JPH11220859A - Still generator exciting device - Google Patents

Still generator exciting device

Info

Publication number
JPH11220859A
JPH11220859A JP10021731A JP2173198A JPH11220859A JP H11220859 A JPH11220859 A JP H11220859A JP 10021731 A JP10021731 A JP 10021731A JP 2173198 A JP2173198 A JP 2173198A JP H11220859 A JPH11220859 A JP H11220859A
Authority
JP
Japan
Prior art keywords
generator
voltage
rectifier
exciter
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10021731A
Other languages
Japanese (ja)
Inventor
Koji Nishi
孝司 西
Hisayuki Ideno
久幸 出野
Hiroaki Ota
浩章 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP10021731A priority Critical patent/JPH11220859A/en
Publication of JPH11220859A publication Critical patent/JPH11220859A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve the transient stability of high ceiling voltage with the design of withstand voltage value of the same generator field winding by changing the rectifying circuit of a generator exciting device from six phases to 12 phases, reducing spike voltage generated from a rectifier, and raising exciting output voltage by reduced quantity. SOLUTION: A device is constituted of the rectifier of a three phase bridge rectifying system, which is constituted of exciting transformers and thyristor elements 2, and field breakers 4. The exciting transformers are set to be the split transformers 6 of secondary two windings, and the rectifier is set to be a 12 phase rectifier 7 connected to the secondary windings of the exciting transformers. Spike voltage generated from the rectifier is reduced. The ceiling voltage of the exciting device is regulated by the withstand voltage value of the generator field winding and the withstand voltage value is regulated by a value containing instantaneous voltage fluctuation. The spike voltage of the rectifier is considered and ceiling voltage is selected. Then, the maximum output voltage of the exciting device can be raised by reducing a spike voltage ratio, ceiling voltage is raised and the transient stability of a transmission system can be improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、送電系統の安定度
確保の為、高い過渡安定度を要求される大出力発電機の
静止型励磁装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stationary excitation device for a high-power generator that requires high transient stability in order to secure the stability of a power transmission system.

【0002】[0002]

【従来の技術】従来、発電機の励磁装置は発電機と軸直
結の回転励磁機の出力を直流に変換して励磁電源として
使用する交流励磁機方式と発電機の出力を励磁変圧器で
降圧し直流に変換して励磁電源に使用する静止型励磁方
式の二つの方式があり、系統安定度上高い過渡安定度が
要求される場合には後者の静止型励磁方式を採用して来
た。静止型励磁方式は整流器の制御角を変えることによ
り、瞬時に励磁電圧を変えることができる為、過渡安定
度向上に有効であるが、その最大励磁電圧(頂上電圧)
は、発電機界磁巻線の耐電圧値以内に抑えることが必要
であり、おのずとその能力は発電機界磁巻線の設計に依
存していた。
2. Description of the Related Art Conventionally, an exciter of a generator is an AC exciter system in which the output of a rotary exciter directly connected to a generator and a shaft is converted into DC and used as an excitation power source, and the output of the generator is stepped down by an excitation transformer. There are two types of static excitation type, which are converted into direct current and used for an excitation power supply. When a high transient stability is required in terms of system stability, the latter static excitation type has been adopted. The static excitation method is effective in improving transient stability because the excitation voltage can be changed instantaneously by changing the control angle of the rectifier, but its maximum excitation voltage (top voltage)
Must be kept within the withstand voltage value of the generator field winding, and its performance naturally depends on the design of the generator field winding.

【0003】[0003]

【発明が解決しようとする課題】従来技術は、図1に示
す様に励磁装置の整流回路に6相整流器を採用してお
り、整流器にて交流を直流に変換する際に発生するスパ
イク電圧を考慮した励磁装置出力電圧(頂上電圧)が発
電機界磁巻線の耐電圧値を超えない様選定していた。こ
れに対し、送電系統の過渡安定度向上の為、必要な励磁
装置頂上電圧は一般に発電機無負荷時界磁電流と界磁巻
線抵抗の積(無負荷時界磁電圧)に対する比で表わさ
れ、この比が大きい程、送電系統の過渡安定度を向上さ
せる為に有効である。
In the prior art, as shown in FIG. 1, a six-phase rectifier is employed in a rectifier circuit of an exciting device, and a spike voltage generated when an AC is converted to a DC by the rectifier is used. The exciter output voltage (top voltage) considered was selected so as not to exceed the withstand voltage value of the generator field winding. On the other hand, in order to improve the transient stability of the transmission system, the required exciter top voltage is generally expressed as the ratio to the product of the field current at no load of the generator and the resistance of the field winding (field voltage at no load). The larger the ratio is, the more effective it is to improve the transient stability of the transmission system.

