JPH11214491A - Wafer holder and production thereof - Google Patents

Wafer holder and production thereof

Info

Publication number
JPH11214491A
JPH11214491A JP10025063A JP2506398A JPH11214491A JP H11214491 A JPH11214491 A JP H11214491A JP 10025063 A JP10025063 A JP 10025063A JP 2506398 A JP2506398 A JP 2506398A JP H11214491 A JPH11214491 A JP H11214491A
Authority
JP
Japan
Prior art keywords
grinding
sintered body
aluminum nitride
particles
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10025063A
Other languages
Japanese (ja)
Inventor
Koji Sano
幸司 佐野
Kazuyuki Oshima
一之 大嶋
Shigeko Muramatsu
滋子 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP10025063A priority Critical patent/JPH11214491A/en
Publication of JPH11214491A publication Critical patent/JPH11214491A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To suppress generation of particles due to falling particles from a sintered material by composing the surface of a wafer holder of the crystal grain surface of sintered aluminum nitride having specified surface roughness and an average grain size. SOLUTION: Crystal grains are removed by grinding from the surface layer of a material obtained by sintering aluminum nitride powder to expose inner crystal grains having mean grain size of 3-6 μm. Surface roughness (Ra) of the sintered aluminum nitride is set at 0.6 μm or less. Crystal grains are removed by grinding the surface layer of the sintered aluminum nitride under conditions of specific grinding resistance of 5-20 kg/mm<3> . According to the method, generation of particles due to falling particles from the sintered material can be suppressed even if the material is exposed to a halogen based gas atmosphere under a high temperature and generation of particles due to friction between a wafer and a wafer holder can be avoided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、窒化アルミニウム
焼結体から成り、半導体製造工程で用いるサセプターや
静電チャックなどのウエハ保持装置及びその製造方法に
関し、より詳細にはCVD、ドライエッチング工程等の
ハロゲン系ガスのプラズマ環境で使用されるウエハ保持
装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wafer holding device, such as a susceptor or an electrostatic chuck, made of an aluminum nitride sintered body and used in a semiconductor manufacturing process, and a method of manufacturing the same. The present invention relates to a wafer holding device used in a halogen-based gas plasma environment and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、窒化アルミニウム焼結体は、CF
4 やClF3 のハロゲン系ガスに対する耐食性に優れた
部材として知られ、CVD、ドライエッチング工程等で
使用される装置において、ウエハを保持するサセプター
や静電チャックとして広く用いられている(例えば、特
開平8−208338号公報等)。このようなウエハ保
持装置は、一般に、窒化アルミニウム粉末等の原料を所
定の形状に成形し、それを焼成し、得られた焼結体を研
削加工して完成品形状に仕上げる等の方法により作製さ
れている。
2. Description of the Related Art Conventionally, aluminum nitride sintered bodies have been known as CF.
It is known as a member having excellent corrosion resistance to halogen-based gases such as 4 and ClF 3 , and is widely used as a susceptor for holding a wafer or an electrostatic chuck in an apparatus used in a CVD, a dry etching process or the like (for example, JP-A-8-208338). Such a wafer holding device is generally manufactured by a method such as forming a raw material such as aluminum nitride powder into a predetermined shape, firing the material, grinding the obtained sintered body to finish it into a finished product shape, or the like. Have been.

【0003】窒化アルミニウム焼結体を形成するための
原料には、窒化アルミニウムの焼結性向上のため、ある
いは焼結体の熱伝導率を更に高めるため等の目的で、通
常、希土類酸化物、ニッケル化合物等の焼結助材の少量
を添加、配合したものが一般に用いられている。そのた
め、窒化アルミニウム焼結体に存在する粒界相に、焼結
助材等が存在する。そして、例えばこの窒化アルミニウ
ム焼結体から成るサセプターを、高温加熱下にハロゲン
系ガスのプラズマ雰囲気中に曝すと、該粒界相部分、特
に焼結体表面に存在する粒界相が選択的、集中的にエッ
チングされ、耐食性に劣っていた。その結果、結晶粒子
を固定する焼結助材を失い、結晶粒子が脱落し、パーテ
ィクルとなっていた。この課題を解決するために、粒界
相の存在密度(粒界の存在する割合)をできるだけ減少
させることが考えられる。そのためには、結晶粒子の粒
径を大きくすればよい。このような耐食性の観点と焼結
体の強度の観点から一般に、窒化アルミニウム焼結体の
平均粒径が3μm以上となるように焼成されている。
[0003] Raw materials for forming an aluminum nitride sintered body usually include rare earth oxides, for the purpose of improving the sinterability of the aluminum nitride or further increasing the thermal conductivity of the sintered body. What added and compounded a small amount of a sintering aid such as a nickel compound is generally used. Therefore, a sintering aid or the like exists in the grain boundary phase existing in the aluminum nitride sintered body. Then, for example, when the susceptor made of the aluminum nitride sintered body is exposed to a halogen-based gas plasma atmosphere under high-temperature heating, the grain boundary phase portion, particularly the grain boundary phase present on the surface of the sintered body is selectively, It was intensively etched and had poor corrosion resistance. As a result, the sintering aid for fixing the crystal particles was lost, and the crystal particles fell off, forming particles. In order to solve this problem, it is conceivable to reduce the density of the grain boundary phase (the proportion of the grain boundaries) as much as possible. For that purpose, the diameter of the crystal particles may be increased. In general, from the viewpoint of the corrosion resistance and the strength of the sintered body, the aluminum nitride sintered body is fired so that the average particle size is 3 μm or more.

【0004】しかし、成形体は外側から加熱されるの
で、一般に、焼成して得られた焼結体表面乃至その極近
傍部分、つまり、焼結体表層の結晶粒子は内部のそれと
比較して成長が進み、より粗大化しやすく、通常この種
の焼結体は、焼結体表層の結晶粒子だけが大きく、その
内部は表面部分より細密なほぼ均一の内部結晶粒子から
成るコアー・シェル型構造を有する。そのため、一般
に、全体としての平均粒径が3μm以上の粒径となるま
で焼成した窒化アルミニウム焼結体では、その表層の結
晶粒径は6μmを越え、従って、焼成後、何ら加工を施
さない状態のままでは焼結体表面はその表面粗さがRa
で0.6μmを越える程大きいため、載置ウエハと保持
装置との摩擦により、パーティクルが発生した。
However, since the compact is heated from the outside, the surface of the sintered body obtained by sintering or a portion in the immediate vicinity thereof, that is, the crystal grains of the surface layer of the sintered body generally grow in comparison with those inside. In general, this type of sintered body has a core-shell structure in which only the crystal grains of the surface layer of the sintered body are large and the inside of the sintered body is made up of nearly uniform internal crystal grains that are finer than the surface part. Have. Therefore, in general, in an aluminum nitride sintered body fired until the average particle diameter as a whole becomes a particle diameter of 3 μm or more, the crystal grain diameter of the surface layer exceeds 6 μm, so that no processing is performed after firing. As it is, the surface of the sintered body has a surface roughness of Ra
Therefore, particles were generated due to friction between the mounted wafer and the holding device.

