JPH11233327A - Amorphous core and accelerator using the same - Google Patents

Amorphous core and accelerator using the same

Info

Publication number
JPH11233327A
JPH11233327A JP10030874A JP3087498A JPH11233327A JP H11233327 A JPH11233327 A JP H11233327A JP 10030874 A JP10030874 A JP 10030874A JP 3087498 A JP3087498 A JP 3087498A JP H11233327 A JPH11233327 A JP H11233327A
Authority
JP
Japan
Prior art keywords
amorphous
core
value
ribbon
mhz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10030874A
Other languages
Japanese (ja)
Other versions
JP4851640B2 (en
Inventor
Yasuaki Moriya
泰明 森谷
Takao Kusaka
隆夫 日下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03087498A priority Critical patent/JP4851640B2/en
Publication of JPH11233327A publication Critical patent/JPH11233327A/en
Application granted granted Critical
Publication of JP4851640B2 publication Critical patent/JP4851640B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Abstract

PROBLEM TO BE SOLVED: To obtain adequate controllability and output in the high-frequency region of an amorphous core by a method, wherein the core has an insulating layer and a Q-value in a specified frequency of the core is specified. SOLUTION: An amorphous magnetic material has a Q-value of at least 0.5 at 3 MHz, and it is preferable that the magnetic material be an Ni-Fe based amorphous magnetic alloy which is shown by the following formula (Ni1-a Fe3 )100-x-y-z Mx Siy Bz (M is at least one element selected from among V, Cr, Mn, Co, Nb, Mo, Ta, W and Zr, 0.2<=a<=0.7, 0.05<=x<=10, 4<=y<=12, 5<=z<=20, and 15<=y+z<=30, and each numerical value is substantially indicated at.%.). An amorphous core is formed by winding an amorphous alloy thin strip manufactured by a liquid quenching method, such as a single roll method, turning the side of the roll surface of the alloy thin strip to the outside. A strain removal heat treatment is not performed on the amorphous alloy thin strip manufactured by the liquid quenching method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、加速器や共振現象
を利用するフィルタ等に用いられるQ値の高いアモルフ
ァスコアおよびそれを用いた加速器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous core having a high Q value used for an accelerator or a filter utilizing a resonance phenomenon, and an accelerator using the same.

【0002】[0002]

【従来の技術】加速器とは、電子、陽子、イオン等のビ
ームを1GeV程度の高エネルギー状態に加速するもの
であり、現在、様々な大きさの装置が使用されている。
この加速器には、荷電粒子の加速等の高周波エネルギー
を荷電粒子に供給する高周波加速空胴が設置されてい
る。
2. Description of the Related Art An accelerator accelerates a beam of electrons, protons, ions and the like to a high energy state of about 1 GeV, and apparatuses of various sizes are currently used.
This accelerator is provided with a high-frequency accelerating cavity for supplying high-frequency energy such as acceleration of charged particles to the charged particles.

【0003】これらの加速器は、100kHz〜数10
MHzの周波数において安定的に高周波電力を供給する
必要があり、そのために高周波加速空胴に用いる磁性材
料の改善は重要な技術課題となっていた。
[0003] These accelerators operate from 100 kHz to several tens.
It is necessary to stably supply high-frequency power at a frequency of MHz, and therefore, improvement of a magnetic material used for a high-frequency acceleration cavity has been an important technical problem.

【0004】従来、この加速空胴に用いられる磁性コア
としては、フェライトが用いられてきた。また、特開平
7−6900のようにフェライトコアの損失を利用して
加速空洞のQ値を下げて加速空洞の共振特性をブロード
にして制御性を改善する試みがなされている。しかしな
がらフェライトは磁性体の中ではQ値が高すぎるため、
加速空洞のQ値を十分に落とせず制御が難しいこと、キ
ュリー温度、飽和磁束密度が小さいためフェライト自身
の発熱の問題や磁束の飽和の問題から高周波化・高電力
化への対応は十分でなかった。なお、ここで言う加速空
洞のQ値とは、入力された高周波電力エネルギーに対す
る、高周波加速空胴内に蓄積される電磁界のエネルギー
の強さの比を表わす量であり、通常、1/損失で表わさ
れる。このQ値が高いほど、同じ入力に対して高出力が
可能であるといえ、加速空胴内での損失が大きいほどQ
値は小さくなり損失が大きいことが分かる。
Heretofore, ferrite has been used as a magnetic core used in the acceleration cavity. Also, as disclosed in Japanese Patent Application Laid-Open No. 7-6900, an attempt has been made to improve the controllability by lowering the Q value of the acceleration cavity by using the loss of the ferrite core to broaden the resonance characteristics of the acceleration cavity. However, ferrite has a too high Q value among magnetic materials,
Due to the difficulty of controlling the Q value of the accelerating cavity and the Curie temperature and saturation magnetic flux density are small, it is not enough to handle high frequency and high power due to the problem of heat generation of the ferrite itself and the problem of magnetic flux saturation. Was. Here, the Q value of the accelerating cavity is a quantity representing the ratio of the intensity of the electromagnetic field energy stored in the high frequency accelerating cavity to the input high frequency power energy, and is usually 1 / loss. Is represented by It can be said that the higher the Q value, the higher the output for the same input. The larger the loss in the acceleration cavity, the higher the Q value.
It can be seen that the value is small and the loss is large.

【0005】そこで、特開平9−167699号のよう
に平均粒径1μm以下の微細結晶構造を持つFe基軟磁
性合金コアの適用が試みられるようになっていた。この
微細結晶を持つFe基軟磁性合金コアを用いた場合、発
熱量等はフェライトと比較して改善され、100〜10
00kHzといった比較的低い周波数においては良好な
特性を示していた。
In view of this, attempts have been made to apply an Fe-based soft magnetic alloy core having a fine crystal structure having an average particle size of 1 μm or less as disclosed in Japanese Patent Application Laid-Open No. 9-167699. When the Fe-based soft magnetic alloy core having the fine crystals is used, the calorific value and the like are improved as compared with ferrite, and
At a relatively low frequency such as 00 kHz, good characteristics were exhibited.

