JPH11234161A - Switching circuit - Google Patents

Switching circuit

Info

Publication number
JPH11234161A
JPH11234161A JP3614398A JP3614398A JPH11234161A JP H11234161 A JPH11234161 A JP H11234161A JP 3614398 A JP3614398 A JP 3614398A JP 3614398 A JP3614398 A JP 3614398A JP H11234161 A JPH11234161 A JP H11234161A
Authority
JP
Japan
Prior art keywords
signal
circuit
differential amplifier
gain
amplifier circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3614398A
Other languages
Japanese (ja)
Inventor
Keiji Kobayashi
啓二 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP3614398A priority Critical patent/JPH11234161A/en
Publication of JPH11234161A publication Critical patent/JPH11234161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superheterodyne Receivers (AREA)
  • Noise Elimination (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To perform changeover of a reception band and adjacent interference removal by a simple circuit in a radio receiver. SOLUTION: At the time of AM reception, a differential amplifier circuit 27 is selected and the AMIF signals of a narrow band filter are amplified with a first gain (G1). At the time of FM normal reception, the differential amplifier circuit 28 is selected and the FMIF signals of a wide band filter are amplified with a second gain (G2). Also, when an adjacent interference is generated at the time of FM reception, the differential amplifier circuit 26 is selected and the FMIF signals of the narrow band filter are amplified with a third gain (G3).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ラジオ受信機にお
けるIF信号の切り換えに用いられる切換回路に関す
る。
The present invention relates to a switching circuit used for switching an IF signal in a radio receiver.

【0002】[0002]

【従来の技術】一般に、ラジオ受信機において、FM受
信回路と、影像妨害が除去することができるダブルコン
バージョン式のAMラジオ受信回路とが同一半導体基板
上に1チップ化されている。このようなラジオ受信回路
は図3のように構成される。図4において、FM受信
時、FMRF信号はFM−RF同調増幅回路1で同調及
び増幅された後、混合回路2のFM混合部3で局部発振
信号により中心周波数10.7MHzのFMIF信号に周
波数変換される。FMIF信号は共通フィルタ4で帯域
制限された後、バッファ回路5及び切換回路6を介して
FMフィルタ7に印加され、帯域制限された後FM検波
回路8でFM検波される。
2. Description of the Related Art In general, in a radio receiver, an FM receiving circuit and a double-conversion AM radio receiving circuit capable of removing image interference are integrated into one chip on the same semiconductor substrate. Such a radio receiving circuit is configured as shown in FIG. In FIG. 4, at the time of FM reception, an FMRF signal is tuned and amplified by an FM-RF tuning amplifier circuit 1, and then frequency-converted into an FMIF signal having a center frequency of 10.7 MHz by a local oscillation signal in an FM mixing unit 3 of a mixing circuit 2. Is done. The FMIF signal is band-limited by the common filter 4, applied to the FM filter 7 via the buffer circuit 5 and the switching circuit 6, band-limited, and FM-detected by the FM detection circuit 8.

【0003】また、AM受信時、AMRF信号はAM−
RF同調増幅回路9で増幅された後、AM混合部10で
第1AMIF信号に周波数変換される。第1AMIF
は、共通フィルタ4、バッファ回路5、切換回路6を介
して、第1AMフィルタ11で帯域制限され、その後第
2のAM混合回路12で第2IF信号に周波数変換さ
れ、さらにAM検波回路13でAM検波される。ところ
で、混合回路2はFM及びAM用のダブル差動増幅回路
をそれぞれ有し、FM及びAMRF信号がそれぞれのダ
ブル差動増幅回路に印加され、各々のIF信号が共通出
力端から出力される。AM受信回路にダブルコンバージ
ョン方式が採用されており、第1AMIF信号のIF周
波数としてFMIF信号のIF周波数と同一であるので
混合回路2の出力端を共通化できる。この共通出力端か
ら発生するFM及びAMIF信号は受信バンドに応じて
切換回路6で分岐され、それぞれFM及びAM検波回路
8及び13に印加される。
At the time of AM reception, the AMRF signal is
After being amplified by the RF tuning amplifier circuit 9, the frequency is converted into a first AMIF signal by the AM mixer 10. 1st AMIF
Is band-limited by a first AM filter 11 via a common filter 4, a buffer circuit 5, and a switching circuit 6, then is frequency-converted to a second IF signal by a second AM mixing circuit 12, and is further amplified by an AM detection circuit 13. It is detected. The mixing circuit 2 has double differential amplifying circuits for FM and AM, respectively. The FM and AMRF signals are applied to the respective double differential amplifying circuits, and the respective IF signals are output from a common output terminal. Since the double conversion method is adopted for the AM receiving circuit and the IF frequency of the first AMIF signal is the same as the IF frequency of the FMIF signal, the output terminal of the mixing circuit 2 can be shared. The FM and AMIF signals generated from the common output terminal are branched by the switching circuit 6 according to the reception band, and applied to the FM and AM detection circuits 8 and 13, respectively.