【0005】また、反応ガスとしてClF3 やCF4
が用いられるが、これが窒化アルミニウムと反応して窒
化アルミニウム焼結体から成るウエハ保持装置表面にフ
ッ化アルミニウム膜が形成され、このウエハ保持装置表
面に形成されたフッ化アルミニウム膜と窒化アルミニウ
ムとは熱膨張係数に差があるため、フッ化アルミニウム
膜が剥離しパーティクルとなっていた。これらの不都合
を回避するため、従来からウエハ保持装置表面を研削加
工し、その表面を、可能な限り鏡面状態に近付け、ウエ
ハ保持装置の摩擦の問題を解消し、表面積を小さくする
ことにより、フッ化アルミニウムの生成量を減らしてき
た。
In addition, ClF 3 , CF 4, etc. are used as a reaction gas. The reaction gas reacts with aluminum nitride to form an aluminum fluoride film on the surface of a wafer holding device made of an aluminum nitride sintered body. Since the aluminum fluoride film and aluminum nitride formed on the surface have a difference in thermal expansion coefficient, the aluminum fluoride film peeled off and became particles. In order to avoid these inconveniences, the surface of the wafer holding device has conventionally been ground and the surface thereof has been mirrored as much as possible to eliminate the problem of friction of the wafer holding device and to reduce the surface area. The production of aluminum chloride has been reduced.

【0006】[0006]

【発明が解決しようとする課題】しかし、鏡面状態に近
づけても、焼結体表面には依然として粒界相が存在し、
ハロゲン系ガス雰囲気中で、この部分が選択的、集中的
にエッチングされ、この表面部分の窒化アルミニウム結
晶粒子が結晶粒子を固定していた焼結助材を失って脱落
する。その結果、脱落した粒子がパーティクルとなって
いた。
However, even when the surface of the sintered body is brought close to the mirror surface state, the grain boundary phase still exists on the surface of the sintered body,
This portion is selectively and intensively etched in a halogen-based gas atmosphere, and the aluminum nitride crystal grains on this surface portion lose the sintering aid that fixed the crystal grains and fall off. As a result, the dropped particles were particles.

【0007】本発明者等は、この従来の窒化アルミニウ
ム焼結体ウエハ保持装置の問題点を解決すべく鋭意研究
を重ねた結果、焼結体の粗大結晶粒子から成る表層部分
を、鏡面に近づけるのではなく、研削抵抗を一定条件下
で研削することにより、脱落させて取り除き、平均粒径
が3μm乃至6μmの内部結晶粒子表面でウエハ保持装
置表面を構成することにより解決されることを知り本発
明を完成した。従って、本発明の目的は、高温下で、ハ
ロゲン系ガス雰囲気に曝されても焼結体粒子の脱落によ
るパーティクルの発生が抑制され、且つウエハとウエハ
保持装置との摩擦によるパーティクルの発生も回避され
た耐食性に優れ、パーティクルの発生を低減させたウエ
ハ保持装置を提供することにある。また本発明の他の目
的は、上記ウエハ保持装置の製造方法を提供することに
ある。
The present inventors have conducted intensive studies to solve the problems of the conventional aluminum nitride sintered body wafer holding apparatus. As a result, the surface portion of the sintered body composed of coarse crystal grains is brought close to a mirror surface. Instead, it was found that the problem could be solved by grinding the grinding resistance under certain conditions, causing it to fall off and removing, and configuring the surface of the wafer holding device with the surface of internal crystal grains having an average grain size of 3 μm to 6 μm. Completed the invention. Accordingly, an object of the present invention is to suppress the generation of particles due to the falling of sintered particles even when exposed to a halogen-based gas atmosphere at a high temperature, and to avoid the generation of particles due to friction between a wafer and a wafer holding device. It is an object of the present invention to provide a wafer holding device which has excellent corrosion resistance and reduces generation of particles. It is another object of the present invention to provide a method of manufacturing the above-described wafer holding device.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
になされた本発明にかかるウエハ保持装置は、窒化アル
ミニウム焼結体から成り、半導体製造工程で用いられる
ウエハ保持装置に於いて、該ウエハ保持装置表面が、結
晶粒子表面から成り、その表面粗さ(Ra)が0.6μ
m以下であり、該窒化アルミニウム焼結体の平均粒径が
3μm乃至6μmであることを特徴とする。
According to the present invention, there is provided a wafer holding device comprising an aluminum nitride sintered body, wherein the wafer holding device is used in a semiconductor manufacturing process. The surface of the holding device is composed of crystal particles, and the surface roughness (Ra) is 0.6 μm.
m or less, and the average particle diameter of the aluminum nitride sintered body is 3 μm to 6 μm.

【0009】上記目的を達成するためになされた本発明
にかかるウエハ保持装置の製造方法は、窒化アルミニウ
ム焼結体から成り、半導体製造工程で用いられるウエハ
保持装置の製造方法に於いて、窒化アルミニウム粉末を
焼成して得られた焼結体表層の結晶粒子を研削加工して
脱落させ、平均粒径が3μm乃至6μmである内部結晶
粒子を表出させて、該窒化アルミニウム焼結体の表面を
表面粗さ(Ra)が0.6μm以下に形成することを特
徴とする。ここで、前記窒化アルミニウム粉末を焼成し
て得られた焼結体表層の結晶粒子を研削加工して脱落さ
せる際の研削加工条件は、比研削抵抗値が5乃至20k
g/mm3 ・mmであることが望ましい。
In order to achieve the above object, a method of manufacturing a wafer holding apparatus according to the present invention comprises an aluminum nitride sintered body, and comprises a method of manufacturing a wafer holding apparatus used in a semiconductor manufacturing process. The crystal grains on the surface layer of the sintered body obtained by firing the powder are ground and dropped to expose internal crystal grains having an average particle diameter of 3 μm to 6 μm, and the surface of the aluminum nitride sintered body is exposed. The surface roughness (Ra) is formed to be 0.6 μm or less. Here, when grinding the crystal grains of the surface layer of the sintered body obtained by firing the aluminum nitride powder and dropping the crystal grains, the specific grinding resistance value is 5 to 20 k.
g / mm 3 · mm.

【0010】本発明は、ウエハ保持装置を構成する窒化
アルミニウム焼結体の粒径6μmを越える粗大結晶粒子
から成る表層部分を、従来のように鏡面状態にするので
はなく脱落させて取り除き、内部の平均粒径3μm乃至
6μmの比較的均一な結晶粒子を表出させ、これをウエ
ハ保持装置表面とした点に顕著な特徴を有するものであ
る。
According to the present invention, an aluminum nitride sintered body constituting a wafer holding device is made to fall off a surface layer portion composed of coarse crystal grains exceeding 6 μm in diameter, instead of being made into a mirror surface state as in the prior art. Has a remarkable feature in that relatively uniform crystal grains having an average particle size of 3 μm to 6 μm are exposed and used as the surface of the wafer holding device.

