JPH11229171A - Operation of decoppering electrolysis - Google Patents

Operation of decoppering electrolysis

Info

Publication number
JPH11229171A
JPH11229171A JP5432998A JP5432998A JPH11229171A JP H11229171 A JPH11229171 A JP H11229171A JP 5432998 A JP5432998 A JP 5432998A JP 5432998 A JP5432998 A JP 5432998A JP H11229171 A JPH11229171 A JP H11229171A
Authority
JP
Japan
Prior art keywords
copper
electrolysis
cathode
anode
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5432998A
Other languages
Japanese (ja)
Inventor
Yoshiaki Ihara
義昭 井原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP5432998A priority Critical patent/JPH11229171A/en
Publication of JPH11229171A publication Critical patent/JPH11229171A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To efficiently carry out decoppering electrolysis operation without causing any repetition loss of a stripping sheet, without a hanger being cut due to its melting, without need to extract the cross beam of an incompletely decoppered sheet and without need for manual, inefficient, dangerous and dirty operations. SOLUTION: The copper eluted excessively into an electrolyte from the crude copper used as an anode is electrolytically collected, and the impurities such as arsenic, antimony and bismuth eluted into the electrolyte are electrolyzed, recovered and removed. In this electrolytic refining process, the scrap anode generated from the process and washed with hot water is used as a cathode to electrodeposit the impurities on the scrap anode. The electrolytic collection of copper is conducted by acid recovering electrolysis, acid generating electrolysis and decoppering or dearsenicing electrolysis, and further the decoppered cathode is returned to the stage for packing the washed scrap anode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、転炉などの乾式製
錬設備を用いて精製された粗銅を鋳造することにより製
造した精製アノードを陽極に、また純粋な銅板、いわゆ
る種板に吊り手部分を取り付けクロスビームを通して作
成したカソードを陰極に用いて電解精製を行って、精製
アノードから銅を電解液中に電気溶解させ該電解液中の
銅をカソードに電着させて99.99%以上の純度にま
で精製された電気銅を製造する、銅の電解精製プロセス
に関するものであり、さらに詳細にはアノードとして用
いる粗銅から電解液中に余剰に溶出した銅を電解採取す
るとともに、該電解液中に溶出した砒素、アンチモン、
ビスマスなどの不純物成分を回収除去するための脱銅電
解の操業方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a method for hanging a purified anode produced by casting refined crude copper using a dry smelting facility such as a converter on an anode and a pure copper plate, a so-called seed plate. Electrolytic purification is performed using a cathode prepared by attaching a part and passing through a cross beam as a cathode, and copper is electrodissolved in an electrolytic solution from a purified anode, and copper in the electrolytic solution is electrodeposited on the cathode to obtain 99.99% or more. The present invention relates to an electrolytic copper refining process for producing electrolytic copper purified to a purity of, and more specifically, to electrolytically extract copper that is excessively eluted in an electrolytic solution from crude copper used as an anode, and to extract the electrolytic solution. Arsenic, antimony,
The present invention relates to an operation method of copper removal electrolysis for collecting and removing impurity components such as bismuth.

【0002】[0002]

【従来の技術】銅の電解精製プロセスでは、主に電気銅
の純度を上げるという観点から、カソード上に平滑な電
析物を得るために、銅濃度40〜50g/リットル、遊
離硫酸濃度150〜200g/リットルからなる硫酸銅
−硫酸水溶液の電解液中で電気分解を行っている。しか
しこのプロセスではアノード中に含まれる微量のCuO
やCuOなどの酸化銅や金属銅が電解液としての硫酸
に溶解するため、アノードから溶出する銅量がカソード
に電着する銅量よりも多くなる。通常この余剰銅量はア
ノード中の酸素濃度などの条件にもよるが、カソードに
電着する銅量の1〜2%程度になる。
2. Description of the Related Art In a copper electrorefining process, a copper concentration of 40 to 50 g / l and a free sulfuric acid concentration of 150 to 150 to obtain a smooth electrodeposit on a cathode mainly from the viewpoint of increasing the purity of electrolytic copper. The electrolysis is performed in an electrolytic solution of a copper sulfate-sulfuric acid aqueous solution of 200 g / liter. However, in this process, a small amount of CuO contained in the anode
Since or Cu 2 O is copper oxide or metallic copper, such as dissolved in sulfuric acid as an electrolyte, it becomes greater than the amount of copper that amount of copper eluted from the anode is electrodeposited on the cathode. Usually, the amount of excess copper depends on conditions such as the oxygen concentration in the anode, but is about 1 to 2% of the amount of copper electrodeposited on the cathode.

【0003】もしその過剰な銅が除去されずに電解精製
が継続されると、電解液中の銅濃度が上昇しアノードか
らの銅の溶出が阻害される不働態化という現象を引き起
こし電気分解の継続が不可能となるため、通常は鉛およ
び鉛含有合金を不溶性アノードとして、硫酸銅−硫酸水
溶液から銅を電解採取する回酸電解、造酸電解、脱銅電
解または脱砒電解工程を実施し、余剰な銅を電着物とし
て回収している。さらにその工程では銅イオンを完全に
除去した電解液をさらに電気分解すれば、ビスマス、砒
素、アンチモンなどの不純物が電着物として回収できる
特徴を生かしてこれら電解液中に含まれる前記の不純物
の除去も併せて実施している。
[0003] If electrolytic refining is continued without removing the excess copper, the concentration of copper in the electrolytic solution rises, causing a phenomenon of passivation in which the elution of copper from the anode is inhibited, resulting in electrolysis. Since continuation is impossible, it is usual to use a lead and lead-containing alloy as an insoluble anode, and perform a regenerative electrolysis, an acid-forming electrolysis, a decopperization electrolysis or a dehydration electrolysis process for electrowinning copper from a copper sulfate-sulfuric acid aqueous solution. The excess copper is recovered as electrodeposits. Further, in this process, if the electrolytic solution from which copper ions are completely removed is further electrolyzed, impurities such as bismuth, arsenic, and antimony can be recovered as electrodeposits to remove the impurities contained in these electrolytic solutions. Is also being implemented.

【0004】この脱銅電解で用いられるカソードには電
気銅製造用のカソードが使用され、電気分解後に得られ
た銅を主体とした電析物がスラブ状に電着したカソー
ド、あるいは銅、砒素、アンチモン、ビスマスを主体と
した電析物が粉状に電着したカソード(脱銅不良板)、
および粉状の電析物(脱銅スライム)は、不純物を含む
ため乾式熔錬工程で繰り返し処理をしている。
As a cathode used in the copper removal electrolysis, a cathode for producing electrolytic copper is used, and a copper-based electrodeposit obtained after electrolysis is electrodeposited in a slab shape, or copper or arsenic is deposited. , Antimony, bismuth-based electrodeposits powdery electrodeposited cathode (poor copper removal plate),
In addition, the powdery electrodeposit (copper-free slime) is repeatedly treated in the dry smelting process because it contains impurities.

【0005】このような従来の方法を図3のフローシー
トについて説明すると、精製アノードと母板とを種板電
解することにより電着母板を形成し、種板の剥取を行っ
て得られた種板からなるカソードを陰極とし、粗銅を鋳
造することにより製造した精製アノードを陽極として銅
電解精製を実施して電解銅を製造する。この際使用済み
のアノードはアノードスクラップとして洗浄後荷造り
し、熔錬工程に繰り返す。
[0005] Such a conventional method will be described with reference to the flow sheet of FIG. 3. The purified anode and the base plate are subjected to seed plate electrolysis to form an electrodeposited base plate, and the seed plate is peeled off. Electrolytic copper is produced by performing copper electrolytic refining using a cathode made of the seed plate as a cathode and a refined anode produced by casting blister copper as an anode. At this time, the used anode is washed and packed as anode scrap, and the process is repeated in the smelting process.

【0006】一方前記のように形成されたカソードは、
脱銅電解にも使用され銅、砒素、アンチモン、ビスマス
を主体とした電析物が粉状に電着したカソードは、脱銅
不良板として、また粉状の電析物は脱銅スライムとして
熔錬工程に繰り返す。なお従来の脱銅電解槽におけるア
ノードとカソードの状態を図4に示した。
On the other hand, the cathode formed as described above is
Cathode, which is also used for copper removal electrolysis and has electrodeposits mainly composed of copper, arsenic, antimony, and bismuth electrodeposited in powder form, is used as a copper removal defective plate, and powdery electrodeposits are used as copper removal slime. Repeat to refining process. FIG. 4 shows the state of the anode and the cathode in the conventional copper-free electrolytic cell.

【0007】[0007]

【発明が解決しようとする課題】しかしながらその従来
の方法には以下のような問題点がある。 本来ならば製品である電気銅となり得る純粋な銅板
(種板)をカソードとして電解精製して、電解精製後に
生成する脱銅不良板を熔錬工程に繰り返すので、繰り返
しロスが発生する。その繰り返し量は、電気銅生産量の
0.1%程度に上る。また脱銅電解用種板の製造によっ
て、0.1%でも電気銅製造能力が圧迫されるので、
0.1%の電気銅増産の機会を逸することになる。
However, the conventional method has the following problems. Electrorefining is performed using a pure copper plate (seed plate), which can be originally a product of electrolytic copper, as a cathode, and a defective copper removal plate generated after the electrolytic refining is repeated in the smelting process, so that repeated loss occurs. The repetition amount is about 0.1% of the production amount of electrolytic copper. In addition, the production of electrolytic copper seed plates will put pressure on electrolytic copper production even at 0.1%,
You will miss the opportunity to increase your copper production by 0.1%.

【0008】脱銅電解精製のアノ一ド側では水の電気
分解により酸素ガスの気泡が発生し、またカソード側で
も場合によっては水素ガスなどの気泡が発生するが、そ
の気泡の発生に伴って、脱銅電解槽の気相中には多量の
硫酸ミストが発生する。そして電気銅製造用のカソード
を脱銅電解に使用した場合、その硫酸ミストの作用によ
りカソードの吊り手部分が溶解して切れてしまうという
トラブルが頻繁に発生する。このトラブルは設備破損
や、安全上のトラブルを引き起こすだけでなく、その復
旧作業に多大な労力を費やすことにもなる。
[0008] On the anode side of the copper removal electrolytic refining, bubbles of oxygen gas are generated by the electrolysis of water, and on the cathode side, bubbles of hydrogen gas or the like are generated in some cases. In addition, a large amount of sulfuric acid mist is generated in the gas phase of the copper removal electrolytic bath. When a cathode for producing electrolytic copper is used for copper-free electrolysis, a problem often occurs that the hanging portion of the cathode is melted and cut by the action of the sulfuric acid mist. This trouble not only causes equipment damage and safety troubles, but also consumes a great deal of effort in recovery work.

【0009】引き揚げた脱銅不良板は、クロスビーム
を抜き取って回収し、次の熔錬工程で処理できるように
積み重ねて整列する必要があり、その作業は人手で行う
ため非効率であるとともに危険な汚い作業となってい
る。
The lifted defective copper removal plate needs to be collected by extracting a cross beam, and must be stacked and aligned so that it can be processed in the next smelting process. This operation is performed manually and is inefficient and dangerous. Dirty work.

【0010】脱銅電解槽には、カスケードと呼ばれる
方式により、6〜10槽程度を1系列として電解液を直
列に流している。したがって電解液の下流側の電解槽で
は常に粉状のスライムが電着物として生じ、このスライ
ムはカソード表面には付着せずに電解槽の槽底に沈降す
る。そこでこれら電解液の下流側の電解槽では、カソー
ドの引き揚げを行わずに定期的に電解槽の槽底に沈降し
たスライムの回収のみを行えば良いことになる。
In the copper removal electrolytic cell, an electrolytic solution is flowed in series with a system called about 6 to 10 cells in a series called a cascade. Therefore, powdery slime is always produced as an electrodeposit in the electrolytic cell downstream of the electrolytic solution, and the slime does not adhere to the cathode surface and settles at the bottom of the electrolytic cell. Therefore, in the electrolytic cell on the downstream side of these electrolytic solutions, it is only necessary to periodically collect the slime that has settled at the bottom of the electrolytic cell without lifting the cathode.

【0011】しかしながら、カソードの引き揚げを行わ
ずにカソードを電解槽に浸漬したままにしておくと、
に示したように吊り手部分の溶解による切れが発生する
ことからこれら電解液の下流側の電解槽でも定期的にカ
ソードを引き揚げ、ほとんど種板と同じ状態のものを脱
銅不良板としてクロスビームを抜き取り、積み重ねて整
列して熔錬工程に繰り返している。したがって種板の無
駄な繰り返しと、無駄な脱銅不良板の処理作業を強いら
れていることになっている。
However, if the cathode is immersed in the electrolytic cell without lifting the cathode,
As shown in the figure, the cathode is pulled up regularly in the electrolytic cell downstream of these electrolytes as well. Are collected, stacked, aligned and repeated in the smelting process. Therefore, the useless repetition of the seed plate and the work of processing the useless defective copper removal plate are forced.

【0012】本発明の目的は上記従来の方法の問題点を
解決し、繰り返しロスを発生させずにカソード吊り手部
分の溶解による切れトラブルを皆無とし、人手もかけず
に安全で効率的な脱銅電解の操業方法を提供するもので
ある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the conventional method, eliminate any troubles caused by melting of the portion of the cathode hanger without causing repetitive loss, and provide a safe and efficient removal without manual operation. An operation method of copper electrolysis is provided.

【0013】[0013]

【課題を解決するための手段】上記目的を達成するため
本発明は、アノードとして用いる粗銅から電解液中に余
剰に溶出した銅を電解採取するとともに、該電解液中に
溶出した砒素、アンチモン、ビスマスなどの不純物成分
をさらに電気分解して回収除去する銅の電解精製プロセ
スにおいて、銅の電解精製プロセスから発生する温水洗
浄後のアノードスクラップをカソードとして使用して該
アノードスクラップ上に前記不純物成分を含む電着物を
析出させる脱銅電解の操業方法を特徴とするものであ
り、また前記銅の電解採取は、回酸電解、造酸電解、脱
銅電解または脱砒電解工程により実施し、さらに前記脱
銅電解後のカソードをアノードスクラップの洗浄後荷造
り工程に戻すものである。
SUMMARY OF THE INVENTION In order to achieve the above object, the present invention provides a method for electrolytically collecting copper eluted in an electrolytic solution from crude copper used as an anode, and arsenic, antimony, In an electrolytic copper refining process for further electrolytically recovering and removing impurity components such as bismuth, the anode scrap after hot water washing generated from the electrolytic copper refining process is used as a cathode to remove the impurity components on the anode scrap. The method is characterized by an operation method of copper removal electrolysis for depositing an electrodeposit including the above, and the copper electrowinning is performed by a reoxidation electrolysis, an acid-forming electrolysis, a copper removal electrolysis or a copper removal electrolysis step, and The cathode after the copper removal electrolysis is returned to the packing process after washing the anode scrap.

【0014】[0014]

【発明の実施の形態】つぎに本発明の方法を図1のフロ
ーシートにより説明する。本発明では図3と同様に得ら
れたカソードと精製アノードをそれぞれ陰極、陽極に使
用して銅電解精製を行うまでは従来技術と同様である。
そして銅の電解精製から発生するアノードスクラップの
一部は、従来技術と同様に洗浄後荷造りし、熔錬工程に
繰り返すが、その一部を温水洗浄した後これをカソード
として使用して脱銅電解し、銅、砒素、アンチモン、ビ
スマスを主体とした電析物が粉状に電着したカソード
は、脱銅不良板として前記洗浄後荷造り工程に戻し、一
方粉状の電析物は脱銅スライムとして熔錬工程に繰り返
す。
Next, the method of the present invention will be described with reference to the flow sheet of FIG. In the present invention, the process is the same as that of the prior art until the copper electrolytic purification is performed using the cathode and the refined anode obtained as in FIG. 3 as the cathode and the anode, respectively.
A part of the anode scrap generated from the electrolytic refining of copper is washed and packed in the same manner as in the prior art, and is repeated in the smelting process. Then, the cathode on which the electrodeposits mainly composed of copper, arsenic, antimony, and bismuth are electrodeposited in powder form is returned to the packing step after the washing as a defective copper removal plate, while the powdery electrodeposits are decopperized slime. And repeat the smelting process.

【0015】このように図1と図3を対比すれば、従来
はアノードスクラップは洗浄後荷造りをして熔錬工程に
繰り返していたが、本発明ではそのアノードスクラップ
の一部を脱銅電解工程におけるカソードとして再使用
し、脱銅電解後の脱銅不良板を荷造り後熔錬工程に繰り
返すよう構成した。その際に脱銅電解後のカソードの荷
造りは、電解精製工程のアノードスクラップの洗浄後荷
造り設備を使用して行う。
1 and 3, the anode scrap is conventionally packed after cleaning, and the smelting process is repeated. In the present invention, a part of the anode scrap is removed from the anode by the copper removal electrolytic process. Was re-used as a cathode in the above, and the copper-removed defective plate after the copper removal electrolysis was packed and then repeated in the smelting step. At this time, packing of the cathode after the copper removal electrolysis is performed using a packing facility after washing the anode scrap in the electrolytic refining process.

【0016】このような操業を実施することにより、種
板の繰り返しロスが無くなる他、アノードスクラップの
ショルダー部の厚みは30mm程度あるので、吊り手部
分の溶解による切れの発生も無くなる。また脱銅不良板
のクロスビーム抜き取り作業が無いばかりか、電解精製
工程のアノ一ドスクラップの洗浄後荷造り設備によっ
て、脱銅電解後のカソードの集積を行うので人手による
非効率で危険な汚い作業も発生しない。
By performing such an operation, in addition to eliminating the repetitive loss of the seed plate, the thickness of the shoulder portion of the anode scrap is about 30 mm, so that the occurrence of breakage due to melting of the hanging portion is also eliminated. In addition, there is no cross-beam extraction of defective copper removal plates, and the cathodes are collected after copper removal electrolysis by packing equipment after cleaning the anode scrap in the electrolytic refining process. Also does not occur.

【0017】[0017]

【実施例】脱銅電解槽にカソードとして、銅の電解精製
プロセスから発生する温水洗浄後のアノードスクラップ
を装入し、電流密度308A/m、電解液流量35リ
ットル/分の条件で電気分解を行った。その結果槽電圧
は2Vで、問題無く操業を実施することができた。一方
脱銅電解の下流側(7、8段目)の電解槽に、カソード
としてアノードスクラップを装入した。その結果6カ月
間カソードを引き揚げずに操業を継続することができ
た。なおアノードスクラップ装入時の脱銅電解槽内の状
態を図2に示した。
EXAMPLE An anode scrap after washing with hot water generated from an electrolytic refining process of copper was charged into a copper-free electrolytic cell as a cathode, and electrolysis was performed under the conditions of a current density of 308 A / m 2 and an electrolyte flow rate of 35 L / min. Was done. As a result, the tank voltage was 2 V, and the operation could be performed without any problem. On the other hand, an anode scrap was charged as a cathode in the electrolytic cell on the downstream side (7th and 8th stages) of the copper removal electrolysis. As a result, the operation could be continued for six months without lifting the cathode. FIG. 2 shows the state inside the copper removal electrolytic tank when the anode scrap was charged.

【0018】[0018]

【発明の効果】以上述べた通り本発明の脱銅電解の操業
方法によれば、種板の繰り返しロスが無く、吊り手部分
の溶解による切れトラブルの発生も無く、脱銅不良板の
クロスビーム抜き取り作業や、人手による非効率で危険
な汚い作業も伴わずに、極めて効率的に脱銅電解操業を
実施することができる。
As described above, according to the operating method of copper removal electrolysis according to the present invention, there is no repetitive loss of the seed plate, no trouble of cutting due to melting of the hanging part, and the cross beam of the defective copper removal plate. The copper-free electrolytic operation can be performed extremely efficiently without any extraction work or inefficient and dangerous dirty work by hand.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の方法を説明するフローシートである。FIG. 1 is a flow sheet illustrating the method of the present invention.

【図2】本発明に係るアノードスクラップ装入時の脱銅
電解槽内の状態を示す説明図である。
FIG. 2 is an explanatory diagram showing a state inside a copper removal electrolytic tank at the time of loading an anode scrap according to the present invention.

【図3】従来の方法を説明するフローシートである。FIG. 3 is a flow sheet for explaining a conventional method.

【図4】従来技術に係る脱銅電解槽内のアノードとカソ
ードの状態を示す説明図である。
FIG. 4 is an explanatory diagram showing states of an anode and a cathode in a copper removal electrolytic cell according to a conventional technique.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アノードとして用いる粗銅から電解液中
に余剰に溶出した銅を電解採取するとともに、該電解液
中に溶出した砒素、アンチモン、ビスマスなどの不純物
成分をさらに電気分解して回収除去する銅の電解精製プ
ロセスにおいて、銅の電解精製プロセスから発生する温
水洗浄後のアノードスクラップをカソードとして使用し
て該アノードスクラップ上に前記不純物成分を含む電着
物を析出させることを特徴とする脱銅電解の操業方法。
An electrolytic extraction of copper eluted excessively in an electrolytic solution from crude copper used as an anode, and impurity components such as arsenic, antimony and bismuth eluted in the electrolytic solution are further electrolytically recovered and removed. In the copper electrorefining process, the copper scrap containing the impurity component is deposited on the anode scrap by using an anode scrap after washing with hot water generated from the copper electrorefining process as a cathode. Operating method.
【請求項2】 前記銅の電解採取は、回酸電解、造酸電
解、脱銅電解または脱砒電解工程により実施することを
特徴とする請求項1記載の脱銅電解の操業方法。
2. The operating method of copper removal electrolysis according to claim 1, wherein said copper electrowinning is carried out by a reoxidation electrolysis, an acid-forming electrolysis, a copper removal electrolysis or a copper removal electrolysis step.
【請求項3】 前記脱銅電解後のカソードをアノードス
クラップの洗浄後荷造り工程に戻すことを特徴とする請
求項1または2記載の脱銅電解の操業方法。
3. The operating method of copper removal electrolysis according to claim 1, wherein the cathode after the copper removal electrolysis is returned to a packing step after washing the anode scrap.
JP5432998A 1998-02-19 1998-02-19 Operation of decoppering electrolysis Pending JPH11229171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5432998A JPH11229171A (en) 1998-02-19 1998-02-19 Operation of decoppering electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5432998A JPH11229171A (en) 1998-02-19 1998-02-19 Operation of decoppering electrolysis

Publications (1)

Publication Number Publication Date
JPH11229171A true JPH11229171A (en) 1999-08-24

Family

ID=12967564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5432998A Pending JPH11229171A (en) 1998-02-19 1998-02-19 Operation of decoppering electrolysis

Country Status (1)

Country Link
JP (1) JPH11229171A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215652A (en) * 2009-03-19 2009-09-24 Nippon Mining & Metals Co Ltd Electrolytic copper powder and its production method
CN104278291A (en) * 2014-10-24 2015-01-14 天津中色再生金属工程技术研究院 Method of directly melting and molding scrap copper to extract copper by electrolysis
CN110106522A (en) * 2019-04-30 2019-08-09 上海大学 The method for producing tough cathode using Bi brass waste material Direct Electrolysis
JP2020006337A (en) * 2018-07-10 2020-01-16 住友金属鉱山株式会社 METHOD OF SEPARATING Cu FROM Ni AND/OR Co

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215652A (en) * 2009-03-19 2009-09-24 Nippon Mining & Metals Co Ltd Electrolytic copper powder and its production method
CN104278291A (en) * 2014-10-24 2015-01-14 天津中色再生金属工程技术研究院 Method of directly melting and molding scrap copper to extract copper by electrolysis
JP2020006337A (en) * 2018-07-10 2020-01-16 住友金属鉱山株式会社 METHOD OF SEPARATING Cu FROM Ni AND/OR Co
CN110106522A (en) * 2019-04-30 2019-08-09 上海大学 The method for producing tough cathode using Bi brass waste material Direct Electrolysis
CN110106522B (en) * 2019-04-30 2021-06-04 上海大学 Method for preparing cathode copper by directly electrolyzing bismuth brass waste

Similar Documents

Publication Publication Date Title
JP3089595B2 (en) Recovery of indium by electrowinning
US9630844B2 (en) Hydrometallurgical process for the recovery of tellurium from high lead bearing copper refinery anode slime
JP4298712B2 (en) Method for electrolytic purification of copper
CN107177865A (en) Process for separating lead and bismuth from high-bismuth lead alloy
JPH11229171A (en) Operation of decoppering electrolysis
JP3146706B2 (en) Gallium electrolysis method
CN101671833A (en) Method for recovering silver in alloyed scrap containing indium, cadmium and silver
JP3825983B2 (en) Metal purification method
JP3882608B2 (en) Method and apparatus for electrolytic purification of high purity tin
JPH05247552A (en) Decopperizing method of lead electrolysis anode slime by wet process treatment
JP3934685B2 (en) Lead recycling method by continuous electrochemical lead refining
CN212925127U (en) Recovery device for valuable metals in scrap copper electrolysis anode mud
JP4797163B2 (en) Method for electrolysis of tellurium-containing crude lead
CN110629253B (en) Method for electrorefining lead bullion by using ionic liquid and method for recovering metal bismuth and silver
JP4071041B2 (en) Regeneration method of copper alloy pickling waste liquid
CN110408958B (en) Method for separating and recovering tin and indium from indium-tin alloy
JP3878402B2 (en) Metal purification method
CN219342235U (en) System for recycling lead from scrap copper electrolysis anode slime
JP2012092447A (en) Electrolytic extracting method of cobalt
JPH06192877A (en) Refining method for gallium metal
CN113005292B (en) Method for recovering silver, indium and cadmium from silver-indium-cadmium alloy waste
RU2224038C2 (en) Method for producing of high-purity gallium
CN115044941A (en) Process for preparing high-purity indium by one-step electrolysis of crude indium
JPH07145427A (en) Method for recovering and recycling palladium or palladium alloy from contact material
JP3083079B2 (en) Copper electrorefining method