【0004】[0004]

【発明が解決しようとする課題】FM受信では、希望局
に隣接して強電界の妨害局が存在する場合妨害局の電波
がFMラジオ受信系統に飛び込み希望局が妨害局によっ
て妨害を受ける隣接妨害が発生することがある。これを
防止する対策として、FM用のIFフィルタとして広帯
域及び狭帯域の2つのフィルタを用意し、隣接妨害が発
生するとFMIF信号の帯域をより狭く帯域制限して妨
害局を除去するようにしていた。しかしながら、この対
策を図4の従来のラジオ受信機に施そうとすると、FM
受信系統にさらにフィルタを設けることになり、回路が
増えるだけでなく、FMIF信号自体やAM/FMIF
信号の切り換えなどの回路が複雑化するという問題があ
った。特に、FMIF信号自体やAM/FMIF信号の
切り換えに際して、ラジオ受信回路全体のゲインがAM
受信系統や、広帯域及び狭帯域のFM受信系統によって
それぞれ異なるので、ゲインの調整も必要になり、さら
に回路が複雑化するという問題があった。
In FM reception, when there is a jamming station of a strong electric field adjacent to the desired station, the radio wave of the jamming station jumps into the FM radio receiving system and the desired station is jammed by the jamming station. May occur. As a measure to prevent this, two filters of a wide band and a narrow band are prepared as IF filters for FM, and when adjacent interference occurs, the band of the FMIF signal is band-limited more narrowly to remove the interfering station. . However, when this measure is applied to the conventional radio receiver shown in FIG.
Since a filter is further provided in the receiving system, not only the number of circuits increases, but also the FMIF signal itself and the AM / FMIF
There has been a problem that circuits for switching signals are complicated. In particular, when the FMIF signal itself or the AM / FMIF signal is switched, the gain of the entire radio receiving circuit is set to AM
Since it differs depending on the receiving system and the broadband and narrowband FM receiving systems, it is necessary to adjust the gain and the circuit becomes more complicated.

【0005】[0005]

【課題を解決するための手段】本発明は、第1のゲイン
を有する第1差動増幅回路と、前記第1のゲインより大
きい第2のゲインを有する第2差動増幅回路と、前記第
2のゲインより大きい第3のゲインを有する第3差動増
幅回路と、外部選択信号に応じて前記第1乃至第3差動
増幅回路のうち1つを動作させる動作制御回路と、前記
第1乃至第3差動増幅回路の出力信号が印加される共通
の出力回路とを備えることを特徴とする。
The present invention provides a first differential amplifier having a first gain, a second differential amplifier having a second gain larger than the first gain, and A third differential amplifier circuit having a third gain greater than a gain of 2, an operation control circuit for operating one of the first to third differential amplifier circuits in response to an external selection signal; And a common output circuit to which an output signal of the third differential amplifier circuit is applied.

【0006】また、第1入力信号が前記第1及び第3差
動増幅回路の共通の入力端子に印加され、第2入力信号
が前記第2差動増幅回路に印加されることを特徴とす
る。特に、前記切換回路は、AM及びFMバンドの受信
回路を備えるラジオ受信機において、共通のIF信号ラ
インに導出される2以上のIF信号を切り換えるために
用いられるものであり、前記第1入力信号をAMIF信
号または第1FMIF信号とし、前記第2入力信号を第
2FMIF信号とすることを特徴とする。
Also, a first input signal is applied to a common input terminal of the first and third differential amplifier circuits, and a second input signal is applied to the second differential amplifier circuit. . In particular, the switching circuit is used for switching between two or more IF signals led out to a common IF signal line in a radio receiver including an AM and FM band receiving circuit, and the first input signal Is an AMIF signal or a first FMIF signal, and the second input signal is a second FMIF signal.

【0007】さらに、前記外部選択信号に応じて、AM
IF信号の場合前記第1差動増幅回路が選択され、第1
FM信号の場合前記第2差動増幅回路が選択され、さら
に第2FM信号の場合前記第3差動増幅回路が選択され
ることを特徴とする。また、前記第1差動増幅回路は、
エミッタ抵抗を介して差動接続されたトランジスタと、
前記トランジスタに接続された負荷とから成り、前記負
荷及びエミッタ抵抗の値によってゲインが決まり、前記
第2及び第3差動増幅回路は、差動接続されたトランジ
スタと、前記トランジスタに接続された負荷とから成
り、前記負荷の値によってゲインが決まることを特徴と
する。
Further, according to the external selection signal, the AM
In the case of an IF signal, the first differential amplifier circuit is selected,
In the case of an FM signal, the second differential amplifier circuit is selected, and in the case of a second FM signal, the third differential amplifier circuit is selected. Further, the first differential amplifier circuit includes:
A transistor differentially connected via an emitter resistor;
A load connected to the transistor, wherein the gain is determined by the values of the load and the emitter resistance. The second and third differential amplifier circuits include a differentially connected transistor and a load connected to the transistor. Wherein the gain is determined by the value of the load.