【0006】一方、1MHz以上の比較的高い周波数領
域において前記Fe基軟磁性合金コアを用いたものはQ
値が低く十分な高周波電力供給ができないといった問題
が起きていた。このため、Fe基軟磁性合金コアよりQ
値が高く、フェライトよりキュリー温度、飽和磁束密度
が高いコアが必要とされていた。
On the other hand, in the case of using the Fe-based soft magnetic alloy core in a relatively high frequency region of 1 MHz or more, Q
There has been a problem that the value is low and sufficient high-frequency power cannot be supplied. For this reason, Q
A core having a high Curie temperature and a higher saturation magnetic flux density than ferrite was required.

【0007】[0007]

【発明が解決しようとする課題】上述したように、従来
のフェライト磁性材料および微細結晶構造を持つFe基
軟磁性材料を用いた加速器では、1MHz以上の高周波
領域において十分な制御性や出力を得ることはできない
という問題点があった。
As described above, in an accelerator using a conventional ferrite magnetic material and an Fe-based soft magnetic material having a fine crystal structure, sufficient controllability and output can be obtained in a high frequency region of 1 MHz or more. There was a problem that it was not possible.

【0008】本発明は、このような課題に対処してなさ
れたものであり、3MHzでのQ値が0.5以上と高い
アモルファスコア、さらにはQ値が0.5以上と高く、
加速器の高周波加速空胴に用いた場合1MHz以上の高
周波領域において高出力を得ることを可能するアモルフ
ァスコアおよび該コアを用いた加速器を提供することを
目的としている。
The present invention has been made in view of such problems, and has an amorphous core having a Q value at 3 MHz of as high as 0.5 or more, and an amorphous core having a Q value of as high as 0.5 or more.
An object of the present invention is to provide an amorphous core capable of obtaining a high output in a high-frequency region of 1 MHz or higher when used in a high-frequency acceleration cavity of an accelerator, and an accelerator using the core.

【0009】[0009]

【課題を解決するための手段】本発明のアモルファスコ
アおよびそれを用いた加速器は、請求項1に記載したよ
うに、絶縁層を有し3MHzでのQ値が0.5以上であ
ることを特徴とするものであり、 請求項2として、一般式:(Ni1-a Fea
100-x-y-zx Siyz (式中、MはV、Cr、Mn、Co、Nb、Mo、T
a、W、Zrから選ばれる少なくとも1種の元素を示
し、0.2≦a≦0.7、0.05≦x≦10、4≦y
≦12、5≦z≦20、15≦y+z≦30、各数値は
at%)で実質的に表わされ、絶縁層を有し3MHzで
のQ値が0.5以上であることを特徴とするアモルファ
スコアとし、 請求項3として、一般式:Feabc (式中、MはTi、V、Cr、Mn、Co、Ni、Z
r、Nb、Mo、Hf、Ta、W、Re、Ga、Ru、
Rh、Pd、Os、Ir、Pt、希土類元素の群から選
ばれた少なくとも1種の元素を、YはSi、B、P、C
の群から選ばれた少なくとも1種の元素を示し、65≦
a≦85、0≦b≦15、5≦c≦35、各数字はat
%)で実質的に表わされ、絶縁層を有し3MHzでのQ
値が0.5以上であることを特徴とするアモルファスコ
アとし、請求項4として、歪取り熱処理を施していない
アモルファス薄帯を巻回または積層したことを特徴とす
る請求項1〜3記載のアモルファスコアとし、請求項5
として、単ロール法により形成したアモルファス薄帯を
巻回してなるコアにおいて、アモルファス薄帯のロール
面を外側に向けて巻回してなることを特徴とするアモル
ファスコアとし、請求項6として、樹脂含浸またはコー
ティングしたことを特徴とする請求項1〜5記載のアモ
ルファスコアとし、請求項7として、アモルファスの合
金組成が次ぎの一般式を満たすことを特徴とする請求項
5〜6記載のアモルファスコア、 一般式:(Ni1-a Fea100-x-y-zx Siyz (式中、MはV、Cr、Mn、Co、Nb、Mo、T
a、W、Zrから選ばれる少なくとも1種の元素を示
し、0.2≦a≦0.7、0.05≦x≦10、4≦y
≦12、5≦z≦20、15≦y+z≦30、各数値は
at%)とし、請求項8として、アモルファスの合金組
成が次ぎの一般式を満たすことを特徴とする請求項5〜
6記載のアモルファスコア、 一般式:Feabc (式中、MはTi、V、Cr、Mn、Co、Ni、Z
r、Nb、Mo、Hf、Ta、W、Re、Ga、Ru、
Rh、Pd、Os、Ir、Pt、希土類元素の群から選
ばれた少なくとも1種の元素を、YはSi、B、P、C
の群から選ばれた少なくとも1種の元素を示し、65≦
a≦85、0≦b≦15、5≦c≦35、各数字はat
%)とし、請求項9として、3MHzでのQ値が0.5
以上であることを特徴とする請求項5〜8記載のアモル
ファスコアとし、請求項10として、加速器用コアとし
て用いることを特徴とする請求項1〜9記載のアモルフ
ァスコアとし、請求項11として、請求項1〜10記載
のアモルファスコアを用いたことを特徴とする加速器と
している。
According to the present invention, an amorphous core and an accelerator using the same have an insulating layer and a Q value at 3 MHz of not less than 0.5. It is characterized by the following general formula: (Ni 1-a Fe a )
100-xyz M x Si y B z (where M is V, Cr, Mn, Co, Nb, Mo, T
a represents at least one element selected from the group consisting of a, W, and Zr, wherein 0.2 ≦ a ≦ 0.7, 0.05 ≦ x ≦ 10, and 4 ≦ y
≦ 12, 5 ≦ z ≦ 20, 15 ≦ y + z ≦ 30, and each numerical value is substantially represented by at%), and has an insulating layer and a Q value at 3 MHz of 0.5 or more. and amorphous core, as claimed in claim 3, the general formula: Fe a M b Y c (wherein, M is Ti, V, Cr, Mn, Co, Ni, Z
r, Nb, Mo, Hf, Ta, W, Re, Ga, Ru,
At least one element selected from the group consisting of Rh, Pd, Os, Ir, Pt, and rare earth elements, and Y is Si, B, P, C
Represents at least one element selected from the group of
a ≦ 85, 0 ≦ b ≦ 15, 5 ≦ c ≦ 35, each number is at
%), Having an insulating layer and having a Q of 3 MHz.
An amorphous core characterized in that the value is 0.5 or more, and as a fourth aspect, an amorphous thin ribbon which has not been subjected to a strain relief heat treatment is wound or laminated. Claim 5 is an amorphous core.
In a core formed by winding an amorphous ribbon formed by a single roll method, an amorphous core is formed by winding the roll surface of the amorphous ribbon outward. Or an amorphous core according to any one of claims 1 to 5, characterized in that the amorphous core has an amorphous alloy composition satisfying the following general formula: General formula: (Ni 1-a Fe a ) 100-xyz M x Si y B z (where M is V, Cr, Mn, Co, Nb, Mo, T
a represents at least one element selected from the group consisting of a, W, and Zr, wherein 0.2 ≦ a ≦ 0.7, 0.05 ≦ x ≦ 10, and 4 ≦ y
.Ltoreq.12, 5.ltoreq.z.ltoreq.20, 15.ltoreq.y + z.ltoreq.30, and each numerical value is at%). Claim 8 is characterized in that the amorphous alloy composition satisfies the following general formula.
6, an amorphous core represented by the general formula: Fe a M b Y c (where M is Ti, V, Cr, Mn, Co, Ni, Z
r, Nb, Mo, Hf, Ta, W, Re, Ga, Ru,
At least one element selected from the group consisting of Rh, Pd, Os, Ir, Pt, and rare earth elements, and Y is Si, B, P, C
Represents at least one element selected from the group of
a ≦ 85, 0 ≦ b ≦ 15, 5 ≦ c ≦ 35, each number is at
%), And the Q value at 3 MHz is 0.5
The amorphous core according to any one of claims 5 to 8, wherein the amorphous core is used as an accelerator core, and the amorphous core according to claims 1 to 9 is used as an accelerator core. An accelerator using the amorphous core according to any one of claims 1 to 10 is provided.