【0004】近年、人口密度の低い遠隔地に大出力の火
力、原子力発電所が建設される傾向にあり、電力消費地
との間を大距離送電線で結ぶ為、ますます高い送電系統
の過渡安定度が要求されること、発電所の相対的な建設
コストを低減する為、更に単機出力の大きい発電所が建
設される傾向にあり、現状の設計では送電系統の過渡安
定度を確保することが困難になることは十分に予想でき
る。
[0004] In recent years, high-power thermal power and nuclear power plants have been constructed in remote areas with low population density, and since power plants are connected to power-consuming areas by large-distance transmission lines, the transition of increasingly high power transmission systems has been increasing. In order to reduce the relative construction cost of power plants, there is a tendency to build more power plants with higher single-unit output, and the current design should secure the transient stability of the transmission system. Can be expected to be difficult.

【0005】又、電気事業法の改正による電力供給の自
由化等もあり、供給電力の質の向上も大きな命題の一つ
であり、発電機励磁装置等から送電電力の混入する高調
波の量を減らすことも今後実施して行かなければならな
い課題である。
[0005] In addition, there is liberalization of power supply due to the revision of the Electricity Business Law, and improvement of the quality of supplied power is also one of the major propositions. It is also an issue that needs to be implemented in the future.

【0006】本発明の目的は、現状の発電機の設計(界
磁巻線の耐電圧値)を大きく変えることなく、過渡安定
度の高い電力を供給することであり、励磁装置の整流方
式を6相整流方式から12相整流方式に変更し、整流器
からのスパイク電圧を低減することで励磁装置の頂上電
圧を上げると同時に励磁変圧器を位相を変えた二つの二
次巻線を持つスプリット巻線変圧器とし、この各々の二
次巻線に整流器を接続し、これを組み合わせて12相整
流器を構成する方式として、励磁変圧器を通して、整流
器から電源側に移行する高調波量を低減することで、大
出力また、遠隔地の発電所に系統安定度が高く、発生高
調波の少ない発電機励磁装置を提供することにある。
An object of the present invention is to supply power with high transient stability without largely changing the current generator design (withstand voltage of a field winding). Change from 6-phase rectification to 12-phase rectification and reduce the spike voltage from the rectifier to raise the voltage at the top of the exciter, and at the same time split winding with two secondary windings that change the phase of the excitation transformer A rectifier is connected to each of the secondary windings as a line transformer, and a 12-phase rectifier is configured by combining the rectifiers to reduce the amount of harmonics transferred from the rectifier to the power supply through the excitation transformer. SUMMARY OF THE INVENTION It is an object of the present invention to provide a generator exciter having a high output and a high power generation system stability at a remote power station and low generation of harmonics.

【0007】[0007]

【課題を解決するための手段】上記発明を達成できる第
一の発明の特徴は、発電機励磁装置の整流回路を従来の
6相整流器から12相整流器に変更し、整流器から発生
するスパイク電圧を低減し(6相整流器に比べ12相整
流器の発生スパイク電圧が減少することは公知の技術で
あり、制御角により異なるが整流器の直流出力平均電圧
に対する比率では約20%近くまで低減できる。)、ス
パイク電圧の低減分だけ励磁装置の出力電圧を上げるこ
とにより、同一の発電機界磁巻線の耐電圧値の設計で高
い頂上電圧の過渡安定度に優れた発電機励磁装置が達成
できる。
A feature of the first invention that can achieve the above-mentioned invention is that the rectifier circuit of the generator excitation device is changed from a conventional 6-phase rectifier to a 12-phase rectifier, and the spike voltage generated from the rectifier is reduced. It is a known technique that the generated spike voltage of the 12-phase rectifier is reduced as compared with the 6-phase rectifier, and the ratio to the average DC output voltage of the rectifier can be reduced to about 20% depending on the control angle. By increasing the output voltage of the exciter by an amount corresponding to the reduction of the spike voltage, it is possible to achieve a generator exciter that is excellent in transient stability of a high peak voltage by designing the withstand voltage value of the same generator field winding.