【0011】結晶粒子の平均粒径が3μmより小さい
と、焼結体密度が低下し95%以下となり、強度、気密
性が低下するが、本発明の保持装置は、平均粒径3μm
乃至6μmの比較的均質な結晶粒子から成っているので
焼結体密度も高く、従って強度的にも強い。また表面粗
さ(Ra JISB 0601−1979)も、粒子が
平均粒径3μm乃至6μmの範囲に在り比較的均質であ
るため、0.6μm以下と平滑で、ウエハを載置しても
ウエハとウエハ保持装置との摩擦によりパーティクルを
生成させることもない。
If the average particle size of the crystal grains is smaller than 3 μm, the density of the sintered body is reduced to 95% or less, and the strength and airtightness are reduced.
Since it is composed of relatively uniform crystal grains of about 6 μm, the density of the sintered body is high, and therefore the strength is also strong. Also, the surface roughness (Ra JISB 0601-1979) is relatively uniform, with the average particle diameter being in the range of 3 μm to 6 μm, and is therefore as smooth as 0.6 μm or less. There is no generation of particles due to friction with the holding device.

【0012】ここで強調すべき重要な点は、従来のよう
に粗大結晶粒子を研削加工により、鏡面状態とし、その
結晶粒子内を表面としても、本願発明の上述した耐食性
等の優れた諸効果を達成することができないことであ
る。本発明の、例えば、研削抵抗を一定条件下で研削す
る等の方法で、焼結体表層の粗大結晶粒子を脱落させて
取り除き、内部結晶粒子の粒子表面を表面として露出さ
せた焼結体の表面が、鏡面状態とし結晶粒子の内部が露
出した従来の焼結体表面層に比べて、何故にこの様に耐
食性等に優れた異なる特性を示すのかについては、未
だ、十分に解明されたわけではない。
The important point to be emphasized here is that, as in the conventional case, the coarse crystal grains are ground to a mirror surface by grinding, and even if the inside of the crystal grains is treated as a surface, the excellent effects of the present invention such as the above-described corrosion resistance and the like can be obtained. Can not be achieved. According to the present invention, for example, a method of grinding under a certain condition such as grinding resistance, by removing coarse crystal particles of the surface layer of the sintered body by dropping and removing the surface of the sintered body in which the particle surface of the internal crystal particles is exposed as a surface. It is not yet fully understood why the surface shows such different characteristics such as excellent corrosion resistance as compared with the conventional sintered body surface layer in which the surface of the crystal grain is exposed in a mirror state. Absent.

【0013】しかしながら、現時点での推測によれば、
おそらく焼成、冷却時に自然に成長した粒子の結晶粒子
の表面はそれが形成される時点で全体として最も安定な
形態をとるものと考えられ、従って、結晶粒子内部が露
出した鏡面状態に比べ化学的にもより安定で、腐食等に
も強いと考えられる。特に、従来のように鏡面状態とす
る研削加工においては、その研削抵抗が高いため、結晶
粒子に与える衝撃が大きく、粒界相や粒子にミクロ的な
微細傷、ひび割れ、歪み等が生じ易く、このような局所
点は腐食が進行しやすいと考えられるが、本発明の焼結
体表面では研削抵抗が低いため、この様な局所点の発生
を可及的に少なくできるためではないかと考えられる。
However, according to current estimates,
Probably, the surface of the crystal grains of the grains that naturally grow during firing and cooling assumes the most stable morphology as a whole at the time of their formation, and therefore, has a chemical It is considered to be more stable and resistant to corrosion. In particular, in the conventional grinding process to make a mirror surface state, since the grinding resistance is high, the impact given to the crystal grains is large, and microscopic fine scratches, cracks, distortion, etc. are likely to occur in the grain boundary phase and particles, Although it is considered that such local points are likely to cause corrosion, it is considered that the occurrence of such local points can be reduced as much as possible because the grinding resistance is low on the sintered body surface of the present invention. .

【0014】更に、結晶粒子が研削加工によりその粒子
内部が削られて表出した状態では、結晶粒子の結晶方位
が水平方向である部分がウエハ保持装置の表面を形成し
ており、プラズマ環境等の厳しい環境下に曝されると容
易に侵蝕されるのに対し、本発明の焼結体表面の場合
は、結晶粒子の内部が削られてることが無く、焼結によ
り自然形成された粒子表面がそのまま表出するため、結
晶粒子の結晶方位が垂直方向である部分がウエハ保持装
置の表面を形成しており、プラズマ環境等の厳しい環境
下に曝されても容易に侵蝕されることがないのではない
かと推測される。後記実施例に明瞭に示されているよう
に、表面を鏡面状態として結晶粒子内部が表出した状態
の比較例2、3の焼結体は、結晶粒子の脱落が激しいの
に対し、結晶粒子の表面のみで構成されている本発明の
焼結体(実施例1、2)は粒子脱落が殆どない。
Further, in a state where the inside of the crystal grain is cut off by grinding, the part where the crystal orientation of the crystal grain is horizontal forms the surface of the wafer holding device, and the plasma environment and the like are removed. In the case of the surface of the sintered body of the present invention, the inside of the crystal grains is not shaved, and the surface of the particles naturally formed by sintering is easily eroded when exposed to a severe environment. Is exposed as it is, the portion where the crystal orientation of the crystal grains is vertical forms the surface of the wafer holding device, and is not easily eroded even when exposed to a severe environment such as a plasma environment. It is speculated that it might be. As clearly shown in the examples described later, the sintered bodies of Comparative Examples 2 and 3 in which the inside of the crystal grains were exposed with the surface being a mirror surface state, whereas the crystal particles fell off sharply, The sintered body (Examples 1 and 2) of the present invention constituted only by the surface of (1) has almost no particles falling off.

【0015】[0015]

【発明の実施の形態】本発明のウエハ保持装置は、窒化
アルミニウム焼結体の表層に形成される6μmを越える
粗大結晶粒子を従来のように鏡面状態とするのではな
く、以下に述べるような特定の方法を用いて脱落させて
除去し、平均粒径3μm乃至6μmの内部結晶粒子の粒
子表面を焼結体の表面として表出させた特定焼結体によ
り構成されることが顕著な特徴である。
BEST MODE FOR CARRYING OUT THE INVENTION The wafer holding apparatus of the present invention does not make large crystal grains exceeding 6 μm formed on the surface layer of an aluminum nitride sintered body into a mirror state as in the prior art. It is a remarkable feature that it is constituted by a specific sintered body which is dropped and removed by using a specific method, and a particle surface of an internal crystal particle having an average particle diameter of 3 μm to 6 μm is exposed as a surface of the sintered body. is there.