【0008】本発明によれば、第1乃至第3差動増幅回
路の動作を切り換えることにより、入力信号を切り換え
るとともに、入力に対するゲインが切り換わる。
According to the present invention, by switching the operation of the first to third differential amplifier circuits, the input signal is switched and the gain for the input is switched.

【0009】[0009]

【発明の実施の形態】図1は本発明の実施の形態を示す
図であり、14は混合回路2からのFMまたは第1AM
IF信号が導出される1次コイル、15及び16は1次
コイル14に対応する第1及び第2−2次コイル、17
は第1−2次コイル15に導出されるIF信号が印加さ
れ、例えば中心周波数が10.7MHzである広帯域フィ
ルタ、18は第2−2次コイルに導出されるIF信号が
印加され、例えば中心周波数が10.7MHzで帯域幅が
広帯域フィルタ17より狭い狭帯域フィルタ、19は広
帯域フィルタ17または狭帯域フィルタ18の出力信号
を選択する選択回路、20は受信回路の全体のゲインを
調整するためゲインが可変されるアンプ、21は広帯域
及び狭帯域フィルタ17及び18とIFフィルタを成
し、アンプ20の出力信号が印加されるフィルタ、22
はFM−IF信号の振幅レベルをリミットされるリミッ
タアンプ、23は隣接妨害を検出する妨害検出回路、2
4は妨害の検出結果及び受信バンドの切り換えに応じて
IF信号の選択及びゲイン制御の命令を出力するマイコ
ン等の制御回路、25は前記命令をデコードし、選択信
号SL及びゲイン制御信号GAを発生する。尚、図1に
おいて、図2と同一の回路については、図1と同一の符
号を付す。
FIG. 1 is a diagram showing an embodiment of the present invention. In FIG. 1, reference numeral 14 denotes an FM or first AM signal from a mixing circuit 2.
The primary coils from which the IF signal is derived, 15 and 16 are the first and second secondary coils corresponding to the primary coil 14, 17
Is a broadband filter having a center frequency of 10.7 MHz, for example, to which an IF signal derived to the secondary coil 15 is applied, and 18 is a broadband filter to which an IF signal derived to the secondary coil is applied. A narrow-band filter having a frequency of 10.7 MHz and a narrower bandwidth than the wide-band filter 17, a selection circuit 19 for selecting an output signal of the wide-band filter 17 or the narrow-band filter 18, and a gain 20 for adjusting the overall gain of the reception circuit Is an IF filter with the wide band and narrow band filters 17 and 18, and a filter to which the output signal of the amplifier 20 is applied,
Is a limiter amplifier that limits the amplitude level of the FM-IF signal, 23 is a disturbance detection circuit that detects adjacent disturbance,
Reference numeral 4 denotes a control circuit such as a microcomputer which outputs an IF signal selection and gain control instruction in accordance with the detection result of interference and switching of the reception band. 25 decodes the instruction and generates a selection signal SL and a gain control signal GA. I do. In FIG. 1, the same circuits as those in FIG. 2 are denoted by the same reference numerals as those in FIG.

【0010】一般に、AM及びFM受信回路の両方を有
するラジオ受信機は、AM受信時AM受信回路がオンし
FM受信回路がオフし、FM受信時FM受信回路がオン
しAM受信回路がオフする。その為、AM受信時AMの
RF及びIF信号がFM受信ラインに印加されることは
なく、FM受信時FMのRF及びIF信号がAM受信ラ
インに印加されることはない。
Generally, in a radio receiver having both an AM and an FM receiving circuit, the AM receiving circuit is turned on and the FM receiving circuit is turned off at the time of AM reception, and the FM receiving circuit is turned on and the AM receiving circuit is turned off at the time of FM receiving. . Therefore, the AM RF and IF signals are not applied to the FM reception line during AM reception, and the FM RF and IF signals are not applied to the AM reception line during FM reception.

