JPH11209896A - Production of transparent thick and transparent thick film coated substrate - Google Patents

Production of transparent thick and transparent thick film coated substrate

Info

Publication number
JPH11209896A
JPH11209896A JP1582098A JP1582098A JPH11209896A JP H11209896 A JPH11209896 A JP H11209896A JP 1582098 A JP1582098 A JP 1582098A JP 1582098 A JP1582098 A JP 1582098A JP H11209896 A JPH11209896 A JP H11209896A
Authority
JP
Japan
Prior art keywords
film
substrate
thick film
transparent thick
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1582098A
Other languages
Japanese (ja)
Other versions
JP3887926B2 (en
Inventor
Kenichi Nakama
健一 仲間
Katsuhide Shinmou
勝秀 新毛
Tsutomu Minami
努 南
Masahiro Tatsuminasu
昌弘 辰巳砂
Atsunori Matsuda
厚範 松田
Seiji Tadanaga
清治 忠永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP01582098A priority Critical patent/JP3887926B2/en
Publication of JPH11209896A publication Critical patent/JPH11209896A/en
Application granted granted Critical
Publication of JP3887926B2 publication Critical patent/JP3887926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To remarkably improve the transparency of an electrophoretically deposited film in the formation of a thick film by electrophoretic deposition, to increase the maximum thickness of the formed film without deteriorating the film and to use the formed transparent thick film as the protective film of a substrate, an optical film, a substitute for a thin sheet glass by the conventional polishing method or further as an optical microelement. SOLUTION: A substrate with at least the surface conductive is dipped in a dispersion of org.-inorg. composite grains, a voltage is applied between a counter electrode set in the dispersion and the substrate to electrophoretically electrocleposit the composite grains, and the electrodeposited film formed on the substrate is uniformly melted to form a transparent thick film. The composite grain with one or >=2 kinds of compds. expressed by R2 MR'y as the starting materials is used as the org.-inorg. composite grain. In the formula, R is aromatic hydrocarbonic groups, M is a (x+y)-valent cation, and R' is a hydrolyzable and polycondensable functional group.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機無機複合粒子
の電気泳動電着による透明厚膜の製造方法及びこの方法
により製造された透明厚膜付き基体に関し、特に、基体
の保護膜、光学膜、又は従来の研磨法による薄板ガラス
の代替として有用で、微小光学素子としての応用が可能
な高品質透明厚膜の製造方法及び透明厚膜付き基体に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a transparent thick film by electrophoretic deposition of organic-inorganic composite particles and a substrate with a transparent thick film produced by this method, and more particularly to a protective film for a substrate and an optical film. The present invention also relates to a method for producing a high-quality transparent thick film and a substrate with a transparent thick film, which is useful as a substitute for thin glass by a conventional polishing method and can be applied as a micro-optical element.

【0002】[0002]

【従来の技術】従来、電気泳動電着による厚膜の製造方
法については種々提案がなされており、例えば、特開平
5−246701号公報には、テトラエトキシシランを
イソプロピルアルコールに溶解し、これに希薄アンモニ
ア水を加えて更に撹拌した溶液を電気泳動電着浴として
用いて、陽極酸化アルミニウム基板上に数十μm程度の
厚さのシリカ厚膜を形成することが報告されている。
2. Description of the Related Art Conventionally, various methods for producing a thick film by electrophoretic electrodeposition have been proposed. For example, Japanese Patent Application Laid-Open No. Hei 5-246701 discloses a method in which tetraethoxysilane is dissolved in isopropyl alcohol. It has been reported that a thick solution of silica having a thickness of about several tens of μm is formed on an anodized aluminum substrate by using a solution obtained by adding diluted ammonia water and further stirring as an electrophoretic electrodeposition bath.

【0003】また、テトラエトキシシシランのエタノー
ル溶液に希薄アンモニア水を加え、粒子サイズ、電荷及
び分散性の制御を目的としてドデシル硫酸ナトリウムを
添加し、更に乾燥抑制剤として1,4−ジオキサンを加
えた溶液を電気泳動電着浴として用いて、ステンレス基
板上に数μmの厚さのシリカ厚膜を形成することも報告
されている(1994年日本セラミックス協会「年会講
演予稿集2H08」p513)。
Further, dilute aqueous ammonia is added to an ethanol solution of tetraethoxysilan, sodium dodecyl sulfate is added for the purpose of controlling the particle size, charge and dispersibility, and 1,4-dioxane is further added as a drying inhibitor. It has also been reported that a thick silica film having a thickness of several μm is formed on a stainless steel substrate by using the obtained solution as an electrophoretic electrodeposition bath (1994 Ceramic Society of Japan, Annual Meeting, 2H08, p. 513). .

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来の方法では、得られる厚膜は粒子の散乱によって白濁
しており、透明な厚膜を得ることは困難であった。ま
た、従来の方法では、形成される厚膜の膜厚にも制限が
ある上に、膜厚の厚い膜を形成した場合、膜の品質が劣
化する傾向にあるという欠点もある。
However, in the above-mentioned conventional method, the obtained thick film is cloudy due to scattering of particles, and it has been difficult to obtain a transparent thick film. Further, in the conventional method, there is a limitation that the thickness of the thick film to be formed is limited, and when a thick film is formed, the quality of the film tends to deteriorate.