【0008】上記発明を達成できる第二の発明の特徴
は、発電機励磁装置の整流回路を従来の6相整流器から
12相整流器に変更し、整流器から発生するスパイク電
圧を低減し、スパイク電圧の低減分だけ励磁装置の出力
電圧を上げることにより、下記に示す発電機界磁巻線抵
抗の増加による頂上電圧の減少分を相殺し(頂上電圧の
1P.U.は、発電機無負荷界磁電流と界磁巻線抵抗の
積(無負荷界磁電圧)で表わされる。)、同一の発電機
界磁巻線の耐電圧値の設計および同一の頂上電圧(同一
の過渡安定度)でより大出力の発電機に対応した発電機
励磁装置が達成できる。
A feature of the second invention that can achieve the above-described invention is that the rectifier circuit of the generator excitation device is changed from a conventional six-phase rectifier to a twelve-phase rectifier, the spike voltage generated from the rectifier is reduced, and the spike voltage is reduced. By increasing the output voltage of the exciter by the reduced amount, the decrease in the peak voltage due to the increase in the generator field winding resistance shown below is canceled out (1 PU of the peak voltage is equal to the generator no-load field). It is expressed by the product of the current and the field winding resistance (no-load field voltage)), the design of the withstand voltage value of the same generator field winding and the same top voltage (the same transient stability). A generator exciter corresponding to a high-output generator can be achieved.

【0009】これは、発電機の界磁巻線抵抗は発電機の
出力が増加すると発電機の体格が大きくなる為、増加す
る傾向にあるが、無負荷界磁電流は発電機の出力側開放
時に発電機端子に定格電圧を発生させる為に必要な界磁
電流であり、発電機定格電圧が変更なければ大きく変わ
らない為、発電機出力が大きくなると励磁装置頂上電圧
の基準である無負荷時界磁電圧の所要値が大きくなり相
対的に発電機界磁巻線の耐電圧値から制限される頂上電
圧のP.U.値が減少することを補正することを目的と
したものである。
This is because the field winding resistance of the generator tends to increase because the physique of the generator increases as the output of the generator increases, but the no-load field current increases the output side of the generator. This is a field current necessary to generate a rated voltage at the generator terminal, and does not change significantly unless the generator rated voltage is changed.Therefore, when the generator output increases, there is no load, which is the standard of the excitation device top voltage. The required value of the field voltage increases, and the peak voltage P.I. which is relatively limited by the withstand voltage value of the generator field winding. U. The purpose is to correct a decrease in the value.

【0010】上記発明を達成できる第三の発明の特徴
は、発電機励磁装置の整流回路を従来の6相整流器から
12相整流器に変更し、12相整流器の出力を二つの6
相整流器を直列に接続する構成として、更に、整流器に
電源を供給する励磁変圧器をスプリット巻線の変圧器と
し、二次巻線の各々の位相を変え、励磁変圧器の二つの
二次巻線に各々二つの整流器の電源を接続することによ
り、整流器が交直変換する時に発生する高調波を励磁変
圧器の位相で減少させることにより、励磁変圧器を通し
て電源側に移行する高調波量の少ない発電機励磁装置が
達成できる。
A feature of the third invention that can achieve the above-mentioned invention is that the rectifier circuit of the generator excitation device is changed from a conventional 6-phase rectifier to a 12-phase rectifier, and the output of the 12-phase rectifier is changed to two 6-phase rectifiers.
As a configuration in which phase rectifiers are connected in series, the exciting transformer that supplies power to the rectifier is a split winding transformer, the phases of the secondary windings are changed, and the two secondary windings of the exciting transformer are changed. By connecting the power supply of each of the two rectifiers to the line, the harmonics generated when the rectifier performs AC / DC conversion are reduced in the phase of the excitation transformer, so that the amount of harmonics transferred to the power supply through the excitation transformer is small. A generator exciter can be achieved.

【0011】[0011]

【発明の実施の形態】以下、本発明の実施例を図1〜図
6に示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0012】図1は従来の発電機励磁装置の構成図であ
る。発電機励磁装置は発電機の出力電圧を励磁装置の必
要な電圧に変圧する二巻線の励磁変圧器1とサイリスタ
素子2からなる3相全波整流の6相整流器3及び界磁回
路を開閉する界磁遮断器4から構成され、発電機の界磁
巻線5に必要な直流電源を供給する装置である。
FIG. 1 is a configuration diagram of a conventional generator excitation device. The generator exciter opens and closes a six-phase rectifier 3 for three-phase full-wave rectification and a field circuit comprising a two-winding excitation transformer 1 and a thyristor element 2 for transforming the output voltage of the generator to a voltage required by the exciter. This is a device configured to supply a necessary DC power to a field winding 5 of a generator.