【0011】制御回路24に対してAM受信に切り換え
る切換信号が印加されると、これに応じて命令1が出力
される。デコーダ25で命令1がデコードされると、選
択信号SL及びゲイン制御信号GAが発生する。選択信
号SLに応じて選択回路19は図示と逆の状態になり、
狭帯域フィルタ18の出力信号が選択される。ここで、
混合回路2内のFM及びAM混合部3及び10からのI
F信号は共通の出力回路となる1次コイル14に導出さ
れる。さらに、2次コイル15及び16にはそれぞれ同
一なIF信号が導出され、広帯域及び狭帯域フィルタ1
7及び18で帯域制限される。広帯域及び狭帯域フィル
タ17及び18はそれぞれ図2アのようなフィルタ特性
を有している。第1AMIF信号の周波数は単一の1
0.71MHzであるので第1AMIF信号の周波数帯域
を狭く制限しても良く、また、他の周波数信号により第
1AMIF信号の振幅に悪影響を与えないようにするた
め、第1AMIF信号の周波数帯域は狭く制限されるこ
とが望ましい。そこで、AM受信時、第1AMIF信号
として狭帯域フィルタ18を通過したものが選択され
る。
When a switching signal for switching to AM reception is applied to the control circuit 24, a command 1 is output in response thereto. When the instruction 1 is decoded by the decoder 25, a selection signal SL and a gain control signal GA are generated. In response to the selection signal SL, the selection circuit 19 is in a state opposite to that shown in the figure,
The output signal of the narrow band filter 18 is selected. here,
I from the FM and AM mixing units 3 and 10 in the mixing circuit 2
The F signal is led out to a primary coil 14 serving as a common output circuit. Further, the same IF signal is derived to the secondary coils 15 and 16, respectively, and the broadband and narrowband filters 1
Bands are limited at 7 and 18. The wideband and narrowband filters 17 and 18 each have filter characteristics as shown in FIG. The frequency of the first AMIF signal is a single 1
Since the frequency is 0.71 MHz, the frequency band of the first AMIF signal may be limited narrowly.
It is desirable that the frequency band of the first AMIF signal is narrowly limited so as not to adversely affect the amplitude of the first AMIF signal. Therefore, at the time of AM reception, a signal that has passed through the narrow-band filter 18 is selected as the first AMIF signal.

【0012】また、ゲイン制御信号GAに応じて増幅回
路20のゲインは第1ゲインG1に設定される。増幅回
路20は、第1ゲインG1と、第1ゲインより大きい第
2ゲインG2と、第2ゲインより大きい第3ゲインG3
とを有し、ゲイン制御信号GAによりそのうちの1つの
ゲインに設定される。AM変調は一般に良く知られてい
るように単一周波数の搬送波信号を振幅変調されたもの
なので、AMIF信号のレベルがリミットされるとAM
復調できない。そこで、第1AMIF信号がリミットさ
れないように最小の第1ゲインG1が選択される。狭帯
域フィルタ18の出力信号は増幅回路20で第1ゲイン
G1により増幅される。その後、増幅回路20からの第
1AMIF信号は帯域制限された後、AM第2混合回路
12で第2AMIF信号に周波数変換される。
The gain of the amplifier circuit 20 is set to a first gain G1 according to the gain control signal GA. The amplifier circuit 20 includes a first gain G1, a second gain G2 larger than the first gain, and a third gain G3 larger than the second gain.
And the gain is set to one of the gains by the gain control signal GA. As is well known, AM modulation is obtained by amplitude-modulating a single-frequency carrier signal.
Cannot demodulate. Therefore, the minimum first gain G1 is selected so that the first AMIF signal is not limited. The output signal of the narrow band filter 18 is amplified by the amplifier circuit 20 with the first gain G1. After that, the second
After the band of the 1 AMIF signal is limited, the AM second mixer 12 frequency-converts the signal into a second AMIF signal.

【0013】一方、制御回路24に対してFM受信に切
り換える切換信号が印加されると、これに応じて命令2
が出力される。デコーダ25で命令2がデコードされる
と、他の選択信号SL及びゲイン制御信号GAが発生す
る。選択信号SLに応じて選択回路19が図示の状態に
なり広帯域フィルタ17の出力信号が選択される。FM
変調信号は一般に知られるように搬送波信号を周波数偏
移したものであるので、その周波数偏移範囲と略同一な
広帯域フィルタ17を用いて、必要な信号だけを通過さ
せている。広帯域フィルタ17からのFMIF信号は、
増幅回路20でゲイン制御信号GAに応じて設定された
第2ゲインG2により増幅される。増幅されたFMIF
信号はフィルタ21で帯域制限され、その後リミッタア
ンプでそのレベルがリミットされる。
On the other hand, when a switching signal for switching to FM reception is applied to the control circuit 24, a command 2
Is output. When the instruction 2 is decoded by the decoder 25, another selection signal SL and a gain control signal GA are generated. In response to the selection signal SL, the selection circuit 19 enters the state shown in the figure, and the output signal of the broadband filter 17 is selected. FM
Since the modulated signal is obtained by shifting the frequency of a carrier signal as is generally known, only a necessary signal is passed through the wideband filter 17 having substantially the same frequency shift range. The FMIF signal from the broadband filter 17 is
The signal is amplified by the amplifier circuit 20 with the second gain G2 set according to the gain control signal GA. Amplified FMIF
The signal is band-limited by the filter 21 and then its level is limited by a limiter amplifier.