【0016】本発明のウエハ保持装置を構成する窒化ア
ルミニウム焼結体に於いて、焼結加工前の焼結体自体
は、公知の原料を用い、公知の焼成方法で作製されたも
のを用いることができる。原料窒化アルミニウムとして
は、必ずしもこれに限定されるものではないが、純度9
7%以上が好ましく、より好ましくは99%以上であ
る。不純物はエッチングされやすいため、できるだけ少
ない方がよい。また、平均粒径が好ましくは3μm以
下、より好ましくは1.5μm以下のAlN粉末が用い
られる。そして、これに必要に応じ希土類酸化物、Ni
化合物、希土類フッ化物等の焼結助材、バインダー、及
び溶媒を添加、混合し、泥漿状態とし、例えば、ドクタ
ーブレード法を用いて所定形状に成形し、あるいは、泥
漿をスプレードライヤーにより乾燥させて造粒物とした
後、金型中に充填してメカプレス成型法やラバープレス
成型法を用いて成形する。
In the aluminum nitride sintered body constituting the wafer holding device of the present invention, the sintered body itself before the sintering process is manufactured using a known raw material and a known firing method. Can be. The raw material aluminum nitride is not limited to this, but has a purity of 9%.
It is preferably at least 7%, more preferably at least 99%. Since impurities are easily etched, it is preferable that impurities be as small as possible. Further, AlN powder having an average particle size of preferably 3 μm or less, more preferably 1.5 μm or less is used. Then, if necessary, a rare earth oxide, Ni
A compound, a sintering aid such as a rare earth fluoride, a binder, and a solvent are added and mixed to form a slurry state, for example, molded into a predetermined shape using a doctor blade method, or the slurry is dried by a spray dryer. After granulation, the mixture is filled in a mold and molded using a mechanical press molding method or a rubber press molding method.

【0017】この成形体を、必要に応じ、脱脂(脱バイ
ンダー)等を行う。脱脂は、真空中、不活性ガス雰囲気
中、大気中で行うことができるが、N2 中で行うのが好
ましい。脱脂温度は、通常、100乃至800℃程度、
好ましくは350乃至600℃程度の温度で行う。10
0℃未満では、脱脂が十分ではなく、800℃を越えて
も効果は変わらない。
The molded body is degreased (debindered) if necessary. Degreasing can be performed in vacuum, in an inert gas atmosphere, or in air, but is preferably performed in N 2 . The degreasing temperature is usually about 100 to 800 ° C,
Preferably, it is performed at a temperature of about 350 to 600 ° C. 10
If the temperature is lower than 0 ° C., the degreasing is not sufficient, and the effect does not change even if the temperature exceeds 800 ° C.

【0018】次に、窒素雰囲気中で、1800〜210
0℃で焼成する。1800℃未満では焼結が進行しな
い。窒素雰囲気以外や2100℃より高温であると、窒
化アルミニウムが分解してしまう。この焼結体は、焼成
温度や焼成時間を調整することにより、内部結晶粒子を
平均粒径3μm乃至6μmの比較的均質な結晶粒子とす
ることができる。その際、焼結体表層の結晶粒子は6μ
mを越える粗大結晶粒子となる。
Next, in a nitrogen atmosphere, 1800 to 210
Bake at 0 ° C. If it is lower than 1800 ° C., sintering does not proceed. If the temperature is higher than 2100 ° C. other than in a nitrogen atmosphere, aluminum nitride is decomposed. By adjusting the firing temperature and the firing time of this sintered body, the internal crystal particles can be made relatively uniform crystal particles having an average particle size of 3 μm to 6 μm. At this time, the crystal grains on the surface layer of the sintered body were 6 μm.
m.

【0019】本発明に於いては、内部結晶粒子の平均粒
径が3μm乃至6μm、特に4乃至6μmの範囲にある
焼結体を用いることがより好ましい。このようにして得
られた焼結体を、本発明に於いては、例えば、下記に述
べるような研削加工を施す等の手段により、その表面か
ら焼成時に生成した粗大結晶粒子より成る表層を除去
し、それに替えて、内部の平均粒径3μm乃至6μmの
結晶粒子より成る粒子表面を表出させた表面粗さ(R
a)0.6μm以下、好ましくは0.3μm以下のウエ
ハ保持装置の表面を形成すると共に、所定の形状に仕上
げる。
In the present invention, it is more preferable to use a sintered body in which the average grain size of the internal crystal grains is in the range of 3 μm to 6 μm, particularly 4 to 6 μm. In the present invention, the thus obtained sintered body is subjected to, for example, a grinding process as described below to remove a surface layer composed of coarse crystal grains generated during firing from the surface thereof. Instead, the surface roughness (R) of the inner surface of the crystal grains formed of crystal grains having an average grain size of 3 μm to 6 μm is exposed.
a) Form the surface of the wafer holding device having a thickness of 0.6 μm or less, preferably 0.3 μm or less, and finish it to a predetermined shape.

【0020】本発明の平均粒径3μm乃至6μmの結晶
粒子表面より成る表面粗さ(Ra)0.6μm以下のウ
エハ保持装置表面を形成させる手段としては、必ずしも
これに限定されるものではないが、典型的には、研削抵
抗を下げて研削加工することにより達成される。研削抵
抗は、研削中に砥石にかかる力で表示されるが、この抵
抗の大きさは、一般に、工作物速度(送り速度)、切り
込み深さ(切り込み量)、砥石速度等の研削操作条件の
他、ダイヤモンド砥粒の粒径、集中度、ボンドの結合度
等の砥石条件に依存して定まる。そのため、これらの条
件を適宜設定することにより、所望の研削抵抗とする。
The means for forming the surface of a wafer holding device having a surface roughness (Ra) of 0.6 μm or less, which is composed of crystal particle surfaces having an average particle size of 3 μm to 6 μm, is not necessarily limited to this. Typically, this is achieved by lowering the grinding resistance and performing grinding. Grinding resistance is indicated by the force applied to the grinding wheel during grinding, and the magnitude of this resistance is generally determined by the grinding operation conditions such as the workpiece speed (feed speed), cutting depth (cutting amount), and grinding wheel speed. In addition, it is determined depending on grinding wheel conditions such as the particle diameter of diamond abrasive grains, the degree of concentration, the degree of bonding of bonds, and the like. Therefore, a desired grinding resistance is obtained by appropriately setting these conditions.

【0021】本発明に於ける研削加工は、窒化アルミニ
ウムを研削加工により鏡面状態とする場合の比研削抵抗
値(30乃至40kg/mm3 ・mm程度)の約5割以
下の比抵抗値となるように研削条件を設定する。しか
し、5kg/mm3 ・mm未満であると、研削抵抗が低
くなり過ぎて研削が困難となるため、5〜20kg/m
3 ・mmとなるように研削条件を設定する。用いる砥
石としては、ダイヤモンド砥粒の結合度が軟らかい程、
砥粒集中度は小さい程、砥粒の粒径は大きい程、研削抵
抗は小さくなるため、適宜調整する。比研削抵抗値が5
〜20kg/mm3 ・mmとなるような研削条件として
具体例をあげると、例えば、ダイヤモンド工業協会規格
(IDAS703−1971)での砥石条件:SD27
0L100B3.0を使用の場合、研削操作条件:送り
300mm/sec以下、切り込み量2μm以下、砥石
条件:SD800L75B3.0の場合、研削操作条
件:送り300mm/sec以下、切り込み量1μm以
下、に設定できる。
The grinding in the present invention is about 50% or less of the specific grinding resistance (about 30 to 40 kg / mm 3 · mm) when the aluminum nitride is made into a mirror-finished state by grinding. The grinding conditions as follows. However, if it is less than 5 kg / mm 3 · mm, the grinding resistance becomes too low and grinding becomes difficult.
The grinding conditions are set so as to be m 3 · mm. As the grindstone used, the softer the degree of bonding of the diamond abrasive grains,
The smaller the degree of concentration of the abrasive grains and the larger the particle diameter of the abrasive grains, the smaller the grinding resistance. Specific grinding resistance value is 5
A specific example of the grinding conditions such that the grinding condition is 2020 kg / mm 3 · mm is, for example, a grinding stone condition in the Diamond Industry Association Standard (IDAS703-1971): SD27
In the case of using 0L100B3.0, grinding operation conditions: feed 300 mm / sec or less, depth of cut 2 μm or less, grindstone conditions: SD800L75B3.0, grinding operation conditions: feed 300 mm / sec or less, depth of cut 1 μm or less .

【0022】本発明のウエハ保持装置は半導体製造工程
で用いるサセプターや静電チャックなどのウエハ保持装
置に広く適用することができ、その形状に関しては、特
に限定されるものではなく、通常用いられる円盤状、四
角形板状等各形状に成形することができる。
The wafer holding device of the present invention can be widely applied to a wafer holding device such as a susceptor and an electrostatic chuck used in a semiconductor manufacturing process, and the shape thereof is not particularly limited. Shape, square plate shape and the like.

【0023】[0023]

【実施例】「窒化アルミニウム焼結体試料の調製」純度
99.8%、平均粒径2μmの窒化アルミニウム粉末1
00重量部、焼結助材としてY23 粉末5重量部及び
バインダーとエタノールを加えて混合し、泥漿とし、ス
プレードライヤーにより乾燥させて造粒物を得た。次い
で、得られた造粒物を用いて角形と円盤(サセプター形
状)試料片を夫々成形し、各成形体をN2 中600℃で
加熱し、脱脂(脱バインダー処理)した後、1900℃
の窒素雰囲気中で焼成して焼結体試料片(四角形板状試
料:20×20×2mm、円盤状試料:外径200m
m、厚さ5mm)を得た。なお各試料は、夫々の焼成時
間を調節して焼結体内部の結晶粒子の平均粒径が下記に
示した粒径となるようにした。
[Example] "Preparation of aluminum nitride sintered body sample" Aluminum nitride powder 1 having a purity of 99.8% and an average particle diameter of 2 µm
Then, 00 parts by weight, 5 parts by weight of Y 2 O 3 powder as a sintering aid, and a binder and ethanol were added and mixed to obtain a slurry, which was dried by a spray drier to obtain a granulated product. Next, using the obtained granules, a square and a disk (susceptor shape) sample pieces were respectively formed, and each formed body was heated at 600 ° C. in N 2 to be degreased (debindered), and then 1900 ° C.
Fired in a nitrogen atmosphere, and sintered sample pieces (square plate-shaped sample: 20 × 20 × 2 mm, disc-shaped sample: outer diameter 200 m)
m, thickness 5 mm). In each sample, the firing time was adjusted so that the average particle size of the crystal particles inside the sintered body became the particle size shown below.

【0024】「CF4 ガス雰囲気に於ける耐食試験(実
験1)」上記焼結体試料の内、四角形板状試料を用い、
その表層を下記に示す条件で研削して得られた3種類の
試料(実施例1,実施例2,比較例1)を用意した。実
施例1の研削条件は、砥石条件:SD270L100B
3.0、研削操作条件:送り200mm/sec、切り
込み量 1μmとした。この時の比研削抵抗値は15k
g/mm3 ・mmであり、粗大結晶粒子を脱落させて取
り除いた。これによって得られた実施例1は、表面粗さ
(Ra)0.4μm、研削後の平均粒径3μm〜4μ
m、その表面状態は結晶粒子表面であった。また、実施
例2の研削条件は、砥石条件:SD270L100B
3.0、研削操作条件:送り200mm/sec.、切
り込み量5μmとした。この時の比研削抵抗値は20k
g/mm3 ・mmであり、粗大結晶粒子を脱落させて取
り除いた。これによって得られた実施例2は、表面粗さ
(Ra)0.6μm、研削後の平均粒径5μm〜6μ
m、その表面状態は結晶粒子表面であった。また、比較
例1の研削条件は、砥石条件:SD270L100B
3.0、研削操作条件:送り100mm/sec.、切
り込み量0.5μmとした。この時の比研削抵抗値は5
kg/mm3 ・mmであり、粗大結晶粒子を脱落させて
取り除いた。これによって得られた比較例1は、表面粗
さ(Ra)0.3μm、研削後の平均粒径2μm〜3μ
m未満、その表面状態は、結晶粒子表面であった。
"Corrosion Resistance Test in CF 4 Gas Atmosphere (Experiment 1)"
Three types of samples (Example 1, Example 2, and Comparative Example 1) obtained by grinding the surface layer under the following conditions were prepared. The grinding conditions in the first embodiment are as follows: grinding wheel condition: SD270L100B
3.0, grinding operation conditions: feed 200 mm / sec, cutting depth 1 μm. The specific grinding resistance value at this time is 15k
g / mm 3 · mm, and coarse crystal particles were dropped and removed. Example 1 thus obtained has a surface roughness (Ra) of 0.4 μm and an average particle size after grinding of 3 μm to 4 μm.
m, the surface state was a crystal particle surface. The grinding conditions in Example 2 were as follows: grinding wheel condition: SD270L100B
3.0, grinding operation conditions: feed 200 mm / sec. And the cut depth was 5 μm. The specific grinding resistance value at this time is 20k
g / mm 3 · mm, and coarse crystal particles were dropped and removed. Example 2 thus obtained has a surface roughness (Ra) of 0.6 μm and an average particle size after grinding of 5 μm to 6 μm.
m, the surface state was a crystal particle surface. The grinding conditions of Comparative Example 1 were as follows: grinding wheel condition: SD270L100B
3.0, grinding operation conditions: feed 100 mm / sec. And the cut amount was 0.5 μm. The specific grinding resistance value at this time is 5
kg / mm 3 · mm, and coarse crystal particles were dropped and removed. Comparative Example 1 thus obtained had a surface roughness (Ra) of 0.3 μm and an average particle size after grinding of 2 μm to 3 μm.
m, the surface state was a crystal particle surface.