【0010】本発明においては、3MHzでのQ値を
0.5以上と高Q値化されたアモルファスコアを提供す
ることにおいて、磁性材料としてNi−Fe系アモルフ
ァス合金やFe系アモルファス合金を用いること、アモ
ルファス薄帯に熱処理を施さずに巻回または積層するこ
とによりコアを形成すること、単ロール法により製造し
たアモルファス薄帯を薄帯のロール面側を外側に向けて
巻回すること、といった構成をとっている。このような
構成をとることにより、3MHzでのQ値が0.5以上
のアモルファスコアを得ることができ、加速器の高周波
加速空胴に用いた場合、1MHz以上の高周波領域、特
に1〜4MHzの領域において安定で高出力な加速器を
可能とする。
In the present invention, in order to provide an amorphous core having a high Q value of 0.5 or more at 3 MHz, a Ni-Fe amorphous alloy or a Fe amorphous alloy is used as a magnetic material. Forming a core by winding or laminating the amorphous ribbon without heat treatment, winding an amorphous ribbon manufactured by a single roll method with the roll surface side of the ribbon facing outward, It has a configuration. By adopting such a configuration, an amorphous core having a Q value of 0.5 or more at 3 MHz can be obtained, and when used in a high-frequency acceleration cavity of an accelerator, a high-frequency region of 1 MHz or more, particularly 1 to 4 MHz. It enables a stable and high-output accelerator in the region.

【0011】[0011]

【発明の実施の形態】以下、本発明を実施するための形
態について説明する。本発明のアモルファス磁性材料と
しては、3MHzでのQ値が0.5以上となるものであ
れば特に限定されるものではないが、次の一般式1およ
び2で示すNi−Fe系またはFe系のアモルファス磁
性合金であることが好ましい。
Embodiments of the present invention will be described below. The amorphous magnetic material of the present invention is not particularly limited as long as the Q value at 3 MHz is 0.5 or more, but Ni-Fe or Fe-based materials represented by the following general formulas 1 and 2 Is preferably an amorphous magnetic alloy.

【0012】まず、Ni−Fe系アモルファス磁性合金
としては、 一般式1:(Ni1-a Fea100-x-y-zx Siy
z (式中、MはV、Cr、Mn、Co、Nb、Mo、T
a、W、Zrから選ばれる少なくとも1種の元素を示
し、0.2≦a≦0.7、0.05≦x≦10、4≦y
≦12、5≦z≦20、15≦y+z≦30、各数値は
at%)で実質的に表わされる。
First, as a Ni—Fe amorphous magnetic alloy, general formula 1: (Ni 1-a Fe a ) 100-xyz M x Si y B
z (where M is V, Cr, Mn, Co, Nb, Mo, T
a represents at least one element selected from the group consisting of a, W, and Zr, wherein 0.2 ≦ a ≦ 0.7, 0.05 ≦ x ≦ 10, and 4 ≦ y
≦ 12, 5 ≦ z ≦ 20, 15 ≦ y + z ≦ 30, and each numerical value is substantially represented by at%).

【0013】このような組成の中で、特に0.2≦a≦
0.5としたNiリッチのNi−Feベースの組成をと
ることにより、磁束密度や保磁力等の制御がより可能と
なる。M元素は、磁性合金の熱安定性の向上等に寄与す
る元素であり、好ましくはCr、Mn、Coであり、よ
り好ましい含有量としては0.1≦x≦5at%であ
る。
Among such compositions, in particular, 0.2 ≦ a ≦
By adopting a Ni-rich Ni-Fe base composition of 0.5, the magnetic flux density, coercive force and the like can be more controlled. The M element is an element that contributes to improving the thermal stability of the magnetic alloy and the like, and is preferably Cr, Mn, and Co, and more preferably has a content of 0.1 ≦ x ≦ 5 at%.