【0014】FM受信時、希望局Fdに隣接して妨害局
Fudが発生したとする。この妨害局Fudは図2イの
ように広帯域フィルタ17の通過帯域内で、かつ、狭帯
域フィルタ18の通過帯域外にある。妨害検出回路23
において、例えば選択回路19以降のFMIF信号のレ
ベルや、広帯域及び狭帯域フィルタ17及び18の出力
レベルの関係を見ることにより、隣接妨害が検出される
と、検出信号DETが発生し、これに基づいて制御回路2
4が命令3を出力する。命令3がデコードされて得られ
た選択信号SLに応じて、選択回路19は狭帯域フィル
タ18の出力信号を選択する。狭帯域フィルタ18では
妨害局Fudはその通過帯域外になるので、妨害局Fu
dは狭帯域フィルタ18で除去される。その結果、選択
されたFMIF信号は妨害局が除去された状態の信号と
なる。また、ゲイン制御信号GAにより増幅回路20の
ゲインは第3ゲインG3に設定される。FMIF信号は
増幅回路20の第3ゲインG3により増幅された後、フ
ィルタ21で帯域制限され、リミッタアンプ20でリミ
ットされる。よって、狭帯域フィルタ18の出力信号を
選択するとFMIF信号の一部が失われ、FM検波信号
に悪影響を与えるが、それよりも隣接妨害信号の除去に
よる効果の方が大きい。
It is assumed that an interference station Fud is generated adjacent to the desired station Fd during FM reception. This interfering station Fud is within the pass band of the wide band filter 17 and outside the pass band of the narrow band filter 18 as shown in FIG. Interference detection circuit 23
In the above, for example, by detecting the level of the FMIF signal after the selection circuit 19 and the output level of the wideband and narrowband filters 17 and 18, if adjacent interference is detected, a detection signal DET is generated. Control circuit 2
4 outputs instruction 3. The selection circuit 19 selects the output signal of the narrow band filter 18 according to the selection signal SL obtained by decoding the instruction 3. In the narrow-band filter 18, the jamming station Fud is out of the pass band, so
d is removed by the narrow band filter 18. As a result, the selected FMIF signal is a signal from which the interfering station has been removed. The gain of the amplifier circuit 20 is set to the third gain G3 by the gain control signal GA. After the FMIF signal is amplified by the third gain G3 of the amplifier circuit 20, the band is limited by the filter 21 and is limited by the limiter amplifier 20. Therefore, when the output signal of the narrow band filter 18 is selected, a part of the FMIF signal is lost, which adversely affects the FM detection signal. However, the effect of removing the adjacent interference signal is greater than that.

【0015】ここで、図2アに示されるように狭帯域フ
ィルタ18の通過帯域の減衰量は広帯域フィルタより大
きいので、隣接妨害発生時のFMIF信号のレベルは通
常受信時より低くなる。そこで、狭帯域フィルタ18の
出力信号が選択された場合に、増幅回路20のゲインを
第2ゲインG2より大きい第3ゲインG3に設定するこ
とにより、減衰量の増加が補正され、FMIF信号がよ
り大きいレベルに増幅される。その結果、通常受信時で
も隣接妨害発生時でも、増幅回路20の出力レベルは変
わらず、FM受信系統のトータルゲインは変わらないよ
うにすることができる。但し、第2及び第3ゲインG2
及びG3の差は広帯域及び狭帯域フィルタ17及び18
の通過帯域における減衰量の差に略等しくなるように設
定される。
Here, as shown in FIG. 2A, since the attenuation of the pass band of the narrow band filter 18 is larger than that of the wide band filter, the level of the FMIF signal when adjacent interference occurs is lower than that during normal reception. Therefore, when the output signal of the narrow band filter 18 is selected, the gain of the amplifier circuit 20 is set to the third gain G3, which is larger than the second gain G2, so that the increase in the attenuation is corrected, and the FMIF signal is further reduced. Amplified to a large level. As a result, the output level of the amplifier circuit 20 does not change and the total gain of the FM receiving system does not change during normal reception or when adjacent interference occurs. However, the second and third gains G2
And G3 is the difference between the wideband and narrowband filters 17 and 18
Are set so as to be substantially equal to the difference between the attenuation amounts in the passbands.