【0025】また、四角形板状試料の表層を、下記に示
す条件で研削して得られた2種類の試料(比較例2,比
較例3)を用意した。比較例2の研削条件は、砥石条
件:SD270N150B3.0、研削操作条件:送り
200mm/sec、切り込み量1μmとした。この時
の比研削抵抗値は40kg/mm3 ・mmであり、鏡面
状態とした。これによって得られた比較例2は、表面粗
さ(Ra)0.2μm、研削後の平均粒径3μm〜4μ
m、その表面状態は、粒子内部が表出した状態であっ
た。また、比較例3の研削条件は、砥石条件:SD27
0L150B3.0、研削操作条件:送り100mm/
sec.、切り込み量1μmとした。この時の比研削抵
抗値は30kg/mm3 ・mmであり、これによって得
られた比較例3は、表面粗さ(Ra)0.6μm、研削
後の平均粒径5μm〜6μm、その表面状態は粒子内部
が表出した状態であった。なお、表面粗さは、触針式表
面粗さ測定機により測定した。
Further, two kinds of samples (Comparative Examples 2 and 3) obtained by grinding the surface layer of a square plate sample under the following conditions were prepared. The grinding conditions of Comparative Example 2 were as follows: grindstone condition: SD270N150B3.0, grinding operation condition: feed 200 mm / sec, and cutting depth 1 μm. At this time, the specific grinding resistance value was 40 kg / mm 3 · mm, which was a mirror surface state. Comparative Example 2 thus obtained had a surface roughness (Ra) of 0.2 μm and an average particle size of 3 μm to 4 μm after grinding.
m, the surface condition was such that the inside of the particles was exposed. The grinding conditions of Comparative Example 3 were as follows: grinding wheel condition: SD27
0L150B3.0, grinding operation conditions: feed 100mm /
sec. And the cut amount was 1 μm. The specific grinding resistance value at this time was 30 kg / mm 3 · mm, and Comparative Example 3 thus obtained had a surface roughness (Ra) of 0.6 μm, an average particle size after grinding of 5 μm to 6 μm, and a surface state thereof. Was a state in which the inside of the particles was exposed. The surface roughness was measured by a stylus type surface roughness measuring device.

【0026】次いで、これ等の試料を、一般的なケミカ
ルドライエッチング装置中で、下記条件下で試験し、試
験後の各試料を下記の方法で評価した。 (試験条件)CF4 70%、O2 30%からなるエッチ
ングガスを導入するとと共に、装置内の圧力を0.25
Torrにし、試料片を200℃及び1000℃に10
00時間加熱した。 (評価方法)試験後の各試料片の表面をSEM(走査型
電子顕微鏡)により観察し、結晶粒子の脱落状態(剥離
状態)を調べた。なお、剥離状態は、250μm×15
0μmのSEM写真を取り、その領域内の剥離面積の割
合を表示した。結果を表1に示す。表1から明らかなよ
うに、本発明の実施例となる実施例1,2は、剥離がな
く耐食性に優れている。これに対し、粒径が3μm未満
と小さく、粒界相の多い比較例1や結晶粒子内部が表出
した状態である比較例2,3は、1000℃の高温下に
おいて10%の剥離がみられ、耐食性に劣る。
Next, these samples were tested in a general chemical dry etching apparatus under the following conditions, and each sample after the test was evaluated by the following method. (Test conditions) An etching gas consisting of 70% CF 4 and 30% O 2 was introduced, and the pressure in the apparatus was set to 0.25.
Torr and the specimens are brought to 200 ° C and 1000 ° C for 10
Heated for 00 hours. (Evaluation Method) The surface of each sample piece after the test was observed with an SEM (scanning electron microscope), and the falling state (peeling state) of the crystal particles was examined. The peeled state was 250 μm × 15
A SEM photograph of 0 μm was taken, and the ratio of the peeled area in that region was displayed. Table 1 shows the results. As is clear from Table 1, Examples 1 and 2, which are examples of the present invention, have no peeling and are excellent in corrosion resistance. On the other hand, in Comparative Example 1 having a small particle size of less than 3 μm and a large number of grain boundary phases, and Comparative Examples 2 and 3 in which the inside of crystal grains was exposed, 10% peeling was observed at a high temperature of 1000 ° C. And poor corrosion resistance.

【0027】[0027]

【表1】 [Table 1]

【0028】「ClF3 ガス雰囲気に於ける耐食試験
(実験2)」焼結体試料として、円盤状(サセプター形
状)試料片を用い、その表層を下記に示す条件で研削し
て得られた4種類の試料(実施例3,実施例4,比較例
4,比較例5)を用意した。実施例3の研削条件は、砥
石条件:SD270L100B3.0、研削操作条件:
送り 200mm/sec、切り込み量 1μmとし
た。この時の比研削抵抗値は15kg/mm3 ・mmで
あり、粗大結晶粒子を脱落させて取り除いた。このよう
にして得られた実施例3は、表面粗さ(Ra)0.4μ
m、研削後の平均粒径3μm〜4μm、表面状態は結晶
粒子表面であった。また実施例4の研削条件は、砥石条
件:SD270L100B3.0、研削操作条件:送り
200mm/sec.、切り込み量5μmとした。この
時の比研削抵抗値は20kg/mm3 ・mmであり、粗
大結晶粒子を脱落させて取り除いた。これによって得ら
れた実施例4は、表面粗さ(Ra)0.6μm、研削後
の平均粒径5μm〜6μm、その表面状態は結晶粒子表
面であった。また、比較例4の研削条件は、砥石条件:
SD270L100B3.0、研削操作条件:送り10
0mm/sec.、切り込み量1μmとした。この時の
比研削抵抗値は10kg/mm3 ・mmであり、粗大結
晶粒子を脱落させて取り除いた。これによって得られた
比較例4は、表面粗さ(Ra)0.7μm、研削後の平
均粒径6μm〜7μm、表面状態は、結晶粒子表面であ
った。また比較例5の研削条件は、砥石条件:SD27
0L100B3.0、研削操作条件:送り100mm/
sec.、切り込み量0.5μmとした。この時の比研
削抵抗値は5kg/mm3 ・mmであり、粗大結晶粒子
を脱落させて取り除いた。これによって得られた比較例
5は、表面粗さ(Ra)0.3μm、研削後の平均粒径
2μm〜3μm未満、表面状態は結晶粒子表面であっ
た。
[Corrosion Resistance Test in ClF 3 Gas Atmosphere (Experiment 2)] A disk-shaped (susceptor-shaped) sample piece was used as a sintered body sample, and the surface layer was ground under the following conditions. Various types of samples (Example 3, Example 4, Comparative Example 4, and Comparative Example 5) were prepared. The grinding conditions of Example 3 were as follows: grinding wheel condition: SD270L100B3.0, grinding operation condition:
The feed was 200 mm / sec, and the cut depth was 1 μm. At this time, the specific grinding resistance was 15 kg / mm 3 · mm, and the coarse crystal grains were dropped and removed. Example 3 thus obtained had a surface roughness (Ra) of 0.4 μm.
m, the average particle size after grinding was 3 μm to 4 μm, and the surface state was the crystal particle surface. The grinding conditions in Example 4 were as follows: grinding wheel condition: SD270L100B3.0, grinding operation condition: feed 200 mm / sec. And the cut depth was 5 μm. At this time, the specific grinding resistance was 20 kg / mm 3 · mm, and the coarse crystal grains were dropped and removed. In Example 4 thus obtained, the surface roughness (Ra) was 0.6 μm, the average particle size after grinding was 5 μm to 6 μm, and the surface state was a crystal particle surface. The grinding conditions of Comparative Example 4 were as follows:
SD270L100B3.0, grinding operation conditions: feed 10
0 mm / sec. And the cut amount was 1 μm. At this time, the specific grinding resistance value was 10 kg / mm 3 · mm, and coarse crystal particles were dropped and removed. In Comparative Example 4 thus obtained, the surface roughness (Ra) was 0.7 μm, the average particle size after grinding was 6 μm to 7 μm, and the surface state was a crystal particle surface. The grinding conditions of Comparative Example 5 were as follows: grinding wheel condition: SD27
0L100B3.0, grinding operation conditions: feed 100mm /
sec. And the cut amount was 0.5 μm. At this time, the specific grinding resistance was 5 kg / mm 3 · mm, and the coarse crystal grains were dropped and removed. In Comparative Example 5 thus obtained, the surface roughness (Ra) was 0.3 μm, the average particle size after grinding was 2 μm to less than 3 μm, and the surface state was a crystal particle surface.