【0005】このようなことから、従来法による厚膜
は、基体の保護膜、光学膜、従来の研磨法による薄板ガ
ラスの代替、更には微小光学素子への応用には不適当で
あった。
[0005] For these reasons, the thick film formed by the conventional method is unsuitable for use as a protective film for a substrate, an optical film, a substitute for thin glass formed by a conventional polishing method, and further to a micro-optical element.

【0006】本発明は、上記従来の問題点を解決し、電
気泳動電着法による厚膜の形成において、得られる電着
膜の透明性を大幅に改善すると共に、膜劣化を引き起こ
すことなく、形成できる最大膜厚を増大することがで
き、以て得られる透明厚膜付き基体の保護膜、光学膜、
従来の研磨法による薄板ガラスの代替、更には微小光学
素子としての応用を可能とする透明厚膜の製造方法及び
透明厚膜付き基体を提供することを目的とする。
[0006] The present invention solves the above-mentioned conventional problems, and in forming a thick film by electrophoretic electrodeposition, greatly improves the transparency of the obtained electrodeposited film and does not cause film deterioration. The maximum film thickness that can be formed can be increased, and a protective film, an optical film,
It is an object of the present invention to provide a method of manufacturing a transparent thick film and a substrate with a transparent thick film, which can be used in place of thin glass by a conventional polishing method, and further, can be applied as a micro optical element.

【0007】[0007]

【課題を解決するための手段】本発明の透明厚膜の製造
方法は、有機無機複合粒子の分散液中に、少なくとも表
面が導電性の基体を浸漬し、該液中に設置された対向電
極と該基体との間に電圧を印加して該基体の導電性表面
に、前記有機無機複合粒子を電気泳動電着させ、次いで
該基体上に形成された電着膜を均一に融解させて透明厚
膜を形成する方法であって、前記有機無機複合粒子が、
一般式RxMR’y(ただし、Rは置換基を有していても
良い芳香族炭化水素基、Mは価数(x+y)の陽性イオ
ン、R’は加水分解重縮合可能な官能基)で表される化
合物の1種又は2種以上を出発原料とする複合粒子であ
ることを特徴とする。
According to the present invention, there is provided a method for producing a transparent thick film, comprising the steps of: immersing a substrate having at least a surface in a dispersion of organic-inorganic composite particles; A voltage is applied between the substrate and the substrate to electrophoretically deposit the organic-inorganic composite particles on the conductive surface of the substrate, and then the electrodeposited film formed on the substrate is uniformly melted to be transparent. A method of forming a thick film, wherein the organic-inorganic composite particles,
General formula R x MR ′ y (where R is an aromatic hydrocarbon group which may have a substituent, M is a positive ion having a valence (x + y), and R ′ is a functional group capable of hydrolytic polycondensation) Characterized in that they are composite particles using one or more of the compounds represented by the following as starting materials.

【0008】本発明に係る有機無機複合粒子で、電気泳
動電着法により形成した電着膜は、熱、光、プラズマ、
圧力、反応性ガス等の外部エネルギーを作用させること
によって均一に融解させることができ、これにより、電
着膜は無孔化され、微細孔のない極めて均質な透明厚膜
となる。
[0008] The electrodeposited film formed by the electrophoretic electrodeposition method using the organic-inorganic composite particles according to the present invention is formed by heat, light, plasma,
By applying external energy such as pressure and reactive gas, it can be uniformly melted, whereby the electrodeposited film becomes nonporous and becomes a very uniform transparent thick film without fine pores.

【0009】本発明において、有機無機複合粒子として
は、特に、一般式PhMR’x+y-1(Phはフェニル
基、M及びR’は前記定義に同じ)で表される化合物を
出発原料とするものが好ましい。
In the present invention, as the organic-inorganic composite particles, a compound represented by the general formula PhMR ' x + y-1 (Ph is a phenyl group, and M and R' are as defined above) is used as a starting material. Are preferred.

【0010】また、電着膜を均一に融解させる方法とし
ては熱処理による方法が好適である。
As a method for uniformly melting the electrodeposited film, a method using heat treatment is preferable.

【0011】本発明の透明厚膜付き基体は、このような
本発明の透明厚膜の製造方法により製造されたものであ
る。
The substrate with a transparent thick film of the present invention is produced by the method for producing a transparent thick film of the present invention.

【0012】[0012]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
Embodiments of the present invention will be described below in detail.