【0016】図3は図1の選択回路19及び増幅回路2
0の兼用となる具体回路を示す図であり、26はトラン
ジスタQ1及びQ2が差動接続され、負荷として直列接
続された抵抗R1及びR2が接続されるとともに、第3
ゲインG3を有する差動増幅回路、27はトランジスタ
Q3及びQ4が抵抗R3を介して差動接続され、負荷と
して抵抗R1が接続されるとともに、第1ゲインG1を
有する差動増幅回路、28はトランジスタQ5及びQ6
が差動接続され、負荷として抵抗R1が接続されるとと
もに、第2ゲインG2を有する差動増幅回路、29はエ
ミッタフォロワ型のトランジスタQ7で構成され、差動
増幅回路26乃至28の出力信号を後段の回路に出力す
るための共通の出力段回路、30乃至32は差動増幅回
路26乃至28に対して同一の動作電流を発生する電流
源、33はデコーダ25から出力される2ビットの切換
信号に応じて電流源30乃至32を切り換える切換回路
である。また、狭帯域フィルタ17の出力信号は差動増
幅回路26及び27に印加され、広帯域フィルタ18の
出力信号は差動増幅回路28に印加されている。
FIG. 3 shows the selection circuit 19 and the amplification circuit 2 of FIG.
FIG. 26 is a diagram showing a specific circuit shared with 0, in which a transistor Q1 and a transistor Q2 are differentially connected, and resistors R1 and R2 connected in series as a load are connected;
A differential amplifier circuit having a gain G3, 27 is a differential amplifier circuit having transistors Q3 and Q4 differentially connected via a resistor R3, a resistor R1 connected as a load, and having a first gain G1, and 28 is a transistor. Q5 and Q6
Are differentially connected, a resistor R1 is connected as a load, and a differential amplifier circuit having a second gain G2. An emitter-follower transistor Q7 29 is used to output signals from the differential amplifier circuits 26 to 28. A common output stage circuit for outputting to the subsequent circuit, 30 to 32 are current sources for generating the same operating current for the differential amplifier circuits 26 to 28, and 33 is a 2-bit switch output from the decoder 25. This is a switching circuit that switches the current sources 30 to 32 according to a signal. The output signal of the narrow band filter 17 is applied to differential amplifier circuits 26 and 27, and the output signal of the wide band filter 18 is applied to a differential amplifier circuit 28.

【0017】まず、AM受信時、切換信号が(0、0)
となると、切換回路33の可動端子は電流源31側に接
続されるので差動増幅回路27が動作する。よって、狭
帯域フィルタ18からのAMIF信号が抵抗R1及びR
3で定まる第1ゲインG1で増幅され、出力段回路29
に印加される。また、FM通常受信時、切換信号が
(1、0)となると、切換回路33は電流源32側に切
り換わり、差動増幅回路28が動作する。よって、広帯
域フィルタ17からのFMIF信号が抵抗R1で定まる
第2ゲインで増幅される。さらに、FM受信時隣接妨害
が発生すると、切換信号が(1、1)になり、切換回路
33が電流源30に切り換わるので、差動増幅回路26
が動作する。その結果、狭帯域フィルタ18のFMIF
信号が抵抗R1及びR2で定まる第3ゲインによって増
幅される。
First, at the time of AM reception, the switching signal is (0, 0).
Then, the movable terminal of the switching circuit 33 is connected to the current source 31 side, so that the differential amplifier circuit 27 operates. Therefore, the AMIF signal from the narrow band filter 18 is connected to the resistors R1 and R1.
3 is amplified by the first gain G1 determined by
Is applied to When the switching signal becomes (1, 0) during FM normal reception, the switching circuit 33 switches to the current source 32 side, and the differential amplifier circuit 28 operates. Therefore, the FMIF signal from the broadband filter 17 is amplified with the second gain determined by the resistor R1. Further, when adjacent interference occurs during FM reception, the switching signal becomes (1, 1), and the switching circuit 33 switches to the current source 30.
Works. As a result, the FMIF of the narrow band filter 18
The signal is amplified by a third gain determined by the resistors R1 and R2.