【0013】図2は本発明を実施した場合の発電機励磁
装置の構成図である。この場合の発電機励磁装置は、従
来と同様に、励磁変圧器とサイリスタ素子2からなる3
相ブリッジ整流方式の整流器及び界磁遮断器4から構成
されるが、励磁変圧器を二巻線変圧器から二次二巻線の
スプリット変圧器6に変更し、整流器を6相整流器から
励磁変圧器の二次巻線に各々接続される12相整流器7
に変更して、整流器から発生するスパイク電圧を低減す
る構成としている。
FIG. 2 is a configuration diagram of a generator excitation device when the present invention is implemented. In this case, the generator excitation device is composed of an excitation transformer and a thyristor element 2 as in the prior art.
It is composed of a rectifier of the phase bridge rectification type and a field circuit breaker 4. The exciting transformer is changed from a two-winding transformer to a split transformer of secondary and secondary windings, and the rectifier is changed from a six-phase rectifier to an exciting transformer. 12-phase rectifier 7 connected to the secondary winding of the
To reduce the spike voltage generated from the rectifier.

【0014】図3は送電線事故発生時の発電機界磁電圧
の動きを模式的に表わした図である。発電機励磁装置と
して交流励磁機を使用している場合には、事故発生によ
り、界磁電圧を徐々に上昇させる形となるが、静止型励
磁装置の場合には事故発生直後は発電機主回路の電圧が
低下する為、界磁電圧も低下するが事故除去と同時にサ
イリスタ素子の制御角を制御することにより、急速に界
磁電圧を上昇させ、送電系統の過渡安定度の確保に寄与
することができる。
FIG. 3 is a diagram schematically showing the behavior of the generator field voltage when a transmission line accident occurs. If an AC exciter is used as the generator exciter, the field voltage will gradually increase due to the occurrence of an accident.However, in the case of a stationary exciter, the generator main circuit will be used immediately after the occurrence of the accident. The voltage of the thyristor element decreases as well as the field voltage decreases, but by controlling the control angle of the thyristor element simultaneously with the elimination of the accident, the field voltage increases rapidly, contributing to securing the transient stability of the power transmission system. Can be.

【0015】この界磁電圧の上昇はその上昇幅が大きい
程、送電系統の過渡安定度の向上に寄与できるが、実際
には界磁電圧が印加される発電機界磁巻線の耐電圧値で
制限され、耐電圧値以内の値で各発電機毎に選定され
る。ここで、この界磁電圧上昇値の最大値を励磁装置の
頂上電圧と呼び、一般に無負荷時界磁電流と75℃にお
ける界磁巻線抵抗との積に対するP.U.値で表わされ
る。
The increase of the field voltage can contribute to the improvement of the transient stability of the power transmission system as the increase width is larger. However, the withstand voltage of the generator field winding to which the field voltage is applied is actually increased. And is selected for each generator with a value within the withstand voltage value. Here, the maximum value of the field voltage rise value is referred to as the peak voltage of the exciter, and is generally defined as P.P. U. It is represented by a value.

【0016】図4(a)はサイリスタ素子による3相ブ
リッジ整流回路の原理を示す図である。3相ブリッジ整
流回路に設けた6個のサイリスタ素子12,13,1
4,15,16,17に図4(b)に示す様に位相を順
次ずらしてゲート電流I01〜I0618〜23を加えると
各サイリスタは順次動作して整流器の出力電圧26,出
力電流27は図4(c)の如くとなる。尚、実際には電
源側のインダクタンス24等により、他の相への転流は
瞬時には行われず、有限の期間(転流重なり角)を有する
が、図4では簡略化の為、これを無視している。図4
(d)は他の相への転流時の出力電圧波形の詳細図であ
り、転流時のサイリスタのON−OFFによる転流振動
により、スパイク電圧(サージ電圧)8が発生し、これ
を含んだ出力電圧値が負荷25に印加される瞬時最大電
圧となる。
FIG. 4A is a diagram showing the principle of a three-phase bridge rectifier circuit using a thyristor element. Six thyristor elements 12, 13, 1 provided in a three-phase bridge rectifier circuit
As shown in FIG. 4B, when the gate currents I 01 to I 06 18 to 23 are added to the thyristors 4, 15, 16, and 17 in a phase-shifted manner, the thyristors sequentially operate to output the rectifier output voltage 26 and output current 26. 27 is as shown in FIG. Note that commutation to another phase is not performed instantaneously due to the power supply side inductance 24 and the like, but has a finite period (commutation overlap angle). However, in FIG. Ignored. FIG.
(D) is a detailed view of an output voltage waveform at the time of commutation to another phase. A spike voltage (surge voltage) 8 is generated by commutation vibration due to ON / OFF of the thyristor at the time of commutation. The output voltage value thus included becomes the instantaneous maximum voltage applied to the load 25.