【0013】まず、本発明に係る有機無機複合粒子の出
発原料について説明する。この出発原料となる一般式R
xMR’yで表される化合物(以下単に「出発原料」と称
す場合がある。)において、芳香族炭化水素基Rとして
は、フェニル基(C65−)、ベンジル基(C65CH
2−)、アミノフェニル基(H2NC64−)、クロロフ
ェニル基(ClC64−)、ブロモフェニル基(BrC
64−)、トリル基(CH364−)等が挙げられ、
特に、フェニル基が好ましい。また、加水分解重縮合可
能な官能基R’としては、エトキシ基、メトキシ基等の
アルコキシ基、クロロ、ブロモ等のハロゲン等が挙げら
れる。また、陽性イオンMとしては、Si,Ti,A
l,B,P,Ta,Zr,V,W等が例示できる。
First, the starting materials of the organic-inorganic composite particles according to the present invention will be described. The starting material represented by the general formula R
In the compound represented by x MR ′ y (hereinafter sometimes simply referred to as “starting material”), the aromatic hydrocarbon group R includes a phenyl group (C 6 H 5 −) and a benzyl group (C 6 H 5 CH
2 -), amino phenyl group (H 2 NC 6 H 4 - ), chlorophenyl group (ClC 6 H 4 -), bromophenyl group (BrC
6 H 4 —) and a tolyl group (CH 3 C 6 H 4 —).
Particularly, a phenyl group is preferred. Examples of the functional group R ′ capable of hydrolysis and polycondensation include an alkoxy group such as an ethoxy group and a methoxy group, and a halogen such as chloro and bromo. The positive ions M include Si, Ti, A
1, B, P, Ta, Zr, V, W, etc. can be exemplified.

【0014】出発原料としては、特にフェニル基を有す
るPhMR’x+y-1で表わされる化合物が好ましく、具
体的には、フェニルトリエトキシシラン、フェニルトリ
メトキシシラン、フェニルトリクロロシラン、ベンジル
トリクロロシラン、ベンジルトリエトキシシラン、p−
アミノフェニルトリエトキシシラン、トリルトリクロロ
シランなどが例示できる。中でもフェニルトリエトキシ
シラン、フェニルトリメトキシシラン、フェニルトリク
ロロシラン等が好ましい。
As the starting material, a compound represented by PhMR ' x + y-1 having a phenyl group is particularly preferred. Specifically, phenyltriethoxysilane, phenyltrimethoxysilane, phenyltrichlorosilane, benzyltrichlorosilane, Benzyltriethoxysilane, p-
Examples include aminophenyltriethoxysilane and tolyltrichlorosilane. Among them, phenyltriethoxysilane, phenyltrimethoxysilane, phenyltrichlorosilane and the like are preferable.

【0015】上記出発原料は、1種類を単独で又は2種
類以上を組み合わせて使用することができる。また、上
記出発原料と共に、一般式MR’x+y(M,R’,x,
yは前記定義に同じ。)で表される化合物を併用しても
良い。
The above starting materials can be used alone or in combination of two or more. Further, together with the starting materials, the general formula MR ′ x + y (M, R ′, x,
y is the same as defined above. ) May be used in combination.

【0016】上記出発原料から本発明に係る有機無機複
合粒子を製造する方法には特に制限はないが、例えば、
酸性条件下で上記出発原料を加水分解した後、塩基性条
件下で粒子を作製する方法を採用することができる(第
32回ガラスおよびフォトニクス材料討論会講演要旨集
(1991)p139−140)。具体的には、上記出
発原料に塩酸等の酸を加えpH2〜3程度で、出発原料
に対してモル比で4〜10倍程度の水を加えて加水分解
し、得られたゾルにアンモニア等のアルカリを加え、p
H11〜13程度で粒子を成長させる。
The method for producing the organic-inorganic composite particles according to the present invention from the above-mentioned starting materials is not particularly limited.
After hydrolyzing the above-mentioned starting materials under acidic conditions, a method of producing particles under basic conditions can be adopted (Abstracts of the 32nd Symposium on Glass and Photonic Materials (1991) pp. 139-140). Specifically, an acid such as hydrochloric acid is added to the above-mentioned starting material, and water is added at a pH of about 2 to 3 at a molar ratio of about 4 to 10 times the amount of the starting material to hydrolyze. And add p
The particles are grown at about H11 to H13.

【0017】有機無機複合粒子の粒径は0.1〜1.0
μmであることが好ましく、従って、粒径が大きい場合
には、適宜粉砕する。
The particle size of the organic-inorganic composite particles is 0.1 to 1.0.
It is preferable that the particle size is large.

【0018】電着液の調製に当り、有機無機複合粒子を
分散させる分散媒としては、目的に応じて各種のものを
用いることができ、有機無機複合粒子の調製に用いた溶
液をそのまま電着液として用いることもできる。また、
調製した有機無機複合粒子を一旦遠心分離等の手法を用
いて回収し、必要に応じて、乾燥又は熱処理、粉砕等の
処理を行った後、適当な分散媒に再分散させて電着液と
することもできる。この場合、分散媒としては、例え
ば、水と、メタノール、エタノール、プロパノール等の
アルコール類、アセトン、メチルエチルケトン等のケト
ン類、メチルエーテル等のエーテル類、或いはメチルセ
ルソルブ等との混合液を用いることができ、特に、水:
アルコール=1:1〜2(体積比)とするのが好まし
い。なお、電着液中の有機無機複合粒子の濃度は、0.
1〜10vol%とすることが好ましい。また、電着液
には、有機無機複合粒子の表面電荷を制御する目的で、
界面活性剤を添加することができる。この場合、界面活
性剤としては、ドデシルベンゼンスルホン酸ナトリウ
ム、ドデシル硫酸ナトリウム等が挙げられ、その添加濃
度は0.01〜0.08wt%とするのが好ましい。
In preparing the electrodeposition liquid, various dispersion media for dispersing the organic-inorganic composite particles can be used according to the purpose. The solution used for preparing the organic-inorganic composite particles can be used as it is. It can also be used as a liquid. Also,
The prepared organic-inorganic composite particles are once recovered using a technique such as centrifugation, and, if necessary, dried or heat-treated, and then subjected to a treatment such as pulverization. You can also. In this case, as the dispersion medium, for example, a mixed solution of water, alcohols such as methanol, ethanol, and propanol, ketones such as acetone and methyl ethyl ketone, ethers such as methyl ether, and methylcellosolve and the like are used. Can, especially, water:
It is preferable that alcohol = 1: 1 to 2 (volume ratio). In addition, the concentration of the organic-inorganic composite particles in the electrodeposition liquid was 0.1.
It is preferable to set it to 1 to 10 vol%. In addition, in the electrodeposition liquid, for the purpose of controlling the surface charge of the organic-inorganic composite particles,
Surfactants can be added. In this case, examples of the surfactant include sodium dodecylbenzenesulfonate and sodium dodecyl sulfate, and the concentration of the surfactant is preferably 0.01 to 0.08 wt%.