【0018】ところで、図3の差動増幅回路のゲインは
主に負荷によって決まる。差動増幅回路26及び28に
おいて、例えば、トランジスタQ1及びQ5のコレクタ
電流をそれぞれIcとすると、差動増幅回路26の出力
電圧はIc−(R1+R2)×I0となり、差動増幅回
路28の出力電圧はIc−R1×I0となる。(R1+
R2)>R1より、同一レベルの入力信号に対して、差
動増幅回路26の出力レベルは差動増幅回路28より高
くなる。また、差動増幅回路27及び28の負荷はとも
に抵抗R1である。しかし、差動増幅回路27にはエミ
ッタ抵抗R3が接続されるので、トランジスタQ3及び
Q4のエミッタ間の電圧差をΔVとすると、トランジス
タQ3及びQ4のエミッタ電流はI=ΔV/R3とな
り、抵抗R3によって制限される。よって、同一の入力
信号に対して、トランジスタQ3のコレクタ電流はトラ
ンジスタQ5よりも小さく、差動増幅回路28の出力レ
ベルは差動増幅回路27より高い。上記より、差動増幅
回路26乃至28のゲインは、第1ゲインG1<第2ゲ
インG2<第3ゲインG3となる。
Incidentally, the gain of the differential amplifier circuit shown in FIG. 3 is mainly determined by the load. In the differential amplifier circuits 26 and 28, for example, assuming that the collector currents of the transistors Q1 and Q5 are respectively Ic, the output voltage of the differential amplifier circuit 26 is Ic− (R1 + R2) × I0, and the output voltage of the differential amplifier circuit 28 is Is Ic−R1 × I0. (R1 +
R2)> R1, the output level of the differential amplifier circuit 26 is higher than that of the differential amplifier circuit 28 for input signals of the same level. The loads on the differential amplifier circuits 27 and 28 are both resistors R1. However, since the emitter resistor R3 is connected to the differential amplifier circuit 27, if the voltage difference between the emitters of the transistors Q3 and Q4 is ΔV, the emitter currents of the transistors Q3 and Q4 are I = ΔV / R3, and the resistor R3 Limited by Therefore, for the same input signal, the collector current of transistor Q3 is smaller than that of transistor Q5, and the output level of differential amplifier circuit 28 is higher than that of differential amplifier circuit 27. From the above, the gains of the differential amplifier circuits 26 to 28 satisfy the first gain G1 <the second gain G2 <the third gain G3.

【0019】従って、図3の回路では差動増幅回路を切
り換えると、入力信号を切り換えることができるととも
に、入力信号に対応したゲインも切り換えることができ
る。尚、切換信号は2ビットで構成されており、切り換
え信号を図1の選択信号SL及びゲイン制御信号GAを
1つとしてまとめた信号としても可能である。
Therefore, in the circuit of FIG. 3, when the differential amplifier circuit is switched, the input signal can be switched, and the gain corresponding to the input signal can also be switched. The switching signal is composed of two bits, and the switching signal can be a signal obtained by combining the selection signal SL and the gain control signal GA of FIG.

【0020】[0020]

【発明の効果】本発明によれば、簡単な構成で、受信バ
ンドの切り換え及び隣接妨害対策の両方を施すことがで
きる。特に、FM及びAM受信回路において、図3の切
換回路では、簡単な構成で、AMIF信号とFMIF信
号とを確実に切り換えることができるとともに、ゲイン
も切り換わり、ラジオ受信機のトータルゲインをAM及
びFM受信における所望のゲインに設定することができ
る。
According to the present invention, both the switching of the reception band and the countermeasure against adjacent interference can be performed with a simple configuration. In particular, in the FM and AM receiving circuits, the switching circuit of FIG. 3 can reliably switch between the AMIF signal and the FMIF signal with a simple configuration, and the gain is also switched, so that the total gain of the radio receiver is reduced to AM and AM. A desired gain in FM reception can be set.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

【図2】図1の動作を説明するための特性図である。FIG. 2 is a characteristic diagram for explaining the operation of FIG.

【図3】図1の選択回路19及び増幅回路20の具体回
路を示す回路図である。
FIG. 3 is a circuit diagram showing specific circuits of a selection circuit 19 and an amplification circuit 20 of FIG.

【図4】従来例を示すブロック図である。FIG. 4 is a block diagram showing a conventional example.

【符号の説明】 17 広帯域フィルタ 18 狭帯域フィルタ 19 選択回路 20 増幅回路 21 フィルタ 22 リミッタアンプ 23 妨害検出回路 24 制御回路 25 デコーダ[Description of Signs] 17 Wideband filter 18 Narrowband filter 19 Selection circuit 20 Amplification circuit 21 Filter 22 Limiter amplifier 23 Interference detection circuit 24 Control circuit 25 Decoder