【0014】SiおよびBはアモルファス化のための元
素であり、Si量とB量の合計が15≦x+y≦30a
t%の範囲であり、好ましくは19≦x+y≦24at
%である。
Si and B are elements for amorphization, and the total of the Si content and the B content is 15 ≦ x + y ≦ 30a
t%, preferably 19 ≦ x + y ≦ 24 at
%.

【0015】次に、Fe系アモルファス磁性材料として
は、 一般式2:Feabc (式中、MはTi、V、Cr、Mn、Co、Ni、Z
r、Nb、Mo、Hf、Ta、W、Re、Ga、Ru、
Rh、Pd、Os、Ir、Pt、希土類元素の群から選
ばれた少なくとも1種の元素を、YはSi、B、P、C
の群から選ばれた少なくとも1種の元素を示し、65≦
a≦85、0≦b≦15、5≦c≦35、各数字はat
%)で実質的に表わされる。 M元素は、磁性合金の熱
安定性の向上等に寄与する元素であり、好ましい元素と
してはCr、Mn、Coであり、より好ましい含有量と
しては0.1≦x≦5at%である。
Next, as an Fe-based amorphous magnetic material, a general formula 2: Fe a M b Y c (where M is Ti, V, Cr, Mn, Co, Ni, Z
r, Nb, Mo, Hf, Ta, W, Re, Ga, Ru,
At least one element selected from the group consisting of Rh, Pd, Os, Ir, Pt, and rare earth elements, and Y is Si, B, P, C
Represents at least one element selected from the group of
a ≦ 85, 0 ≦ b ≦ 15, 5 ≦ c ≦ 35, each number is at
%). The M element is an element that contributes to improving the thermal stability of the magnetic alloy and the like. Preferred elements are Cr, Mn, and Co, and more preferred contents are 0.1 ≦ x ≦ 5 at%.

【0016】Y元素は、アモルファス化のための元素で
あり、好ましくはSi、Bであり、より好ましくはSi
とBを両方用いる組成である。以上のような組成を有す
るアモルファス磁性合金の製造方法として、通常の液体
急冷法、例えば単ロール法が用いられる。液体急冷法と
は、所定の組成を有する合金溶湯を超急冷することによ
りアモルファス合金を得る方法であり、具体的には単ロ
ール法を適用し超急冷することによりアモルファス磁性
合金薄帯を製造することである。このようなアモルファ
ス磁性薄帯の平均板厚は、損失の低減を図る上で20μ
m以下とすることが好ましく、より好ましくは15μm
以下である。
The Y element is an element for amorphization, preferably Si and B, more preferably Si
And B are both used. As a method for producing an amorphous magnetic alloy having the above composition, a usual liquid quenching method, for example, a single roll method is used. The liquid quenching method is a method of obtaining an amorphous alloy by ultra-quenching a molten alloy having a predetermined composition. Specifically, a single-roll method is used to produce an amorphous magnetic alloy ribbon by ultra-quenching. That is. The average plate thickness of such an amorphous magnetic ribbon is 20 μm in order to reduce the loss.
m or less, more preferably 15 μm
It is as follows.

【0017】アモルファスコアは、このような単ロール
法等の液体急冷法により製造したアモルファス合金薄帯
を所望の形状に巻回または所望の形状に打ち抜いた後に
積層することによって得られる(図1、図2)。
An amorphous core is obtained by winding an amorphous alloy ribbon produced by such a liquid quenching method such as a single roll method into a desired shape or punching it into a desired shape, and then laminating (FIG. 1, FIG. (Fig. 2).

【0018】巻回または積層する際に本発明では絶縁層
を設けている、絶縁層の材質としては有機物、無機物と
特に限定するものではないが、好ましくはポリエステ
ル、ポリイミド、マグネシアやシリカ等のセラミックの
ように耐熱性のあるものがよい。絶縁層の形成方法とし
てもフィルムを挟む方法、絶縁物を直接的に塗布や蒸着
する方法、コロイダル化合物等の絶縁物形成可能な化合
物を塗布後熱処理し所定の絶縁層を得る方法等特に限定
するものではない。絶縁層の厚みとしても絶縁性が確保
できれば特に限定されるものではないが20μm以下が
好ましく、さらに好ましくは10μm以下である。絶縁
層の厚みがあまり厚すぎるとコアにおけるアモルファス
薄帯の占積率が悪くなり同様の性能を得ようとした場合
にコアが大型化するといった問題が起こる。
In the present invention, an insulating layer is provided at the time of winding or laminating. The material of the insulating layer is not particularly limited to an organic substance or an inorganic substance, but is preferably a ceramic such as polyester, polyimide, magnesia or silica. A material having heat resistance such as is preferred. The method of forming the insulating layer also includes a method of sandwiching a film, a method of directly applying or depositing an insulator, a method of applying a compound capable of forming an insulator such as a colloidal compound, and then heat-treating to obtain a predetermined insulating layer. Not something. The thickness of the insulating layer is not particularly limited as long as the insulating property can be ensured, but is preferably 20 μm or less, more preferably 10 μm or less. If the thickness of the insulating layer is too large, the space factor of the amorphous ribbon in the core is deteriorated, and when trying to obtain the same performance, there is a problem that the core becomes large.

【0019】巻回または積層したコアには、歪取り熱処
理を施しても施さなくてもよい。本発明では、3MHz
でのQ値が0.5以上と高い値を示す加速器用アモルフ
ァスコアを提供するものであるが、そのようなコアを提
供する方法として、前述したようなNi−Fe系アモル
ファス合金またはFe系アモルファス合金を用いる方法
があり、それとは別にコア自体に応力がかかる状態を形
成することによってもQ値を高くすることが可能となる
ことを見出した。
The wound or laminated core may or may not be subjected to a strain relief heat treatment. In the present invention, 3 MHz
The present invention provides an amorphous core for an accelerator having a high Q value of 0.5 or more in a Ni-Fe-based amorphous alloy or a Fe-based amorphous alloy as described above. It has been found that there is a method using an alloy, and it is possible to increase the Q value by forming a state in which stress is applied to the core itself.