【0019】本発明において、電気泳動電着法により電
着膜を形成する基体としては、鉄、鋼、アルミニウム、
銅、ニッケル等の金属や合金、或いはITO等の導電性
薄膜を表面に形成したガラス又はプラスチックが用いら
れる。特に、本発明で得られる透明厚膜の特性を十分に
活かすためには、ガラス基板を用いた表示素子、光学素
子への応用が期待されることから、基体としては、表面
にITO等の導電性薄膜を形成したガラス板を用いるの
が好ましい。この場合、ガラス基板のガラス材質として
は、石英ガラス、ソーダライムガラス、アルカリアルミ
ノシリケートガラス、アルカリボロシリケートガラス、
多成分系無アルカリガラス、低膨張結晶化ガラス等が挙
げられる。
In the present invention, the substrate on which the electrodeposition film is formed by the electrophoretic electrodeposition method includes iron, steel, aluminum,
A metal or alloy such as copper or nickel, or glass or plastic having a conductive thin film such as ITO formed on the surface is used. In particular, in order to fully utilize the properties of the transparent thick film obtained in the present invention, application to display elements and optical elements using a glass substrate is expected. It is preferable to use a glass plate on which a conductive thin film is formed. In this case, as the glass material of the glass substrate, quartz glass, soda lime glass, alkali aluminosilicate glass, alkali borosilicate glass,
Examples include a multi-component non-alkali glass, a low expansion crystallized glass, and the like.

【0020】一方、対向電極としては、アルカリや酸に
侵食されにくい白金、ステンレススチール、黒鉛、チタ
ン等が使用できる。
On the other hand, as the counter electrode, platinum, stainless steel, graphite, titanium, or the like that is not easily attacked by alkali or acid can be used.

【0021】印加電圧は5〜200Vの範囲が好まし
く、直流もしくはパルス電圧を基体側が陽極となるよう
に印加する。
The applied voltage is preferably in the range of 5 to 200 V, and a direct current or a pulse voltage is applied such that the substrate side becomes an anode.

【0022】このような電圧印加により基体上に電着膜
を形成した後は、電着液から基体を引き上げ、電着膜を
均一に融解させる。即ち、基体上に電気泳動電着によっ
て凝集積層した複合粒子を、熱、光、プラズマ、圧力、
反応性ガス等の外部エネルギーを作用させることによっ
て均一に融解させる。これにより、電着膜が無孔化さ
れ、透明厚膜が形成される。
After the electrodeposition film is formed on the substrate by applying such a voltage, the substrate is pulled up from the electrodeposition liquid, and the electrodeposited film is uniformly melted. That is, heat, light, plasma, pressure,
Uniform melting is achieved by applying external energy such as a reactive gas. Thereby, the electrodeposition film is made nonporous, and a transparent thick film is formed.

【0023】この融解は、特に、熱処理により行うのが
好ましく、この場合、熱処理条件は、形成される透明厚
膜の厚さや用いた有機無機複合粒子の種類等によっても
異なるが、一般に200〜500℃で10〜20分程度
である。
This melting is preferably carried out by heat treatment. In this case, the heat treatment conditions vary depending on the thickness of the transparent thick film to be formed, the type of organic-inorganic composite particles used, and the like. C. for about 10 to 20 minutes.

【0024】このような本発明の方法によれば、可視域
の光透過率が70%以上の良好な透明性を有する透明厚
膜を形成することができる。また、その膜厚も、電着時
の印加電圧や電着時間等の電着条件を調整することによ
り、3〜20μmという厚膜化が可能である。
According to such a method of the present invention, it is possible to form a transparent thick film having good transparency and a light transmittance in the visible region of 70% or more. In addition, the film thickness can be increased to 3 to 20 μm by adjusting electrodeposition conditions such as applied voltage and electrodeposition time during electrodeposition.

【0025】[0025]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
The present invention will be described more specifically below with reference to examples and comparative examples.