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1のゲインを有する第1差動増幅回路
と、 前記第1のゲインより大きい第2のゲインを有する第2
差動増幅回路と、 前記第2のゲインより大きい第3のゲインを有する第3
差動増幅回路と、 外部選択信号に応じて前記第1乃至第3差動増幅回路の
うち1つを動作させる動作制御回路と、 前記第1乃至第3差動増幅回路の出力信号が印加される
共通の出力回路とを備えることを特徴とする切換回路。
A first differential amplifier circuit having a first gain; and a second differential amplifier circuit having a second gain larger than the first gain.
A third amplifier having a third gain larger than the second gain;
A differential amplifier circuit, an operation control circuit that operates one of the first to third differential amplifier circuits according to an external selection signal, and an output signal of the first to third differential amplifier circuits is applied. And a common output circuit.
【請求項2】 第1入力信号が前記第1及び第3差動増
幅回路の共通の入力端子に印加され、第2入力信号が前
記第2差動増幅回路に印加されることを特徴とする請求
項1記載の切換回路。
2. A method according to claim 1, wherein a first input signal is applied to a common input terminal of said first and third differential amplifier circuits, and a second input signal is applied to said second differential amplifier circuit. The switching circuit according to claim 1.
【請求項3】 前記切換回路は、AM及びFMバンドの
受信回路を備えるラジオ受信機において、共通のIF信
号ラインに導出される2以上のIF信号を切り換えるた
めに用いられるものであり、 前記第1入力信号をAMIF信号または第1FMIF信
号とし、前記第2入力信号を第2FMIF信号とするこ
とを特徴とする請求項2記載の切換回路。
3. The switching circuit according to claim 1, wherein the switching circuit is used to switch two or more IF signals derived to a common IF signal line in a radio receiver including an AM and FM band receiving circuit. 3. The switching circuit according to claim 2, wherein one input signal is an AMIF signal or a first FMIF signal, and the second input signal is a second FMIF signal.
【請求項4】 前記外部選択信号に応じて、AMIF信
号の場合前記第1差動増幅回路が選択され、第1FM信
号の場合前記第2差動増幅回路が選択され、さらに第2
FM信号の場合前記第3差動増幅回路が選択されること
を特徴とする請求項3記載の切換回路。
4. In response to the external selection signal, the first differential amplifier circuit is selected for an AMIF signal, the second differential amplifier circuit is selected for a first FM signal, and a second
4. The switching circuit according to claim 3, wherein said third differential amplifier circuit is selected for an FM signal.
【請求項5】 前記第1差動増幅回路は、エミッタ抵抗
を介して差動接続されたトランジスタと、前記トランジ
スタに接続された負荷とから成り、前記負荷及びエミッ
タ抵抗の値によってゲインが決まり、 前記第2及び第3差動増幅回路は、差動接続されたトラ
ンジスタと、前記トランジスタに接続された負荷とから
成り、前記負荷の値によってゲインが決まることを特徴
とする請求項1記載の切換回路。
5. The first differential amplifier circuit includes a transistor differentially connected via an emitter resistor, and a load connected to the transistor, and a gain is determined by a value of the load and the emitter resistance. 2. The switching device according to claim 1, wherein each of the second and third differential amplifier circuits includes a differentially connected transistor and a load connected to the transistor, and a gain is determined by a value of the load. circuit.
JP3614398A 1998-02-18 1998-02-18 Switching circuit Pending JPH11234161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3614398A JPH11234161A (en) 1998-02-18 1998-02-18 Switching circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3614398A JPH11234161A (en) 1998-02-18 1998-02-18 Switching circuit

Publications (1)

Publication Number Publication Date
JPH11234161A true JPH11234161A (en) 1999-08-27

Family

ID=12461580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3614398A Pending JPH11234161A (en) 1998-02-18 1998-02-18 Switching circuit

Country Status (1)

Country Link
JP (1) JPH11234161A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004933A1 (en) * 2007-07-05 2009-01-08 Nsc Co., Ltd. Am/fm radio receiver and receiving semiconductor integrated circuit used for same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004933A1 (en) * 2007-07-05 2009-01-08 Nsc Co., Ltd. Am/fm radio receiver and receiving semiconductor integrated circuit used for same

Similar Documents

Publication Publication Date Title
KR100298111B1 (en) Multiband Mobile Unit Communication Device
US6826418B2 (en) Radio circuit and control method of radio circuit
US7565127B2 (en) Signal processing unit
US6307599B1 (en) Analog-digital broadcast shared receiving tuner
JPH05335855A (en) Radio receiver
GB2312344A (en) Control of amplifier in spread spectrum receiver in dependence on RSSI and on detection of carrier/packet edge
US7050119B2 (en) Digital/analog common tuner
CA2276797C (en) Method for improving the wanted signal in a radio receiving unit
US8041322B2 (en) RF receiver device
JP3291462B2 (en) Radio receiver
KR100414371B1 (en) Apparatus and method for controlling operation range of receiver by using automatic gain control voltage
JPH07231273A (en) Tuner for receiving satellite broadcast
JPH11234161A (en) Switching circuit
JP2000224061A (en) Broadcasting receiver and clock operating circuit
KR100410792B1 (en) Radio receiver
KR20040095286A (en) Front stage amplifier with different modes
EP1299943B1 (en) Self-configurable amplifier circuit
JPH09186618A (en) Radio receiver
JPS5917740A (en) Space diversity receiver
KR20010019963A (en) Tuner for recieving digital satellite broadcasting
EP1936960B1 (en) Signal processing system and method
JP2006203530A (en) Digital broadcast receiver
JPH0410817A (en) Antenna changeover diversity receiver
KR20040003409A (en) Demodulation chip built-in type digital tuner which is able to receive ground wave and cable broadcasting
JPH05304640A (en) Television receiver