【0020】コア自体に応力をかける方法として、液体
急冷法により製造したアモルファス薄帯に歪取り熱処理
を施さず、薄帯に歪が残ったままコアを形成することに
より、コアに応力がかかる状態を形成することができ
る。熱処理を施さずにコアを製造できるということは作
業工程を減らすことになるため工業的価値が高い。
As a method of applying stress to the core itself, the amorphous ribbon produced by the liquid quenching method is not subjected to a heat treatment to remove the strain, and the core is formed with the strain remaining in the ribbon, thereby applying a stress to the core. Can be formed. The fact that the core can be manufactured without heat treatment has a high industrial value because it reduces the number of working steps.

【0021】また、このような高電圧下で使用するコア
は磁性材料の層間を絶縁するために磁性薄帯に絶縁フィ
ルムを挟む方法等が取られる。しかしながら構造的に横
にズレ易く不安定となる場合がある。本発明のコアは樹
脂含浸を行い強度を高めることが可能である。ここで用
いる樹脂についても特に限定されるものではないが、加
速器の使用条件を考慮すると耐熱性のあるエポキシ樹脂
が好ましい。また、この樹脂含浸により応力のかかった
状態を保ち易くなるという効果も得ることができる。
For such a core used under a high voltage, a method of sandwiching an insulating film between magnetic ribbons to insulate between layers of a magnetic material is used. However, there are cases where the structure is easily shifted laterally and becomes unstable. The core of the present invention can be impregnated with a resin to increase the strength. The resin used here is not particularly limited, but an epoxy resin having heat resistance is preferable in consideration of the usage conditions of the accelerator. In addition, the effect of easily maintaining a stressed state by the resin impregnation can be obtained.

【0022】また、熱処理を施したアモルファス薄帯を
用いる場合、前述のようにアモルファス薄帯は、液体急
冷法、具体的には単ロール法で製造されており、薄帯の
表面はロールと接する側のロール面とロールと接しない
側の自由面が存在する。単ロール法において、ロールは
高速回転しているため、合金溶湯から薄帯を形成した場
合どうしてもロール面側に反ってしまう。この薄帯の反
りを利用し、薄帯のロール面側を外側に向けて巻回する
ことにより材料に加わる応力を増したコアを形成するこ
とが可能となる。ここでロール面と自由面の見分け方と
して、ロール面は単ロール法で使用されるロールの表面
形状、特に表面粗さがそのまま薄帯のロール面側の表面
粗さとして現れるので、この表面粗さの違いによりロー
ル面と自由面を見分けることができる(図3)。
When an amorphous ribbon subjected to heat treatment is used, as described above, the amorphous ribbon is manufactured by a liquid quenching method, specifically, a single roll method, and the surface of the ribbon is in contact with the roll. There is a roll surface on the side and a free surface on the side not in contact with the roll. In the single-roll method, since the roll is rotating at a high speed, when the ribbon is formed from the molten alloy, it is inevitably warped toward the roll surface. By utilizing the warpage of the ribbon and winding the ribbon with the roll surface side facing outward, it is possible to form a core with increased stress applied to the material. Here, as a method of distinguishing between the roll surface and the free surface, the roll surface is used as the surface shape of the roll used in the single roll method, and particularly the surface roughness directly appears as the surface roughness on the roll surface side of the ribbon. Depending on the difference, the roll surface and the free surface can be distinguished (FIG. 3).

【0023】また、より応力をかける方法として、目的
のコアの径とは異なる径に巻いた状態で熱処理したアモ
ルファス薄帯を目的の径に巻回する方法も有効である。
さらに一旦ロール面側を内側にして巻回した後、ロール
面側を外側にして巻回するといった方法もある。このよ
うな方法を用いれば、より応力のかかったコアを形成す
ることができる。
As a method of applying more stress, it is also effective to wind the amorphous ribbon that has been heat-treated in a state of being wound to a diameter different from the diameter of the target core to the target diameter.
Further, there is also a method of winding once with the roll surface side inside, and then winding with the roll surface side outside. By using such a method, a more stressed core can be formed.

【0024】このようなアモルファス薄帯のロール面を
外側に向けて巻回したコアの応力を保つために、樹脂含
浸をすることが好ましく、この樹脂含浸により絶縁性を
も保つことが可能となる。ここで用いる樹脂については
特に限定されるものではないが、加速器の使用条件を考
慮すると耐熱性および絶縁性のあるエポキシ樹脂が好ま
しい。
In order to maintain the stress of the core wound with the roll surface of such an amorphous ribbon facing outward, it is preferable to impregnate the resin, and the impregnation with the resin can also maintain the insulating property. . Although the resin used here is not particularly limited, an epoxy resin having heat resistance and insulating properties is preferable in consideration of the usage conditions of the accelerator.

【0025】なお、本発明でいうQ値は磁心のQ値であ
り、損失係数tan δの逆数である。tan δはμ”/μ’
で示される。μ’は透磁率μの実部でμ”fは虚部であ
り損失に相当する。よってQ値=μ’/μ”であり、イ
ンダクタとして有効に動作するためにはQ≧0.5が好
ましく特に実部が虚部より高いQ≧1を示すことが望ま
しい。また、電気回路ではQ=R/ωLの表現が用いら
れる。ここでRは抵抗分(損失)、ωは角速度、Lはイ
ンダクタンスである。このようなQ値は共振回路で回路
特性を決定する重要な値である。このような回路にイン
ダクタに磁性体を使用すると透磁率の作用により高いイ
ンダクタンスの値を容易に得ることができるが、損失の
発生により高周波におけるQ値は低下してしまう。特に
金属磁性材料は渦電流の発生により低下が著しい。(ま
た、磁心の性能を現す方法としてμQ積を用いることも
ある。μQ積の高い材料程小型で同性能のインダクタを
構成することができる。)
Incidentally, the Q value in the present invention is the Q value of the magnetic core, and is the reciprocal of the loss coefficient tan δ. tan δ is μ ”/ μ '
Indicated by μ ′ is the real part of the magnetic permeability μ and μ ″ f is the imaginary part, which corresponds to the loss. Therefore, Q value = μ ′ / μ ″, and Q ≧ 0.5 in order to operate effectively as an inductor. It is particularly desirable that the real part exhibits Q ≧ 1 higher than the imaginary part. In the electric circuit, the expression Q = R / ωL is used. Here, R is resistance (loss), ω is angular velocity, and L is inductance. Such a Q value is an important value that determines circuit characteristics in a resonance circuit. When a magnetic material is used for the inductor in such a circuit, a high inductance value can be easily obtained by the effect of magnetic permeability, but the Q value at high frequencies is reduced due to loss. In particular, metal magnetic materials decrease significantly due to the generation of eddy currents. (Also, the μQ product may be used as a method of expressing the performance of the magnetic core. A material having a higher μQ product can constitute a smaller inductor having the same performance.)

【0026】[0026]

【実施例】(実施例1〜11)表1に示すようなNi−
Fe系アモルファス合金、またはFe系アモルファス合
金からなる巾25mmの磁性薄帯を層間絶縁用フィルムと共
に巻回し、外形70mm、内径34mmのコアを作製し、3MH
zにおけるQ値、比透磁率μrとQ値の積を測定した。
層間絶縁はポリエステルフィルム(厚さ6μm),ポリ
イミドフィルム(厚さ7μm)およびセラミック層(厚
さ2μm)を使用した。
EXAMPLES (Examples 1 to 11) As shown in Table 1, Ni-
A Fe-based amorphous alloy or a 25 mm-wide magnetic ribbon made of an Fe-based amorphous alloy is wound together with an interlayer insulating film to form a core having an outer diameter of 70 mm and an inner diameter of 34 mm.
The product of the Q value at z, the relative magnetic permeability μr and the Q value was measured.
For interlayer insulation, a polyester film (thickness: 6 μm), a polyimide film (thickness: 7 μm) and a ceramic layer (thickness: 2 μm) were used.

【0027】比較例1として層間絶縁の無いもの、比較
例2、3は一般に鉄損が低くQ値が高いと考えられるコ
バルト系アモルファス合金の例、比較例4は1μm以下
の微細結晶構造を80%もつFe系磁性材料の特性を同
様の条件で測定した。
Comparative Example 1 has no interlayer insulation, Comparative Examples 2 and 3 are examples of a cobalt-based amorphous alloy generally considered to have low iron loss and a high Q value, and Comparative Example 4 has a fine crystal structure of 1 μm or less. % Of the Fe-based magnetic material was measured under the same conditions.

【0028】表1から、一般に低損失で知られるコバル
ト系アモルファス材や鉄系微結晶材比べ本願発明のNi
−Fe系アモルファス合金、またはFe系アモルフアス
合金はいずれも0.5以上のQ値を示した。また、Fe
系アモルファスでも比較例1のように層間絶縁を行わな
いと特性が得られない。
From Table 1, it can be seen that, compared with the cobalt-based amorphous material and the iron-based microcrystalline material, which are generally known to have low loss, the Ni-based alloy of the present invention has
Each of the Fe-based amorphous alloy and the Fe-based amorphous alloy showed a Q value of 0.5 or more. Also, Fe
Even in the case of a system amorphous, characteristics cannot be obtained unless interlayer insulation is performed as in Comparative Example 1.

【0029】特にNi−Fe系の材料は熱処理なしに1
以上のQ値が得られている。熱処理なしに特性が得られ
ることは製造が容易であること、層間絶縁に安価な比較
的耐熱性の低いポリエステル等の材料を使用できるため
工業的価値が高い。
In particular, Ni-Fe-based materials can be used without heat treatment.
The above Q value is obtained. Obtaining characteristics without heat treatment has high industrial value because it is easy to manufacture and an inexpensive material such as polyester having relatively low heat resistance can be used for interlayer insulation.

【0030】[0030]

【表1】 [Table 1]

【0031】(実施例12〜23)表2に示すようなN
i−Fe系、Fe系アモルファス合金を用いて、熱処理
しない薄帯を異なる径の巻心に巻回した(実施例12−
17)。さらに薄帯のロール面側を外側に向けて巻回し
たもの(実施例18−19)。予め132φの巻心に巻
回し熱処理した薄帯を熱処理した時に内側であった面を
外側に向けて巻回したもの(実施例20−21)。およ
び樹脂含浸したもの(実施例22−23)を用意し、Q
値および比透磁率の測定を行った。
(Examples 12 to 23) N as shown in Table 2
Using an i-Fe-based or Fe-based amorphous alloy, a non-heat-treated ribbon was wound around a core having a different diameter (Example 12-).
17). Further, the ribbon was wound with the roll surface side facing outward (Examples 18-19). A ribbon that was previously wound around a 132φ core and heat-treated was rolled with the inner side facing outward when heat-treated (Example 20-21). And resin-impregnated ones (Examples 22-23) were prepared.
The values and the relative magnetic permeability were measured.

【0032】表2から、巻内径を小さくすることにより
比透磁率は低下するが高いQ値が得られた。また、液体
急冷法により作製された薄帯は作製時に急冷用ロ−ルに
近い曲率半径を持った薄帯となるが、薄帯のロール面側
を外側に向けて巻回し、癖付き状態とは逆の曲率を持た
せることによりQ値は向上する。さらに、熱処理によつ
て任意の曲率形状を付与した後薄帯の内側と外側を逆に
して巻くとより高いQ値が得られる。また、このような
コアは形状維持や周囲との絶縁を保つために樹脂含浸や
コ−ティングを行うことがあるが、本発明のコアは殆ど
特性の劣化を示さない。
As can be seen from Table 2, the relative permeability was reduced by reducing the inner diameter of the winding, but a high Q value was obtained. In addition, the ribbon produced by the liquid quenching method has a radius of curvature close to that of the quenching roll at the time of production, but is wound with the roll surface side of the ribbon facing outward to form a habit. The Q value is improved by giving the opposite curvature. Furthermore, a higher Q value can be obtained by winding the ribbon with the inside and outside reversed after giving an arbitrary curvature shape by heat treatment. Further, such a core may be impregnated with a resin or coated in order to maintain the shape and maintain insulation from the surroundings. However, the core of the present invention shows almost no deterioration in characteristics.