【0026】実施例1 フェニルトリエトキシシランを塩酸触媒の存在下、室温
で10時間加水分解した(pH2.8)。ここで加水分
解に用いた希塩酸は0.01wt%で、水はフェニルト
リエトキシシランに対して、モル比で20倍とした。上
記加水分解によって得られた透明均質ゾルを10倍量の
4wt%のアンモニア水にゆっくり加え(pH12)、
更に室温で10時間撹拌した。本操作によって溶液は白
色に懸濁し、粒子の生成が確認できた。
Example 1 Phenyltriethoxysilane was hydrolyzed (pH 2.8) at room temperature for 10 hours in the presence of a hydrochloric acid catalyst. Here, the diluted hydrochloric acid used in the hydrolysis was 0.01 wt%, and the molar ratio of water to phenyltriethoxysilane was 20 times. The transparent homogeneous sol obtained by the hydrolysis is slowly added to 10 times the amount of 4 wt% aqueous ammonia (pH 12),
The mixture was further stirred at room temperature for 10 hours. By this operation, the solution was suspended in white, and generation of particles was confirmed.

【0027】生成したフェニル基変成シリカ粒子を遠心
分離によって収集し、これを真空オーブンで3時間乾燥
した。乾燥操作後のフェニル基変成シリカ粒子の粒径は
約0.1〜1μmであった。この粒子をメノウ乳鉢で簡
単に粉砕して粒径0.1〜1μmとした後、水−エタノ
ール=1:1体積比の混合溶媒中に1.0vol%にな
るように添加し、超音波照射を行うことにより、フェニ
ル基変成シリカ粒子が均一に分散した電着浴を調製し
た。
The resulting phenyl-modified silica particles were collected by centrifugation and dried in a vacuum oven for 3 hours. The particle size of the phenyl-modified silica particles after the drying operation was about 0.1 to 1 μm. The particles were easily crushed in an agate mortar to a particle size of 0.1 to 1 μm, and then added to a mixed solvent of water-ethanol = 1: 1 by volume so as to have a volume ratio of 1.0 vol%, and irradiated with ultrasonic waves. Was carried out to prepare an electrodeposition bath in which phenyl-modified silica particles were uniformly dispersed.

【0028】表面にITO導電性膜を形成したソーダラ
イムガラス基板をこの電着浴中に対向電極と対峙させて
浸漬し、基板が陽極となるように直流電圧40Vを5分
間印加した。基板の導電性膜上には、フェニル基変成シ
リカ粒子が堆積した白色不透明の電着膜が形成された。
この電着膜が形成された基板を、200℃で2時間オー
ブン加熱を行うことにより、この白色不透明の電着膜は
透明厚膜となった。熱処理前後の厚膜を電子走査型顕微
鏡で観察したところ、熱処理前は粒径0.1〜1μmの
球状粒子が基板上に堆積している様子が観察されたが、
熱処理後は、これら粒子が融解し、緻密な均質膜になっ
ていることが確認された。熱処理後の厚膜は、膜厚約5
μmであり、可視域で光透過率80%という高い光透過
率を示した。
A soda lime glass substrate having an ITO conductive film formed on its surface was immersed in this electrodeposition bath so as to face the counter electrode, and a DC voltage of 40 V was applied for 5 minutes so that the substrate became an anode. On the conductive film of the substrate, a white opaque electrodeposited film on which phenyl-modified silica particles were deposited was formed.
By heating the substrate on which the electrodeposited film was formed at 200 ° C. for 2 hours, the white opaque electrodeposited film became a transparent thick film. When the thick film before and after the heat treatment was observed with an electron scanning microscope, it was observed that spherical particles having a particle size of 0.1 to 1 μm were deposited on the substrate before the heat treatment.
After the heat treatment, it was confirmed that these particles were melted to form a dense homogeneous film. Thick film after heat treatment has a thickness of about 5
μm and a high light transmittance of 80% in the visible region.

【0029】なお、膜厚は電着条件を制御することによ
り、更に厚くすることが可能であった。
Incidentally, the film thickness could be further increased by controlling the electrodeposition conditions.

【0030】実施例2 フェニルトリエトキシシラン及びテトラエトキシシラン
を塩酸触媒の存在下、室温で10時間加水分解した(p
H2.5)。ここでフェニルトリエトキシシラン及びテ
トラエトキシシランのモル比は90:10とした。また
加水分解に用いた希塩酸は0.01wt%で、水はフェ
ニルトリエトキシシランとテトラエトキシシランの総量
に対して、モル比で20倍とした。上記加水分解によっ
て得られた透明均質ゾルを10倍量の4wt%のアンモ
ニア水にゆっくり加え(pH12)、更に室温で10時
間撹拌した。本操作によって溶液は白色に懸濁し、粒子
の生成が確認できた。
Example 2 Phenyltriethoxysilane and tetraethoxysilane were hydrolyzed in the presence of a hydrochloric acid catalyst at room temperature for 10 hours (p
H2.5). Here, the molar ratio of phenyltriethoxysilane and tetraethoxysilane was 90:10. The amount of diluted hydrochloric acid used for the hydrolysis was 0.01 wt%, and the molar ratio of water was 20 times the total amount of phenyltriethoxysilane and tetraethoxysilane. The transparent homogeneous sol obtained by the above hydrolysis was slowly added to a 10-fold amount of 4 wt% aqueous ammonia (pH 12), and further stirred at room temperature for 10 hours. By this operation, the solution was suspended in white, and generation of particles was confirmed.