【0029】また、試料の表層を、下記に示す条件で研
削して得られた3種類の試料(比較例6,比較例7,比
較例8)を夫々用意した。比較例6の研削条件は、砥石
条件:SD270N150B3.0、研削条件:送り
200mm/sec、切り込み量 1μmとした。この
時の比研削抵抗値は、40kg/mm3 ・mmであり、
鏡面状態とした。これによって得られた比較例6は、表
面粗さ(Ra)0.2μm、研削後の平均粒径3μm〜
4μm、その表面状態は、粒子内部が表出した状態であ
った。また、比較例7及び比較例8の研削条件は、砥石
条件:SD270L150B3.0、研削操作条件:送
り100mm/sec.、切り込み量1μmとした。こ
の時の比研削抵抗値は30kg/mm3 ・mmであり、
これによって得られた比較例7は、表面粗さ(Ra)
0.6μm、研削後の平均粒径5μm〜6μm、その表
面状態は粒子内部が表出した状態であった。また、比較
例8は、表面粗さ(Ra)0.7μm、研削後の平均粒
径6μm〜7μm、その表面状態は、粒子内部が表出し
た状態であった。
Further, three types of samples (Comparative Example 6, Comparative Example 7, and Comparative Example 8) obtained by grinding the surface layer of the sample under the following conditions were prepared. Grinding conditions of Comparative Example 6 were as follows: grinding wheel condition: SD270N150B3.0, grinding condition: feed
The depth was set to 200 mm / sec and the cut amount was set to 1 μm. The specific grinding resistance value at this time is 40 kg / mm 3 · mm,
The mirror surface was set. Comparative Example 6 thus obtained had a surface roughness (Ra) of 0.2 μm and an average particle size of 3 μm after grinding.
4 μm, the surface state was such that the inside of the particles was exposed. The grinding conditions of Comparative Example 7 and Comparative Example 8 were as follows: grinding wheel condition: SD270L150B3.0, grinding operation condition: feed 100 mm / sec. And the cut amount was 1 μm. The specific grinding resistance value at this time is 30 kg / mm 3 · mm,
Comparative Example 7 thus obtained has a surface roughness (Ra)
0.6 μm, the average particle size after grinding was 5 μm to 6 μm, and the surface state was such that the inside of the particles was exposed. In Comparative Example 8, the surface roughness (Ra) was 0.7 μm, the average particle size after grinding was 6 μm to 7 μm, and the surface state was such that the inside of the particles was exposed.

【0030】次いで、これ等の試料を、ケミカルドライ
エッチング装置中で、下記条件下で試験し、試験後の各
試料を下記の方法で評価した。 (試験条件)ClF3 80%、N2 18%、O2 2%
からなるエッチングガスを導入するとと共に、装置内の
圧力を20Torrにし、試料片を600℃に100時
間加熱した。 (評価方法)試験後に、装置中の円盤状試料(サセプタ
ー形状)上に8インチのSiウエハを載置し、チャンバ
ー内を大気圧から20Torrに3分間で減圧後、その
ウエハを取り出し、ウエハ上に在る0.1μm以上のパ
ーティクルの個数をパーティクルカウンターで数えた。
その結果を表2に示す。表2から明らかなように、本発
明の実施例となる実施例3,4は、エッチングによる結
晶粒子の脱落やウエハと保持装置との摩擦によるパーテ
ィクルの発生がなく、耐食性に優れている。比較例4
は、表面粗さが大きいため、摩擦によりパーティクルが
発生した。粒径が3μm未満と小さく粒界相の多い比較
例5や結晶粒子内部が表出した状態である比較例6,7
は、エッチングにより結晶粒子が脱落し、パーティクル
が発生した。また、比較例8は、表面粗さも大きく、結
晶粒子内部が表出した状態であるため、エッチングによ
る粒子の脱落と摩擦により多くのパーティクルが発生し
た。
Next, these samples were tested in a chemical dry etching apparatus under the following conditions, and each sample after the test was evaluated by the following method. (Test conditions) ClF 3 80%, N 2 18%, O 2 2%
And the pressure inside the apparatus was set to 20 Torr, and the sample piece was heated to 600 ° C. for 100 hours. (Evaluation method) After the test, an 8-inch Si wafer was placed on a disk-shaped sample (susceptor shape) in the apparatus, the pressure in the chamber was reduced from atmospheric pressure to 20 Torr for 3 minutes, and the wafer was taken out. The number of particles having a particle size of 0.1 μm or more was counted by a particle counter.
Table 2 shows the results. As is evident from Table 2, Examples 3 and 4, which are examples of the present invention, are excellent in corrosion resistance without crystal particles falling off due to etching and no generation of particles due to friction between the wafer and the holding device. Comparative Example 4
Since particles had a large surface roughness, particles were generated due to friction. Comparative Example 5 having a small particle size of less than 3 μm and a large number of grain boundary phases, and Comparative Examples 6 and 7 in which the inside of crystal grains is exposed
In the sample, crystal particles were dropped by etching, and particles were generated. In Comparative Example 8, since the surface roughness was large and the inside of the crystal particles was exposed, many particles were generated due to the particles falling off due to etching and friction.