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【発明の効果】以上のような本発明のアモルファスコア
は、加速器の高周波加速空胴に好適である。そして、本
発明のアモルファスコアは、Ni−Fe系またはFe系
アモルファス磁性合金を用いること、液体急冷法により
製造したアモルファス薄帯を熱処理を施さないまま巻回
または積層することによりコアを形成すること、単ロー
ル法により製造したアモルファス薄帯のロール面を外側
に向けて巻回することによりコアを形成すること、とい
った様々な方法により3MHzでのQ値が0.5以上と
高いQ値を示す加速器用アモルファスコアを得ることが
でき、このようなコアを用いることにより高周波かつ高
出力の加速器を可能とする(図4)。なお、本発明のア
モルファスコアは3MHzでのQ値が0.5以上と高い
Q値を示すことから加速器以外の共振現状を利用した電
気回路、例えばブロッキングフィルター等に用いても有
効である。
The amorphous core of the present invention as described above is suitable for a high-frequency accelerating cavity of an accelerator. The amorphous core of the present invention is formed by using a Ni-Fe or Fe-based amorphous magnetic alloy, and forming a core by winding or laminating an amorphous ribbon manufactured by a liquid quenching method without heat treatment. The Q value at 3 MHz is as high as 0.5 or more by various methods such as forming a core by winding the roll surface of an amorphous ribbon manufactured by a single roll method toward the outside to form a core. An amorphous core for an accelerator can be obtained, and a high-frequency and high-output accelerator can be obtained by using such a core (FIG. 4). Since the amorphous core of the present invention has a high Q value of 0.5 or more at 3 MHz, the amorphous core is effective even when used for an electric circuit using the current resonance state other than the accelerator, for example, a blocking filter.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の巻回型コアの一例を示す図であり、
(a)は上面図、(b)は斜面図である。
FIG. 1 is a diagram showing an example of a wound core according to the present invention;
(A) is a top view and (b) is a slope view.

【図2】本発明の積層型コアの一例を示す図であり、
(a)は上面図、(b)は斜面図である。
FIG. 2 is a view showing an example of a laminated core according to the present invention;
(A) is a top view and (b) is a slope view.

【図3】本発明の磁性薄帯のロール面、自由面を示す図
である。
FIG. 3 is a diagram showing a roll surface and a free surface of the magnetic ribbon of the present invention.

【図4】本発明のコアを装着した加速器の加速空胴の断
面図を示す図である。
FIG. 4 is a diagram showing a cross-sectional view of an acceleration cavity of an accelerator equipped with the core of the present invention.

【符号の説明】[Explanation of symbols]