【0017】図5はサイリスタ整流器のスパイク電圧と
直流出力電圧平均値との関係を表わしたグラフである。
6相整流器に比べ12相整流器がこのスパイク電圧を低
く抑えることができることは公知の技術である。
FIG. 5 is a graph showing the relationship between the spike voltage of the thyristor rectifier and the average DC output voltage.
It is a known technique that a 12-phase rectifier can lower this spike voltage compared to a 6-phase rectifier.

【0018】励磁装置の頂上電圧は発電機界磁巻線の耐
電圧値により制限され、その耐電圧値は瞬時の電圧変動
を含んだ値で制限される為、整流器のスパイク電圧を考
慮した上で頂上電圧を選定する必要がある。
The peak voltage of the exciter is limited by the withstand voltage value of the generator field winding, and the withstand voltage value is limited by a value including instantaneous voltage fluctuation. It is necessary to select the top voltage.

【0019】[0019]

【数1】 Vt>α×VEMAX=α×(VP×INE×RNE) …(数1) ここでVt 一定とすると、 α→小であれば、VEMAX→大で、VP →大、または、R
NE→大とできる。
[Number 1] and V t> α × V EMAX = α × (V P × I NE × R NE) ... ( number 1) where the V t constant, if α → small, in the V EMAX → large, VP → large or R
NE → Large.

【0020】Vt :発電機界磁巻線耐電圧値(V) α :整流器スパイク電圧比(P.U.) VEMAX:励磁装置最大出力電圧(V) VP :励磁装置頂上電圧(P.U.) INE :発電機無負荷界磁電流(A) RNE :発電機界磁巻線抵抗(at75℃)(Ω) 頂上電圧の選定式を(数1)に示す。スパイク電圧比を
小さくすることにより、励磁装置の最大出力電圧を高く
とることができ、発電機界磁巻線の設計を変えることな
く、頂上電圧を大きく取り、より送電系統の過渡安定度
を向上させることが可能となる。
V t : Generator field winding withstand voltage (V) α: Rectifier spike voltage ratio (PU) V EMAX : Exciter maximum output voltage (V) V P : Exciter top voltage (P) .U.) I NE : Generator no-load field current (A) R NE : Generator field winding resistance (at 75 ° C.) (Ω) The formula for selecting the peak voltage is shown in (Equation 1). By reducing the spike voltage ratio, the maximum output voltage of the exciter can be increased, and the top voltage can be increased without changing the design of the generator field winding, thereby improving the transient stability of the transmission system. It is possible to do.

【0021】また、発電機はその出力が大きくなると、
界磁巻線抵抗が大きくなる(無負荷界磁電流は発電機主
回路開放時に発電機端子に定格電圧を発生させる為に必
要な界磁電流であり、発電機出力により、変化しな
い。)が、送電系統の過渡安定度から要求される頂上電
圧値が同等であれば、スパイク電圧比を小さくすること
により、界磁巻線抵抗のより大きな発電機(出力の大き
な発電機)に対応可能な励磁装置を供給することができ
る。
When the output of the generator increases,
The field winding resistance increases (the no-load field current is a field current necessary to generate a rated voltage at the generator terminal when the generator main circuit is open, and does not change with the generator output). If the peak voltage required from the transient stability of the transmission system is the same, it is possible to cope with a generator with a larger field winding resistance (a generator with a large output) by reducing the spike voltage ratio. An exciter can be provided.

【0022】図6は本発明を適用した場合の発電機主回
路の結線図である。発電機起動前は初期励磁用遮断器3
1を閉じて、初期励磁用ダイオード30を通して、所内
の直流電源より発電機界磁巻線5へ初期励磁電源を与え
ることにより、発電機主回路電圧を立ち上げ、発電機起
動後は発電機主回路電圧を励磁変圧器6にて降圧し、1
2相整流器7よりなる発電機励磁装置により、必要な発
電機励磁電圧に見合った電源を自動電圧調整装置(AV
R)の信号に従い供給することで本発明による発電機励
磁装置を構成することができる。
FIG. 6 is a connection diagram of a generator main circuit when the present invention is applied. Before starting the generator, circuit breaker 3 for initial excitation
1, the generator main circuit voltage is started by supplying the initial excitation power from the DC power supply in the site to the generator field winding 5 through the initial excitation diode 30, and the generator main circuit is started after the generator is started. The circuit voltage is reduced by the exciting transformer 6 and
A generator suitable for a required generator excitation voltage is supplied to an automatic voltage regulator (AV) by a generator excitation device comprising a two-phase rectifier 7.
By supplying according to the signal of R), the generator excitation device according to the present invention can be configured.