【0031】生成したフェニルトリエトキシシラン−テ
トラエトキシシラン誘導フェニル基変成シリカ粒子を遠
心分離によって収集し、これを真空オーブンで3時間乾
燥した。乾燥操作後のフェニルトリエトキシシラン−テ
トラエトキシシラン誘導フェニル基変成シリカ粒子の粒
径は約0.1〜1μmであった。この粒子を用いて実施
例1と同様の操作で電着浴を調製し、同様にITO透明
導電性膜を形成したソーダライムガラス基板上に電気泳
動電着を行った。
The resulting phenyltriethoxysilane-tetraethoxysilane-derived phenyl-modified silica particles were collected by centrifugation and dried in a vacuum oven for 3 hours. The particle size of the phenyltriethoxysilane-tetraethoxysilane-derived phenyl-modified silica particles after the drying operation was about 0.1 to 1 μm. Using these particles, an electrodeposition bath was prepared in the same manner as in Example 1, and electrophoretic electrodeposition was similarly performed on a soda lime glass substrate on which an ITO transparent conductive film was formed.

【0032】電着により形成された、フェニルトリエト
キシシラン−テトラエトキシシラン誘導フェニル基変成
シリカ粒子が堆積した電着膜もやはり白色不透明であっ
たが、500℃で2時間オーブン加熱を行うことによ
り、白色不透明の電着膜は透明厚膜となった。熱処理前
後の厚膜を電子走査型顕微鏡で観察したところ熱処理前
は粒径0.1〜1μmの球状粒子が基板上に堆積してい
る様子が観察されたが、熱処理後は、これら粒子が融解
し、緻密な均質膜になっていることが確認された。熱処
理後の厚膜は、膜厚約5μmであり、可視域で光透過率
73%という高い光透過率を示した。
The electrodeposited film formed by electrodeposition and on which phenyltriethoxysilane-tetraethoxysilane-derived phenyl-modified silica particles were deposited was also white and opaque, but was heated in an oven at 500 ° C. for 2 hours. The opaque white electrodeposited film became a transparent thick film. When the thick film before and after the heat treatment was observed with an electron scanning microscope, it was observed that spherical particles having a particle diameter of 0.1 to 1 μm were deposited on the substrate before the heat treatment, but after the heat treatment, these particles were melted. As a result, a dense homogeneous film was confirmed. The thick film after the heat treatment had a thickness of about 5 μm and exhibited a high light transmittance of 73% in the visible region.

【0033】なお、膜厚は電着条件を制御することによ
り、更に厚くすることが可能であった。
The film thickness could be further increased by controlling the electrodeposition conditions.

【0034】比較例1 メチルトリエトキシシランを塩酸触媒の存在下、室温で
1時間加水分解した。ここで加水分解に用いた希塩酸は
0.01wt%で、水はメチルトリエトキシシランに対
して、モル比で20倍とした。上記加水分解によって得
られた透明均質ゾルを10倍量の4wt%のアンモニア
水にゆっくり加え、更に室温で10時間撹拌した。本操
作によって溶液は白色に懸濁し、粒子の生成が確認でき
た。
Comparative Example 1 Methyltriethoxysilane was hydrolyzed for 1 hour at room temperature in the presence of a hydrochloric acid catalyst. Here, the diluted hydrochloric acid used for the hydrolysis was 0.01% by weight, and the molar ratio of water to methyltriethoxysilane was 20 times. The transparent homogeneous sol obtained by the above hydrolysis was slowly added to a 10-fold amount of 4 wt% aqueous ammonia, and further stirred at room temperature for 10 hours. By this operation, the solution was suspended in white, and generation of particles was confirmed.

【0035】生成したメチル基変成シリカ粒子を遠心分
離によって収集し、これを真空オーブンで3時間乾燥し
た。乾燥操作後のメチル基変成シリカ粒子の粒径は約
0.1〜1μmであった。この粒子を用いて実施例1と
同様の操作で電着浴を調製し、同様にITO透明導電性
膜を形成したソーダライムガラス基板上に電気泳動電着
を行った。
The resulting methyl-modified silica particles were collected by centrifugation and dried in a vacuum oven for 3 hours. The particle size of the methyl-modified silica particles after the drying operation was about 0.1 to 1 μm. Using these particles, an electrodeposition bath was prepared in the same manner as in Example 1, and electrophoretic electrodeposition was similarly performed on a soda lime glass substrate on which an ITO transparent conductive film was formed.

【0036】電着により形成された、メチル基変成シリ
カ粒子が堆積した電着膜は白色不透明であった。
The electrodeposited film formed by electrodeposition and on which the methyl-modified silica particles were deposited was white and opaque.

【0037】この操作によって得られた厚膜の膜厚は約
5μmであったが、これを200℃、400℃、600
℃でそれぞれ2時間オーブン加熱をした後も厚膜は白色
不透明のままで、透明厚膜を得ることはできなかった。
The thickness of the thick film obtained by this operation was about 5 μm.
The thick film remained white and opaque even after being heated in an oven at 2 ° C. for 2 hours, and a transparent thick film could not be obtained.