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【発明の効果】上記したとおり、窒化アルミニウム焼結
体から成る本発明のウエハ保持装置及びその製造方法に
よれば、高温下で、ハロゲン系ガス雰囲気に曝されても
焼結体粒子の脱落によるパーティクルの発生が抑制さ
れ、且つウエハとウエハ保持装置との摩擦によるパーテ
ィクルの発生も回避され、パーティクルの発生を低減で
き、耐食性に優れたウエハ保持装置を提供できる。
As described above, according to the wafer holding apparatus of the present invention comprising an aluminum nitride sintered body and the method of manufacturing the same, even if the wafer holding apparatus is exposed to a halogen-based gas atmosphere at a high temperature, the sintered body particles may fall off. The generation of particles is suppressed, the generation of particles due to the friction between the wafer and the wafer holding device is also avoided, the generation of particles can be reduced, and a wafer holding device excellent in corrosion resistance can be provided.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 窒化アルミニウム焼結体から成り、半導
体製造工程で用いられるウエハ保持装置に於いて、 該ウエハ保持装置表面が、結晶粒子表面から成り、その
表面粗さ(Ra)が0.6μm以下であり、該窒化アル
ミニウム焼結体の平均粒径が3μm乃至6μmであるこ
とを特徴とするウエハ保持装置。
1. A wafer holding device made of an aluminum nitride sintered body and used in a semiconductor manufacturing process, wherein the surface of the wafer holding device is made of crystal particle surfaces and has a surface roughness (Ra) of 0.6 μm. A wafer holding device according to the following, wherein the aluminum nitride sintered body has an average particle size of 3 μm to 6 μm.
【請求項2】 窒化アルミニウム焼結体から成り、半導
体製造工程で用いられるウエハ保持装置の製造方法に於
いて、窒化アルミニウム粉末を焼成して得られた焼結体
表層の結晶粒子を研削加工して脱落させ、平均粒径が3
μm乃至6μmである内部結晶粒子を表出させて、該窒
化アルミニウム焼結体の表面を表面粗さ(Ra)が0.
6μm以下に形成することを特徴とするウエハ保持装置
の製造方法。
2. A method of manufacturing a wafer holding device comprising an aluminum nitride sintered body and used in a semiconductor manufacturing process, wherein crystal grains of a surface layer of a sintered body obtained by firing aluminum nitride powder are ground. And the average particle size is 3
The surface of the aluminum nitride sintered body has a surface roughness (Ra) of 0.
A method for manufacturing a wafer holding device, comprising forming the wafer to a thickness of 6 μm or less.
【請求項3】 前記窒化アルミニウム粉末を焼成して得
られた焼結体表層の結晶粒子を研削加工して脱落させる
際の研削加工条件は、比研削抵抗値が5乃至20kg/
mm3 ・mmであることを特徴とする請求項2に記載さ
れたウエハ保持装置の製造方法。
3. Grinding conditions for crystal grains of a surface layer of a sintered body obtained by firing the aluminum nitride powder and dropping the crystal grains are as follows: a specific grinding resistance value of 5 to 20 kg /
3. The method for manufacturing a wafer holding device according to claim 2, wherein the thickness is 3 mm.
JP10025063A 1998-01-22 1998-01-22 Wafer holder and production thereof Pending JPH11214491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10025063A JPH11214491A (en) 1998-01-22 1998-01-22 Wafer holder and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10025063A JPH11214491A (en) 1998-01-22 1998-01-22 Wafer holder and production thereof

Publications (1)

Publication Number Publication Date
JPH11214491A true JPH11214491A (en) 1999-08-06

Family

ID=12155472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10025063A Pending JPH11214491A (en) 1998-01-22 1998-01-22 Wafer holder and production thereof

Country Status (1)

Country Link
JP (1) JPH11214491A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359281A (en) * 2001-06-01 2002-12-13 Ngk Spark Plug Co Ltd Ceramic heater and manufacturing method therefor
JP2007254190A (en) * 2006-03-22 2007-10-04 Ngk Insulators Ltd Aluminum nitride sintered compact, method of manufacturing aluminum nitride, and member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291049A (en) * 1993-03-31 1994-10-18 Kyocera Corp Thin-film forming device
JPH07297265A (en) * 1994-04-26 1995-11-10 Shin Etsu Chem Co Ltd Electrostatic chuck
JPH09213774A (en) * 1996-01-30 1997-08-15 Kyocera Corp Wafer holding member and its manufacturing method
JPH09315867A (en) * 1996-03-29 1997-12-09 Ngk Insulators Ltd Aluminum nitride sintered compact, metal embedded article, electronic functional material and electrostatic chuck

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291049A (en) * 1993-03-31 1994-10-18 Kyocera Corp Thin-film forming device
JPH07297265A (en) * 1994-04-26 1995-11-10 Shin Etsu Chem Co Ltd Electrostatic chuck
JPH09213774A (en) * 1996-01-30 1997-08-15 Kyocera Corp Wafer holding member and its manufacturing method
JPH09315867A (en) * 1996-03-29 1997-12-09 Ngk Insulators Ltd Aluminum nitride sintered compact, metal embedded article, electronic functional material and electrostatic chuck

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359281A (en) * 2001-06-01 2002-12-13 Ngk Spark Plug Co Ltd Ceramic heater and manufacturing method therefor
JP2007254190A (en) * 2006-03-22 2007-10-04 Ngk Insulators Ltd Aluminum nitride sintered compact, method of manufacturing aluminum nitride, and member

Similar Documents

Publication Publication Date Title
US11667577B2 (en) Y2O3—ZrO2 erosion resistant material for chamber components in plasma environments
US6723437B2 (en) Semiconductor processing component having low surface contaminant concentration
US6933254B2 (en) Plasma-resistant articles and production method thereof
EP0896362A1 (en) Semiconductor supporting device
JP5730917B2 (en) Method for producing high resistivity silicon carbide
JP3527839B2 (en) Components for semiconductor device manufacturing equipment
KR20170141340A (en) Sintered ceramics for electrostatic chuck and manufacturing method of the same
JP3618048B2 (en) Components for semiconductor manufacturing equipment
EP0708065A1 (en) Plasma fluorine resistant polycristalline alumina ceramic material and method of making
JPH11214491A (en) Wafer holder and production thereof
JPH1072249A (en) Alumina ceramic sintered compact and alumina ceramic parts
JP3716386B2 (en) Plasma-resistant alumina ceramics and method for producing the same
JP3769416B2 (en) Components for plasma processing equipment
JP4382919B2 (en) Method for producing silicon-impregnated silicon carbide ceramic member
JP3756345B2 (en) Aluminum nitride-based sintered body, method for producing the same, and susceptor using the same
JP2001044179A (en) Constituent member of chamber for manufacture of semiconductor
JP2001233676A (en) Plasma corrosion-resistant member and method for producing the same
US7476634B2 (en) Yttria sintered body and manufacturing method therefor
JP4651145B2 (en) Corrosion resistant ceramics
JP2000247728A (en) Alumina ceramic sintered compact having excellent corrosion resistance
JPH11278944A (en) Silicon nitride corrosion resistant member and its production
JP4057165B2 (en) Manufacturing method of parts for semiconductor manufacturing equipment
JP2001220239A (en) Silicon carbide sintered compact and method for producing the same
JP2007254205A (en) Silicon nitride joined body, its production method and member for semiconductor production apparatus using the joined body
JP2022152706A (en) Yag sintered compact and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050106