【0023】従って、本発明により励磁装置の整流回路
を従来の6相整流器から12相整流器に変更することで
より送電系統の過渡安定度向上に寄与できる頂上電圧の
高い発電機励磁装置並びにより出力の大きな発電機に対
応できる発電機励磁装置を供給することが可能となる。
Accordingly, by changing the rectifier circuit of the excitation device from the conventional six-phase rectifier to the twelve-phase rectifier according to the present invention, a generator excitation device having a high peak voltage and a higher output which can contribute to the improvement of the transient stability of the transmission system. It is possible to supply a generator exciting device that can cope with a large generator.

【0024】また、12相整流器は図2に示す如く、整
流器出力の直流側で見れば、別電源で駆動される2台の
6相整流器を直列に接続する構成であり、この各々の整
流器の電源をスプリット巻線化した励磁変圧器6の各々
の二次巻線から取り、二次巻線の位相を変えることによ
り、整流器より発生する高調波の電源側への移行量を少
なく抑えることができる。
As shown in FIG. 2, the 12-phase rectifier has a configuration in which two 6-phase rectifiers driven by different power supplies are connected in series when viewed from the DC side of the rectifier output. The power source is taken from each of the secondary windings of the excitation transformer 6 in the form of a split winding, and by changing the phase of the secondary winding, it is possible to reduce the amount of transfer of harmonics generated by the rectifier to the power supply side. it can.

【0025】なお、変圧器二次巻線の位相を変えること
により、二次側で発生する高調波の一次側への移行量を
低減する技術は公知の技術である。
A technique for reducing the amount of harmonics generated on the secondary side to the primary side by changing the phase of the secondary winding of the transformer is a known technique.

【0026】これにより、電源側への高調波の移行量が
少なく、電源側波形を歪ませない発電機励磁装置を供給
することが可能となる。
Thus, it is possible to supply a generator exciting device which has a small amount of transfer of harmonics to the power supply side and does not distort the waveform on the power supply side.

【0027】[0027]

【発明の効果】本第一の発明によれば、人口密度の低い
遠隔地に建設される事業用発電プラントにおいて、電力
消費地との間が長距離送電線で繋がれることによる送電
系統の過渡安定度の低下を抑える為に要求される頂上電
圧の高い発電機励磁装置を発電機界磁巻線の設計等を大
きく変更することなく提供することができる。
According to the first aspect of the present invention, in a commercial power plant constructed in a remote place with a low population density, the power transmission system is connected to a power consuming area by a long-distance power transmission line, thereby causing a transient in a power transmission system. A generator exciter having a high peak voltage required to suppress a decrease in stability can be provided without largely changing the design and the like of the generator field winding.

【0028】本第二の発明によれば、今後建設が予定さ
れる単機大出力の発電機の励磁装置を発電機及び送電系
統の設計を大きく変えることなく提供することができ
る。
According to the second aspect of the invention, it is possible to provide an exciting device for a single-unit high-power generator to be constructed in the future without greatly changing the design of the generator and the power transmission system.

【0029】本第三の発明によれば、発電機励磁装置か
ら送電系統へ移行する高調波量を低減し、送電系統に歪
みの少ない発電電力を供給することができる。
According to the third aspect of the invention, it is possible to reduce the amount of harmonics transferred from the generator excitation device to the power transmission system, and to supply power generated with little distortion to the power transmission system.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施する前の発電機励磁装置の構成を
示す構成図である。
FIG. 1 is a configuration diagram showing a configuration of a generator excitation device before implementing the present invention.

【図2】本発明を実施した後の発電機励磁装置の構成を
示す構成図である。
FIG. 2 is a configuration diagram showing a configuration of a generator excitation device after implementing the present invention.

【図3】送電線事故時の発電機界磁電圧の挙動の傾向を
示すグラフである。
FIG. 3 is a graph showing a tendency of a behavior of a generator field voltage at the time of a transmission line accident.

【図4】(a)及び(a)′〜(d)は3相ブリッジ整
流回路の原理回路図及び出力電圧の波形を示す特性図で
ある。
FIGS. 4 (a) and (a) 'to (d) are a principle circuit diagram of a three-phase bridge rectifier circuit and a characteristic diagram showing a waveform of an output voltage.

【図5】3相ブリッジ整流回路の直流出力電圧平均値と
サイリスタスパイク電圧の関係を表わすグラフである。
FIG. 5 is a graph showing a relationship between a DC output voltage average value of a three-phase bridge rectifier circuit and a thyristor spike voltage.

【図6】本発明を適用した場合の発電機主回路の結線図
である。
FIG. 6 is a connection diagram of a generator main circuit when the present invention is applied.

【符号の説明】[Explanation of symbols]

1…励磁変圧器(二巻線変圧器の場合)、2…サイリス
タ素子、3…6相整流器(3相ブリッジ整流回路)、4
…界磁遮断器、5…発電機界磁巻線、6…励磁変圧器
(スプリット巻線変圧器の場合)、7…12相整流器
(3相ブリッジ整流回路)、8…スパイク電圧、9…3
相交流の相電圧第一相、10…3相交流の相電圧第二
相、11…3相交流の相電圧第三相、12…1番目のサ
イリスタ整流素子、13…2番目のサイリスタ整流素
子、14…3番目のサイリスタ整流素子、15…4番目
のサイリスタ整流素子、16…5番目のサイリスタ整流
素子、17…6番目のサイリスタ整流素子、18…1番
目のサイリスタ整流素子のゲート電流、19…2番目の
サイリスタ整流素子のゲート電流、20…3番目のサイ
リスタ整流素子のゲート電流、21…4番目のサイリス
タ整流素子のゲート電流、22…5番目のサイリスタ整
流素子のゲート電流、23…6番目のサイリスタ整流素
子のゲート電流、24…電源側インダクタンス、25…
負荷、26…出力電圧、27…出力電流、28…計器用
変圧器、29…計器用変流器、30…初期励磁用ダイオ
ード、31…初期励磁用遮断器。
1: Exciting transformer (in the case of a two-winding transformer), 2: Thyristor element, 3: 6-phase rectifier (3-phase bridge rectifier circuit), 4
... Field circuit breaker, 5 ... Generator field winding, 6 ... Exciting transformer (in the case of split winding transformer), 7 ... 12-phase rectifier (3-phase bridge rectifier circuit), 8 ... Spike voltage, 9 ... 3
The first phase of the phase AC phase voltage, the second phase of the three phase AC phase voltage, the third phase of the three phase AC phase voltage, the first thyristor rectifier element, the second thyristor rectifier element , 14... The third thyristor rectifier, 15... The fourth thyristor rectifier, 16... The fifth thyristor rectifier, 17. ... gate current of the second thyristor rectifier, 20 ... gate current of the third thyristor rectifier, 21 ... gate current of the fourth thyristor rectifier, 22 ... gate current of the fifth thyristor rectifier, 23 ... 6 The gate current of the thyristor rectifier, 24... The power supply side inductance, 25.
Load 26, output voltage, 27 output current, 28 transformer for instrument, 29 current transformer for instrument, 30 diode for initial excitation, 31 circuit breaker for initial excitation.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大田 浩章 茨城県日立市幸町三丁目2番1号 日立エ ンジニアリング株式会社内 ──────────────────────────────────────────────────の Continuing from the front page (72) Inventor Hiroaki Ota 3-2-1 Sachimachi, Hitachi City, Ibaraki Prefecture Within Hitachi Engineering Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】発電機の発生した電力の一部を励磁電力と
して使用する静止型分巻自励方式の発電機励磁装置にお
いて、送電系統の過渡安定度向上の為、高い励磁装置頂
上電圧を実現する発電機励磁装置として、励磁装置の整
流回路部に12相整流器を使用し、直流出力に含まれる
スパイク電圧値を低減することで発電機界磁巻線の耐電
圧値を超えることなく、高い励磁装置頂上電圧が実現で
きることを特徴とする静止型発電機励磁装置。
In a stationary type self-excited generator exciter using a part of electric power generated by a generator as excitation power, a high exciter top voltage is applied to improve transient stability of a transmission system. As a generator exciter to be realized, a 12-phase rectifier is used in the rectifier circuit section of the exciter, and by reducing the spike voltage value included in the DC output, without exceeding the withstand voltage value of the generator field winding, A stationary generator exciter characterized in that a high exciter top voltage can be realized.
【請求項2】請求項1記載において、発電機の単機出力
が増加すると、発電機の界磁巻線抵抗が増加し、無負荷
界磁電流との積が大きくなる為、発電機界磁巻線の耐電
圧値との関係で過渡安定度を維持する為に必要な励磁装
置の頂上電圧を出力することが困難となり、この為、励
磁装置の整流器部に12相整流器を使用し、直流出力に
含まれるスパイク電圧を低減することで発電機界磁巻線
の耐電圧値を超えることなく、大出力発電機においても
必要な励磁装置頂上電圧を実現できることを特徴とする
静止型発電機励磁装置。
2. The generator field winding according to claim 1, wherein when the single-unit output of the generator increases, the field winding resistance of the generator increases and the product of the generator and the no-load field current increases. It is difficult to output the peak voltage of the exciter required to maintain the transient stability in relation to the withstand voltage of the wire, and therefore, a 12-phase rectifier is used for the rectifier section of the exciter and the DC output Static generator exciter characterized by being able to realize the necessary exciter top voltage even in a high-power generator without exceeding the withstand voltage value of the generator field winding by reducing the spike voltage included in the generator .
【請求項3】請求項1記載において、励磁装置整流器部
から発生する高調波が励磁変圧器を通して発電出力に侵
入し、発電出力の歪みとなってあらわれ、発電機出力に
含まれる高調波の量を低減することを目的に、励磁変圧
器をスプリット巻線とし、二次巻線の位相をずらし、各
々の二次巻線に6相整流器を接続し、これを組み合わせ
て12相整流方式とすることで励磁変圧器電源側に移行
する高調波の量を低減することを特徴とする静止型発電
機励磁装置。
3. The power generation device according to claim 1, wherein the harmonic generated from the rectifier section of the excitation device penetrates into the power generation output through the excitation transformer and appears as a distortion of the power generation output. For the purpose of reducing power consumption, the exciting transformer is a split winding, the phases of the secondary windings are shifted, a 6-phase rectifier is connected to each secondary winding, and these are combined to form a 12-phase rectification system. A static generator exciter characterized by reducing the amount of harmonics transferred to the excitation transformer power supply side.
JP10021731A 1998-02-03 1998-02-03 Still generator exciting device Pending JPH11220859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10021731A JPH11220859A (en) 1998-02-03 1998-02-03 Still generator exciting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10021731A JPH11220859A (en) 1998-02-03 1998-02-03 Still generator exciting device

Publications (1)

Publication Number Publication Date
JPH11220859A true JPH11220859A (en) 1999-08-10

Family

ID=12063233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10021731A Pending JPH11220859A (en) 1998-02-03 1998-02-03 Still generator exciting device

Country Status (1)

Country Link
JP (1) JPH11220859A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521211A (en) * 2000-01-28 2003-07-08 ニューエージ インターナショナル リミテッド AC power generator
CN105099308A (en) * 2015-09-22 2015-11-25 东方电机控制设备有限公司 Generator excitation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521211A (en) * 2000-01-28 2003-07-08 ニューエージ インターナショナル リミテッド AC power generator
CN105099308A (en) * 2015-09-22 2015-11-25 东方电机控制设备有限公司 Generator excitation device
CN105099308B (en) * 2015-09-22 2018-06-29 东方电机控制设备有限公司 A kind of generator excitation unit

Similar Documents

Publication Publication Date Title
US10097123B2 (en) Systems and methods concerning exciterless synchronous machines
EP1610456B1 (en) Dual mode rectifier, system and method
US6404655B1 (en) Transformerless 3 phase power inverter
US6188139B1 (en) Integrated marine power distribution arrangement
US9837824B2 (en) Connection system for power generation system with DC output
US5694027A (en) Three-phase brushless self-excited synchronous generator with no rotor excitation windings
US6909262B2 (en) Control system for regulating exciter power for a brushless synchronous generator
JP4808221B2 (en) High frequency modulation / demodulation multiphase rectifier
EP0696834B1 (en) Three-phase brushless self-excited synchronous generator with no rotor exciting windings
CN110352552A (en) Power converter for double fed induction generators formula wind turbine system
Grauers Synchronous generator and frequency converter in wind turbine applications: system design and efficiency
CN203261285U (en) Current feedback and controllable excitation parallel excitation device
US6744240B2 (en) Method for improving the efficiency of an electrical machine
JPH11220859A (en) Still generator exciting device
JP3044119B2 (en) Power failure countermeasure device
JP2003061360A (en) Rectifying circuit
JPS61240829A (en) Operation of pump-up generator motor
CN220754420U (en) Nuclear power plant mobile emergency power supply and generator thereof
JP3724122B2 (en) Inrush current output fluctuation suppression device for induction generator
GB2071430A (en) Brushless A.C. Generators
JP3695485B2 (en) 6-phase / 12-phase rectifier type inverter device
JP3445989B2 (en) DC transmission system
CN221328833U (en) Simulation excitation system based on multiple voltage levels
CN112117914B (en) Reversible power supply device for thermal construction hoisting machinery
JP2682241B2 (en) Power failure countermeasure device