【0038】比較例2 テトラエトキシシランをアンモニア触媒の存在下で、エ
タノール−水系溶媒中、室温で10時間加水分解した。
ここで加水分解に用いたアンモニアは1wt%で、エタ
ノール及び水は、テトラエトキシシランに対して、いず
れもモル比で50倍とし、更に粒径を制御するためにド
デシル硫酸ナトリウムを0.02vol%添加した。上
記加水分解によって得られたシリカ粒子を遠心分離によ
って収集し、これを真空オーブンで3時間乾燥し、更に
600℃で熱処理を行った。得られた粒子を用いて実施
例1と同様の操作でシリカ粒子が1vol%となる電着
浴を調製し、更にカチオン系高分子界面活性剤ポリエチ
レンイミンを電着浴に0.1〜1vol%添加して、I
TO透明導電性膜を形成したソーダライムガラス基板が
陰極となるようにしたこと以外は同様にして電気泳動電
着を行った。電着により形成された、シリカ粒子−高分
子界面活性剤ポリエチレンイミン系複合膜は膜厚約5μ
mであったが白濁しており、これを400℃、600℃
でそれぞれ2時間オーブン加熱を行った後も白濁したま
まで、透明にはならなかった。
Comparative Example 2 Tetraethoxysilane was hydrolyzed in an ethanol-water solvent at room temperature for 10 hours in the presence of an ammonia catalyst.
Here, the ammonia used for the hydrolysis was 1 wt%, and the molar ratio of ethanol and water was 50 times the molar ratio of tetraethoxysilane, and 0.02 vol% of sodium dodecyl sulfate was used to control the particle diameter. Was added. The silica particles obtained by the above hydrolysis were collected by centrifugation, dried in a vacuum oven for 3 hours, and further heat-treated at 600 ° C. Using the obtained particles, an electrodeposition bath containing 1 vol% of silica particles was prepared in the same manner as in Example 1, and a cationic polymer surfactant polyethyleneimine was added to the electrodeposition bath in an amount of 0.1 to 1 vol%. In addition, I
Electrophoretic electrodeposition was performed in the same manner except that the soda lime glass substrate on which the TO transparent conductive film was formed was used as a cathode. A silica particle-polymer surfactant polyethyleneimine-based composite film formed by electrodeposition has a thickness of about 5 μm.
m, but it was cloudy.
, Remained cloudy even after heating in an oven for 2 hours, and did not become transparent.

【0039】[0039]

【発明の効果】以上詳述した通り、本発明によれば、電
気泳動電着法により、均質性、透明性に優れた良好な透
明厚膜を形成することができる。
As described in detail above, according to the present invention, a good transparent thick film excellent in homogeneity and transparency can be formed by the electrophoretic electrodeposition method.

【0040】従って、本発明によれば、電気泳動電着法
による透明厚膜付き基体を表示素子、光学素子へ応用す
ることが可能となる。
Therefore, according to the present invention, it is possible to apply a substrate with a transparent thick film by electrophoretic electrodeposition to a display element and an optical element.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 辰巳砂 昌弘 大阪府堺市学園町1−1 大阪府立大学内 (72)発明者 松田 厚範 大阪府堺市学園町1−1 大阪府立大学内 (72)発明者 忠永 清治 大阪府堺市学園町1−1 大阪府立大学内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masahiro Tatsumisa 1-1 Gakuen-cho, Sakai City, Osaka Prefecture, Osaka Prefecture University (72) Inventor Atsunori Matsuda 1-1 Gakuen-cho, Sakai City, Osaka Prefecture, Osaka Prefecture University ( 72) Inventor Seiji Tadanaga 1-1 Gakuen-cho, Sakai City, Osaka Prefecture, Osaka Prefecture University