1…薄帯 2…ロール 3…コア 4…加速空胴 1. Thin ribbon 2. Roll 3. Core 4. Acceleration cavity

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 絶縁層を有し3MHzでのQ値が0.5
以上であることを特徴とするアモルファスコア。
An article having an insulating layer has a Q value of 0.5 at 3 MHz.
An amorphous core characterized by the above.
【請求項2】 一般式:(Ni1-a Fea100-x-y-z
x Siyz (式中、MはV、Cr、Mn、Co、Nb、Mo、T
a、W、Zrから選ばれる少なくとも1種の元素を示
し、0.2≦a≦0.7、0.05≦x≦10、4≦y
≦12、5≦z≦20、15≦y+z≦30、各数値は
at%)で実質的に表わされ、絶縁層を有し3MHzで
のQ値が0.5以上であることを特徴とするアモルファ
スコア。
2. The general formula: (Ni 1-a Fe a ) 100-xyz
M x Si y B z (where M is V, Cr, Mn, Co, Nb, Mo, T
a represents at least one element selected from the group consisting of a, W, and Zr, wherein 0.2 ≦ a ≦ 0.7, 0.05 ≦ x ≦ 10, and 4 ≦ y
≦ 12, 5 ≦ z ≦ 20, 15 ≦ y + z ≦ 30, and each numerical value is substantially represented by at%), and has an insulating layer and a Q value at 3 MHz of 0.5 or more. Amorphous core.
【請求項3】 一般式:Feabc (式中、MはTi、V、Cr、Mn、Co、Ni、Z
r、Nb、Mo、Hf、Ta、W、Re、Ga、Ru、
Rh、Pd、Os、Ir、Pt、希土類元素の群から選
ばれた少なくとも1種の元素を、YはSi、B、P、C
の群から選ばれた少なくとも1種の元素を示し、65≦
a≦85、0≦b≦15、5≦c≦35、各数字はat
%)で実質的に表わされ、絶縁層を有し3MHzでのQ
値が0.5以上であることを特徴とするアモルファスコ
ア。
3. A general formula: Fe a M b Y c (where M is Ti, V, Cr, Mn, Co, Ni, Z
r, Nb, Mo, Hf, Ta, W, Re, Ga, Ru,
At least one element selected from the group consisting of Rh, Pd, Os, Ir, Pt, and rare earth elements, and Y is Si, B, P, C
Represents at least one element selected from the group of
a ≦ 85, 0 ≦ b ≦ 15, 5 ≦ c ≦ 35, each number is at
%), Having an insulating layer and having a Q of 3 MHz.
An amorphous core having a value of 0.5 or more.
【請求項4】 歪取り熱処理を施していないアモルファ
ス薄帯を巻回または積層したことを特徴とする請求項1
〜3記載のアモルファスコア。
4. An amorphous ribbon which has not been subjected to a heat treatment for removing strain is wound or laminated.
4. The amorphous core according to any one of items 1 to 3.
【請求項5】 単ロール法により形成したアモルファス
薄帯を巻回してなるコアにおいて、アモルファス薄帯の
ロール面を外側に向けて巻回してなることを特徴とする
アモルファスコア。
5. An amorphous core formed by winding an amorphous ribbon formed by a single roll method, wherein the roll surface of the amorphous ribbon is wound outward.
【請求項6】 樹脂含浸またはコーティングしたことを
特徴とする請求項1〜5記載のアモルファスコア。
6. The amorphous core according to claim 1, wherein the core is impregnated or coated with a resin.
【請求項7】 アモルファスの合金組成が次ぎの一般式
を満たすことを特徴とする請求項5〜6記載のアモルフ
ァスコア。 一般式:(Ni1-a Fea100-x-y-zx Siyz (式中、MはV、Cr、Mn、Co、Nb、Mo、T
a、W、Zrから選ばれる少なくとも1種の元素を示
し、0.2≦a≦0.7、0.05≦x≦10、4≦y
≦12、5≦z≦20、15≦y+z≦30、各数値は
at%)
7. The amorphous core according to claim 5, wherein the amorphous alloy composition satisfies the following general formula. General formula: (Ni 1-a Fe a ) 100-xyz M x Si y B z (where M is V, Cr, Mn, Co, Nb, Mo, T
a represents at least one element selected from the group consisting of a, W, and Zr, wherein 0.2 ≦ a ≦ 0.7, 0.05 ≦ x ≦ 10, and 4 ≦ y
≦ 12, 5 ≦ z ≦ 20, 15 ≦ y + z ≦ 30, each numerical value is at%)
【請求項8】 アモルファスの合金組成が次ぎの一般式
を満たすことを特徴とする請求項5〜6記載のアモルフ
ァスコア。 一般式:Feabc (式中、MはTi、V、Cr、Mn、Co、Ni、Z
r、Nb、Mo、Hf、Ta、W、Re、Ga、Ru、
Rh、Pd、Os、Ir、Pt、希土類元素の群から選
ばれた少なくとも1種の元素を、YはSi、B、P、C
の群から選ばれた少なくとも1種の元素を示し、65≦
a≦85、0≦b≦15、5≦c≦35、各数字はat
%)
8. The amorphous core according to claim 5, wherein the amorphous alloy composition satisfies the following general formula. General formula: Fe a M b Y c (where M is Ti, V, Cr, Mn, Co, Ni, Z
r, Nb, Mo, Hf, Ta, W, Re, Ga, Ru,
At least one element selected from the group consisting of Rh, Pd, Os, Ir, Pt, and rare earth elements, and Y is Si, B, P, C
Represents at least one element selected from the group of
a ≦ 85, 0 ≦ b ≦ 15, 5 ≦ c ≦ 35, each number is at
%)
【請求項9】 3MHzでのQ値が0.5以上であるこ
とを特徴とする請求項5〜8記載のアモルファスコア。
9. The amorphous core according to claim 5, wherein a Q value at 3 MHz is 0.5 or more.
【請求項10】 加速器用コアとして用いることを特徴
とする請求項1〜9記載のアモルファスコア。
10. The amorphous core according to claim 1, which is used as a core for an accelerator.
【請求項11】 請求項1〜10記載のアモルファスコ
アを用いたことを特徴とする加速器。
11. An accelerator using the amorphous core according to claim 1.
JP03087498A 1998-02-13 1998-02-13 Amorphous core for accelerator and accelerator using the same Expired - Lifetime JP4851640B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03087498A JP4851640B2 (en) 1998-02-13 1998-02-13 Amorphous core for accelerator and accelerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03087498A JP4851640B2 (en) 1998-02-13 1998-02-13 Amorphous core for accelerator and accelerator using the same

Publications (2)

Publication Number Publication Date
JPH11233327A true JPH11233327A (en) 1999-08-27
JP4851640B2 JP4851640B2 (en) 2012-01-11

Family

ID=12315886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03087498A Expired - Lifetime JP4851640B2 (en) 1998-02-13 1998-02-13 Amorphous core for accelerator and accelerator using the same

Country Status (1)

Country Link
JP (1) JP4851640B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155158A (en) * 2010-01-28 2011-08-11 Hitachi Ltd Hybrid wound cord, and hybrid current transformer
CN110729111A (en) * 2019-10-30 2020-01-24 海鹰企业集团有限责任公司 Method for improving comprehensive performance of signal transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155158A (en) * 2010-01-28 2011-08-11 Hitachi Ltd Hybrid wound cord, and hybrid current transformer
CN110729111A (en) * 2019-10-30 2020-01-24 海鹰企业集团有限责任公司 Method for improving comprehensive performance of signal transformer

Also Published As

Publication number Publication date
JP4851640B2 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JPH0680611B2 (en) Magnetic core
JP3233313B2 (en) Manufacturing method of nanocrystalline alloy with excellent pulse attenuation characteristics
JP4210986B2 (en) Magnetic alloy and magnetic parts using the same
JP2573606B2 (en) Magnetic core and manufacturing method thereof
TW201817897A (en) Soft magnetic alloy and magnetic device
JP2004509459A (en) Transducer coil and method of manufacturing and using the same
JP7003046B2 (en) core
JP2006191041A (en) Magnetic laminated structure and method of manufacturing the same
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JP3620784B2 (en) Magnetic core for high-frequency acceleration cavity and high-frequency acceleration cavity using the same
JPH07278764A (en) Nano-crystal alloy and its production and magnetic core using the same
JPH0617204A (en) Soft magnetic alloy and its manufacture and magnetic core
US5091253A (en) Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation
JP4851640B2 (en) Amorphous core for accelerator and accelerator using the same
JP2000503169A (en) Distributed gap electric choke
JP2721165B2 (en) Magnetic core for choke coil
JP2000119825A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP AND Fe BASE NANOCRYSTAL SOFT MAGNETIC ALLOY THIN STRIP USING THE SAME AND MAGNETIC CORE
JPH08153614A (en) Magnetic core
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JP7414837B2 (en) Core for high frequency acceleration cavity and high frequency acceleration cavity using the core
JP4003166B2 (en) Co-based magnetic alloy and magnetic component using the same
JP3374981B2 (en) Nanocrystalline soft magnetic alloy and magnetic core with excellent short pulse characteristics
JP2945122B2 (en) Fe-based soft magnetic alloy and method for producing the same
JP3388247B2 (en) Wound core and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050428

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090106

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

EXPY Cancellation because of completion of term