It has been studied to solve the problem of alkali elution from the surface. Also,
Attempts have been made to apply a resin sealer to the surface of the cured product and to suppress alkali elution by a coating film formed on the surface.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、以上の
ような従来のアルカリ溶出への対策には、実用的にはさ
らに改善すべき課題が残されていた。混和成分の調節や
養生条件の変更による無機質材の低アルカリ化は、硬化
体製品の強度等の特性、さらには製造工程の変更等の点
から制約があり、アルカリ溶出の抑制は充分なものとな
っていないのが実情である。
However, the above-mentioned conventional countermeasures against alkali elution still have problems to be further improved practically. The reduction of alkalinity of inorganic materials by adjusting the mixing components and changing the curing conditions is limited by the properties such as the strength of the cured product, and further by changes in the manufacturing process, and the suppression of alkali elution is sufficient. It is not the case.

【0005】一方、従来の表面塗装については、その手
段としては比較的容易であるものの、高アルカリなセメ
ント系無機質材の表面からアルカリ溶出を抑えることは
充分でなく、塗膜の密着性やその外観性等の点において
充分に満足できるものではなかった。このため、この出
願の発明では、以上のとおりの従来の問題点を解消し、
高アルカリなセメント系無機質材であっても、その表面
からのアルカリ溶出による不都合を効果的に抑えて、外
観性や生産性も良好なセメント系無機質材を製造するこ
とのできる新しい方法を提供することを課題としてい
る。
[0005] On the other hand, the conventional surface coating is relatively easy as a means, but it is not enough to suppress alkali elution from the surface of a highly alkaline cement-based inorganic material, and the adhesion of the coating film and its adhesion are not enough. It was not satisfactory in terms of appearance and the like. Therefore, the invention of this application solves the conventional problems as described above,
Provided is a new method that can effectively suppress inconvenience due to alkali elution from the surface of a highly alkaline cement-based inorganic material and produce a cement-based inorganic material having good appearance and productivity. That is the task.

【0006】[0006]

【課題を解決するための手段】この出願は、上記の課題
を解決するために、まず第1の発明として繊維補強され
たセメント系無機質材の製造方法であって、その表面に
ポリ塩化ビニリデンを主成分とするエマルジョンによる
塗装を施すことを特徴とする無機質材の製造方法を提供
する。
In order to solve the above-mentioned problems, the present application firstly provides a method for producing a fiber-reinforced cementitious inorganic material as a first invention, wherein polyvinylidene chloride is coated on the surface thereof. Provided is a method for producing an inorganic material, characterized by applying a coating with an emulsion as a main component.

【0007】また、この出願は、第1の発明に関連し
て、第2の発明として、10〜200g/m2 の塗装を
施す方法も提供する。さらに、この出願は、第3の発明
として繊維補強されたセメント系無機質材の製造方法で
あって、その表面に架橋基を持つアクリルエマルジョン
による塗装を施すことを特徴とする無機質材の製造方法
と、第4の発明として、20〜200g/m2 の塗装を
施す方法も提供する。
[0007] This application also provides, as a second invention, a method of applying a coating of 10 to 200 g / m 2 in relation to the first invention. Further, the present invention relates to a method for producing a fiber-reinforced cementitious inorganic material as a third invention, which comprises applying a coating with an acrylic emulsion having a crosslinking group on the surface thereof. As a fourth invention, a method for applying a coating of 20 to 200 g / m 2 is also provided.

【0008】[0008]

【発明の実施の形態】この出願の発明は、上記のとおり
の特徴を持つものであるが、以下にその実施の形態につ
いて説明する。まず、繊維補強されたセメント系無機質
材であるが、このものは、セメントに、バルプやロック
ウール、合成繊維等の短繊維が補強のために配合され、
珪砂やクライアッシュ等の珪酸質材料、さらには炭酸カ
ルシウムや水酸化アルミニウム等の無機質充填材も配合
された原料の水性スラリーを抄造法により抄き上げたも
のや、あるいはその水性混合物を注型プレス成形して製
造したもの等の各種のものであってよい。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and embodiments thereof will be described below. First, it is a fiber-reinforced cement-based inorganic material, which is compounded with cement, short fibers such as valp, rock wool, and synthetic fibers are added for reinforcement.
An aqueous slurry of a raw material containing a siliceous material such as silica sand or cryash, and also an inorganic filler such as calcium carbonate or aluminum hydroxide, or a mixture of the aqueous mixture is cast by a press. Various types such as those manufactured by molding may be used.

【0009】いずれの場合にも、セメントを主成分と
し、補強繊維が配合されたものがその要件とされてい
る。このような繊維補強セメント系無機質材は、通常、
成形後に養生、乾燥により硬化されている。図1に示し
たように、この硬化後の無機質材(1)に対して、この
発明の特徴としての塗装(2)が施される。
In any case, a material containing cement as a main component and reinforcing fibers is required. Such fiber-reinforced cementitious inorganic materials are usually
It is cured by curing and drying after molding. As shown in FIG. 1, the cured inorganic material (1) is coated (2) as a feature of the present invention.

【0010】第1および第2の発明では、無機質材の表
面、すなわち、外部に対して露出している面であって、
塗装が必要とされる平面、端面、あるいは段差面等の各
種の部位における少くとも一つの面に対して、ポリ塩化
ビニリデンの主成分とするエマルジョンによる塗装が施
される。第3および第4の発明では、架橋基を持つアク
リルエマルジョンによる塗装が施される。
In the first and second inventions, the surface of the inorganic material, that is, the surface exposed to the outside,
At least one surface in various parts such as a flat surface, an end surface, or a step surface where coating is required is coated with an emulsion containing polyvinylidene chloride as a main component. In the third and fourth inventions, coating with an acrylic emulsion having a crosslinking group is performed.

【0011】ポリ塩化ビニリデンを主成分とするエマル
ジョンは、水性ないしは溶媒エマルジョンとして市販さ
れているものをはじめ各種のものでよく、一般的には樹
脂成分の割合が5〜80重量%程度のものが適当なもの
として使用できる。そして、このポリ塩化ビニリデンを
主成分とするエマルジョンシーラーについては、その塗
布量は、一般的には10〜200g/m2 の範囲とする
のが適当であり、さらに好ましくは20〜50g/m2
の範囲である。
Emulsions containing polyvinylidene chloride as a main component may be of various types including those marketed as aqueous or solvent emulsions, and generally those having a resin component ratio of about 5 to 80% by weight. Can be used as appropriate. The coating amount of the emulsion sealer containing polyvinylidene chloride as a main component is generally appropriate in the range of 10 to 200 g / m 2 , and more preferably 20 to 50 g / m 2.
Range.

【0012】塗布量が10g/m2 未満の場合には、塗
膜欠陥が生じやすく、シール性が低下し、一方、200
g/m2 を超える場合には、製品を積み上げて保管する
際に、樹脂の接着により製品を剥離するのが難しくなり
(ブロッキング)、また、多量に塗布してもシール効果
は向上せず経済性も良くないことから、好ましくない。
When the coating amount is less than 10 g / m 2 , coating film defects are apt to occur, and the sealing property is deteriorated.
If it exceeds g / m 2 , it becomes difficult to peel off the product due to the adhesion of the resin when the product is stacked and stored (blocking), and even if it is applied in a large amount, the sealing effect is not improved and economical. It is not preferable because the property is not good.

【0013】架橋基を持つアクリルエマルジョンは、架
橋基として、エポキシ基、アミノ基、カルボニル基、カ
ルボキシル基、ヒドラジド基等を分子鎖に持つアクリル
樹脂のエマルジョンであって、これら架橋基の存在によ
って、架橋網状構造が形成されるために緻密な塗膜が生
成されるという特徴を有している。たとえばエポキシ基
やアミノ基を持つ場合には、次式
The acrylic emulsion having a cross-linking group is an emulsion of an acrylic resin having, as a cross-linking group, an epoxy group, an amino group, a carbonyl group, a carboxyl group, a hydrazide group and the like in a molecular chain. It has a feature that a dense coating film is generated because a crosslinked network structure is formed. For example, if you have an epoxy group or amino group,

【0014】[0014]

【化1】 Embedded image

【0015】のように、カルボニル基とヒドラジド基の
場合には次式
As in the case of a carbonyl group and a hydrazide group,

【0016】[0016]

【化2】 Embedded image

【0017】のように架橋反応が生じることになる。こ
のような架橋基を持つアクリルエマルジョンシーラーの
塗布量は、一般的には20〜200g/m2 の範囲とす
るのが適当である。より好ましくは20〜70g/m2
の範囲である。塗布量が20g/m2 未満では、塗膜欠
陥が生じやすく、アルカリ溶出防止のためのシール効果
は充分なものとなりにくく、また、200g/m2 を超
える場合には、架橋反応が遅れ、均一で緻密を塗膜がで
きにくく、生産性、経済性の点でも好ましくない。
As described above, a crosslinking reaction occurs. It is generally appropriate that the coating amount of the acrylic emulsion sealer having such a cross-linking group is in the range of 20 to 200 g / m 2 . More preferably, 20 to 70 g / m 2
Range. When the coating amount is less than 20 g / m 2 , coating film defects are liable to occur, and the sealing effect for preventing alkali elution is hardly sufficient. When the coating amount exceeds 200 g / m 2 , the crosslinking reaction is delayed and uniform. It is difficult to form a dense coating film, which is not preferable in terms of productivity and economy.

【0018】以上のエマルジョンについても、樹脂分の
割合が5〜80重量%程度の市販売品をはじめとするも
のを用いることができる。エマルジョンシーラーの塗布
後には乾燥を行って、この発明のセメント系無機質材が
得られることになる。アルカリ溶出の防止効果、ブロッ
キング防止効果は顕著なものとなる。以下、実施例を示
し、さらに詳しく説明する。
As the above-mentioned emulsions, it is also possible to use emulsions such as commercial products whose resin content is about 5 to 80% by weight. After the application of the emulsion sealer, drying is performed to obtain the cement-based inorganic material of the present invention. The effect of preventing alkali elution and the effect of preventing blocking become remarkable. Hereinafter, examples will be shown and described in more detail.

【0019】[0019]

【実施例】(実施例1〜5)ポルトランドセメント70
重量%、シリカ20重量%、ロックウール10重量%の
原料配合組成物から水硬化により製造された繊維補強セ
メント系無機質材に対して、ポリ塩化ビニリデンを主成
分としたエマルジョンシーラー(三菱化学BASF社
製)を、10、20、および50g/m2 の各々の量に
おいて塗布して乾燥し、これらのアルカリ溶出量を測定
した(実施例1〜3)。
(Examples 1 to 5) Portland cement 70
An emulsion sealer containing polyvinylidene chloride as a main component (Mitsubishi Chemical BASF Co., Ltd.) for a fiber-reinforced cementitious inorganic material produced by water-curing from a raw material composition of 20% by weight, 20% by weight of silica and 10% by weight of rock wool. Was applied at 10, 20, and 50 g / m 2 and dried, and the alkali elution amount was measured (Examples 1 to 3).

【0020】また同様に、架橋基としてエポキシ基を持
つアクリルエマルジョンシーラー(三菱化学BASF社
製)を、20および50g/m2 の各々の量で塗布して
乾燥し、これらのアルカリ溶出量を測定した(実施例4
〜5)。さらに、比較のために、従来品としてのポリア
クリルエマルジョンシーラーを、10、20、50g/
2 の各々の量で塗布し、乾燥したものについてもアル
カリ溶出量を測定した(比較例1〜3)。
Similarly, an acrylic emulsion sealer having an epoxy group as a cross-linking group (manufactured by Mitsubishi Chemical BASF) was applied at an amount of 20 g / m 2 and 50 g / m 2 , respectively, and dried. (Example 4
~ 5). Further, for comparison, a conventional polyacryl emulsion sealer was used at 10, 20, 50 g /
The amount of alkali eluted was also measured for those coated and dried in the respective amounts of m 2 (Comparative Examples 1 to 3).

【0021】また、塗布を行わない場合(比較例4)。
実施例1〜5と同様のエマルジョン塗布は行うものの、
その塗布量が過小もしくは過大な場合(比較例5〜8)
についても同様とした。なお、アルカリ溶出量の測定
は、次の方法に従った。すなわち、図2に示したよう
に、塗装後の評価対象面(20)の上に、エポキシ樹脂
(3)による接着で内径40mmの筒(4)を立設し、
その中に精製水(5)50ccを入れ、筒(4)に蓋を
して24時間後の水素イオン濃度(pH)を測定した。
この水素イオン濃度(pH)をもってアルカリ溶出を評
価した。
In the case where the coating is not performed (Comparative Example 4).
Although the same emulsion coating as in Examples 1 to 5 is performed,
When the coating amount is too small or too large (Comparative Examples 5 to 8)
The same applies to In addition, the measurement of the alkali elution amount followed the following method. That is, as shown in FIG. 2, a cylinder (4) having an inner diameter of 40 mm is erected on the evaluation target surface (20) after coating by bonding with an epoxy resin (3).
50 cc of purified water (5) was put therein, the tube (4) was covered, and the hydrogen ion concentration (pH) after 24 hours was measured.
The alkali elution was evaluated based on the hydrogen ion concentration (pH).

【0022】その結果を示したものが表1および表2で
ある。
Tables 1 and 2 show the results.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】この表1および表2より、この発明の場合
には、アルカリ溶出の防止効果が優れていることがわか
る。また、塗布量についてはより好ましく範囲があるこ
とも確認される。
From Tables 1 and 2, it can be seen that in the case of the present invention, the effect of preventing alkali elution is excellent. It is also confirmed that the coating amount has a more preferable range.

【0026】[0026]

【発明の効果】以上詳しく説明したとおり、この出願の
発明によって、表面からのアルカリ溶出が顕著に抑えら
れ、従来品のようなアルカリ溶出による不都合のないセ
メント系無機質材が提供される。
As described in detail above, according to the invention of the present application, alkali elution from the surface is remarkably suppressed, and a cement-based inorganic material unlike conventional products which is free from alkali elution is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の塗装された無機質材を例示した要部
断面図である。
FIG. 1 is a cross-sectional view of a main part illustrating a painted inorganic material of the present invention.

【図2】アルカリ溶出の測定方法を示した斜視図であ
る。
FIG. 2 is a perspective view showing a method for measuring alkali elution.

【符号の説明】[Explanation of symbols]

1 セメント系無機質材 2 塗装 20 評価対象面 3 エポキシ樹脂 4 筒 5 精製水 DESCRIPTION OF SYMBOLS 1 Cement-based inorganic material 2 Painting 20 Evaluation target surface 3 Epoxy resin 4 Tube 5 Purified water

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 繊維補強されたセメント系無機質材の製
造方法であって、その表面にポリ塩化ビニリデンを主成
分とするエマルジョンによる塗装を施すことを特徴とす
る無機質材の製造方法。
1. A method for producing a fiber-reinforced cementitious inorganic material, wherein the surface is coated with an emulsion containing polyvinylidene chloride as a main component.
【請求項2】 10〜200g/m2 の塗装を施す請求
項1の製造方法。
2. The method according to claim 1, wherein a coating of 10 to 200 g / m 2 is applied.
【請求項3】 繊維補強されたセメント系無機質材の製
造方法であって、その表面に架橋基を持つアクリルエマ
ルジョンによる塗装を施すことを特徴とする無機質材の
製造方法。
3. A method for producing a fiber-reinforced cementitious inorganic material, wherein the surface is coated with an acrylic emulsion having a crosslinking group.
【請求項4】 20〜200g/m2 の塗装を施す請求
項3の製造方法。
4. The method according to claim 3, wherein a coating of 20 to 200 g / m 2 is applied.
JP4032798A 1998-02-23 1998-02-23 Production of inorganic material Pending JPH11236281A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4032798A JPH11236281A (en) 1998-02-23 1998-02-23 Production of inorganic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4032798A JPH11236281A (en) 1998-02-23 1998-02-23 Production of inorganic material

Publications (1)

Publication Number Publication Date
JPH11236281A true JPH11236281A (en) 1999-08-31

Family

ID=12577523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4032798A Pending JPH11236281A (en) 1998-02-23 1998-02-23 Production of inorganic material

Country Status (1)

Country Link
JP (1) JPH11236281A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007089807A3 (en) * 2006-01-31 2007-10-18 Valspar Sourcing Inc Coating system for cement composite articles
US8932718B2 (en) 2006-07-07 2015-01-13 Valspar Sourcing, Inc. Coating systems for cement composite articles
US8993110B2 (en) 2005-11-15 2015-03-31 Valspar Sourcing, Inc. Coated fiber cement article with crush resistant latex topcoat
US9133064B2 (en) 2008-11-24 2015-09-15 Valspar Sourcing, Inc. Coating system for cement composite articles
US9175187B2 (en) 2008-08-15 2015-11-03 Valspar Sourcing, Inc. Self-etching cementitious substrate coating composition
US9359520B2 (en) 2006-06-02 2016-06-07 Valspar Sourcing, Inc. High performance aqueous coating compositions
US9783622B2 (en) 2006-01-31 2017-10-10 Axalta Coating Systems Ip Co., Llc Coating system for cement composite articles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993110B2 (en) 2005-11-15 2015-03-31 Valspar Sourcing, Inc. Coated fiber cement article with crush resistant latex topcoat
WO2007089807A3 (en) * 2006-01-31 2007-10-18 Valspar Sourcing Inc Coating system for cement composite articles
AU2007209879B2 (en) * 2006-01-31 2012-04-26 Valspar Holdings I, Inc Coating system for cement composite articles
US9783622B2 (en) 2006-01-31 2017-10-10 Axalta Coating Systems Ip Co., Llc Coating system for cement composite articles
US9359520B2 (en) 2006-06-02 2016-06-07 Valspar Sourcing, Inc. High performance aqueous coating compositions
US8932718B2 (en) 2006-07-07 2015-01-13 Valspar Sourcing, Inc. Coating systems for cement composite articles
US9593051B2 (en) 2006-07-07 2017-03-14 Valspar Sourcing, Inc. Coating systems for cement composite articles
US10640427B2 (en) 2006-07-07 2020-05-05 Axalta Coating Systems IP Co. LLC Coating systems for cement composite articles
US9175187B2 (en) 2008-08-15 2015-11-03 Valspar Sourcing, Inc. Self-etching cementitious substrate coating composition
US9133064B2 (en) 2008-11-24 2015-09-15 Valspar Sourcing, Inc. Coating system for cement composite articles

Similar Documents

Publication Publication Date Title
US5650004A (en) Cement plaster composition, additive therefor and method of using the composition
EP0644165B1 (en) Cement products and a method of manufacture thereof
CA1130147A (en) Glass fiber size composition and process
JPH046136A (en) Refractory coating material
JPH11236281A (en) Production of inorganic material
US2934932A (en) Hydraulic cement mortar compositions and methods of use
KR19990073370A (en) Water born inorganic coating material with power type and inorganic coating material for finishing
US4355079A (en) Corrosion inhibition
JP6735290B2 (en) Dry-curable plaster composition for coating material, gypsum-based coating material, and method for applying gypsum-based coating material
JP6887375B2 (en) Fiber-containing carbonated roof tile and its manufacturing method
JP2001300924A (en) Method for preparing inorganic plate
JPH0525898A (en) Surface preparation agent and execution of work therewith
JP2000290088A (en) Method for preventing acid deterioration of concrete surface and deposition of dust on the surface
JP2001335385A (en) Inorganic cured body
JPH02279305A (en) Curing method for concrete or mortar
JPH08505574A (en) Flexible protective membrane especially useful for waterproofing and protecting reinforced concrete bodies and metal tubes
JPH11236282A (en) Surface-treated inorganic material and its production
JP4384376B2 (en) Water repellent inorganic material and production method thereof
JP2002060284A (en) Fiber-reinforced cement plate and method of producing the same
JPH11269762A (en) Reinforcing fiber for composite molded product and composite molded product using the same
RU2078691C1 (en) Method of treating concrete surfaces
CH625773A5 (en) Sag-resistant composition
JPH0269375A (en) Concrete covering material and covering method
JP2000185983A (en) Inorganic board
JP2899587B1 (en) Cement-based extruded product and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20040115

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Effective date: 20080115

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20080520

Free format text: JAPANESE INTERMEDIATE CODE: A02