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機無機複合粒子の分散液中に、少なく
とも表面が導電性の基体を浸漬し、該液中に設置された
対向電極と該基体との間に電圧を印加して該基体の導電
性表面に、前記有機無機複合粒子を電気泳動電着させ、
次いで、該基体上に形成された電着膜を均一に融解させ
て透明厚膜を形成する方法であって、 前記有機無機複合粒子が、一般式RxMR’y(ただし、
Rは置換基を有していても良い芳香族炭化水素基、Mは
価数(x+y)の陽性イオン、R’は加水分解重縮合可
能な官能基)で表される化合物の1種又は2種以上を出
発原料とする複合粒子であることを特徴とする透明厚膜
の製造方法。
1. A substrate having at least a surface conductive is immersed in a dispersion of organic-inorganic composite particles, and a voltage is applied between a counter electrode provided in the liquid and the substrate to apply a voltage to the substrate. Electrophoretic electrodeposition of the organic-inorganic composite particles on a conductive surface,
Next, a method for uniformly melting the electrodeposited film formed on the substrate to form a transparent thick film, wherein the organic-inorganic composite particles are represented by a general formula R x MR ′ y (where,
R is an aromatic hydrocarbon group which may have a substituent, M is a positive ion having a valence of (x + y), and R ′ is a compound represented by the following formula: A method for producing a transparent thick film, which is a composite particle using at least one kind as a starting material.
【請求項2】 請求項1において、前記有機無機複合粒
子の出発原料が、一般式PhMR’x+y-1(Phはフェ
ニル基、M及びR’は前記定義に同じ)で表される化合
物であることを特徴とする透明厚膜の製造方法。
2. The compound according to claim 1, wherein the starting material of the organic-inorganic composite particles is a compound represented by a general formula PhMR ′ x + y−1 (Ph is a phenyl group, and M and R ′ are the same as defined above). A method for producing a transparent thick film, characterized in that:
【請求項3】 請求項1又は2において、前記電着膜を
熱処理することにより融解させることを特徴とする透明
厚膜の製造方法。
3. The method for producing a transparent thick film according to claim 1, wherein the electrodeposited film is melted by heat treatment.
【請求項4】 請求項1ないし3のいずれか1項に記載
の透明厚膜の製造方法により製造された透明厚膜付き基
体。
4. A substrate with a transparent thick film produced by the method for producing a transparent thick film according to any one of claims 1 to 3.
JP01582098A 1998-01-28 1998-01-28 Production method of transparent thick film Expired - Fee Related JP3887926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01582098A JP3887926B2 (en) 1998-01-28 1998-01-28 Production method of transparent thick film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01582098A JP3887926B2 (en) 1998-01-28 1998-01-28 Production method of transparent thick film

Publications (2)

Publication Number Publication Date
JPH11209896A true JPH11209896A (en) 1999-08-03
JP3887926B2 JP3887926B2 (en) 2007-02-28

Family

ID=11899500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01582098A Expired - Fee Related JP3887926B2 (en) 1998-01-28 1998-01-28 Production method of transparent thick film

Country Status (1)

Country Link
JP (1) JP3887926B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082975A1 (en) * 2004-02-27 2005-09-09 Central Glass Company, Limited Organic-inorganic hybrid vitreous material and method for producing same
CN114522543A (en) * 2022-01-19 2022-05-24 华南理工大学 Ultrathin two-dimensional Cu-TCPP film and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005082975A1 (en) * 2004-02-27 2005-09-09 Central Glass Company, Limited Organic-inorganic hybrid vitreous material and method for producing same
KR100756398B1 (en) * 2004-02-27 2007-09-10 샌트랄 글래스 컴퍼니 리미티드 Organic-inorganic hybrid vitreous material and method for producing same
CN114522543A (en) * 2022-01-19 2022-05-24 华南理工大学 Ultrathin two-dimensional Cu-TCPP film and preparation method thereof

Also Published As

Publication number Publication date
JP3887926B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
TWI302559B (en)
JP4883383B2 (en) Dispersion containing hollow SiO2, coating composition, and substrate with antireflection coating
JP3302186B2 (en) Substrate with transparent conductive film, method for producing the same, and display device provided with the substrate
JP2006335605A (en) Method for producing hollow sio2 microparticle liquid dispersion, coating composition and substrate with antireflection coating film
JPWO2009148097A1 (en) Core-shell particle manufacturing method, core-shell particle, hollow particle manufacturing method, coating composition and article
JP2010209337A (en) Uniformly dispersed photocatalyst coating liquid, method for producing the same, and photocatalytically active composite material obtained by using the same
US6777477B1 (en) Coating solution for forming transparent and conductive tin oxide film and method for preparing transparent and conductive tin oxide film, and transparent and conductive tin oxide film
TW200934733A (en) Metal oxide complex sol, coating composition and optical member
JP2508847B2 (en) Method for producing silver-coated glass flakes with SiO2 coating
JPH02275733A (en) Semiconductor-containing glass and its production
JP6237322B2 (en) Method for producing article with antiglare film
US20030047111A1 (en) Coating solution for forming transparent silica coating film and method for producing transparent silica coating film
JPH11209896A (en) Production of transparent thick and transparent thick film coated substrate
WO2017029735A1 (en) Article with anti-glare film, method for producing same and image display device
JPWO2008096866A1 (en) PHOTOCATALYST THIN FILM, PHOTOCATALYST FILM FORMATION METHOD, AND PHOTOCATALYST THIN FILM COATED
JP2005234447A (en) Film having fine ruggedness on its surface, transparent antireflection film, manufacturing method thereof and optical member
WO2007015248A2 (en) Method for preparation of stable metal oxide nanoparticles suspensions
JP3906933B2 (en) Method for producing indium oxide organosol
JP3435887B2 (en) Method for producing colloidal silica electrodeposition film and substrate with colloidal silica electrodeposition film
JPH054839A (en) Method for preparing thin film by sol-gel method
JP4958086B2 (en) Epitaxial nano TiO2 particle coating and method for producing the same
JP4372301B2 (en) Transparent conductive film-forming coating liquid, transparent conductive film-coated substrate, and display device
CN109647366A (en) A kind of method that sol-gel method prepares photoelectrocatalysioxidization oxidization Ti electrode
JPH08170193A (en) Production of substrate provided with metal oxide film
JP2003277041A (en) Method for manufacturing silica thin film on substrate surface having optional surface characteristic and surface form, and composite structural body

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040810

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20050701

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Effective date: 20060728

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees