JPH11208598A - Planetary landing machine - Google Patents

Planetary landing machine

Info

Publication number
JPH11208598A
JPH11208598A JP10011678A JP1167898A JPH11208598A JP H11208598 A JPH11208598 A JP H11208598A JP 10011678 A JP10011678 A JP 10011678A JP 1167898 A JP1167898 A JP 1167898A JP H11208598 A JPH11208598 A JP H11208598A
Authority
JP
Japan
Prior art keywords
propulsion
landing
propulsion system
attitude
machine body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10011678A
Other languages
Japanese (ja)
Inventor
Takashi Sugano
崇 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10011678A priority Critical patent/JPH11208598A/en
Publication of JPH11208598A publication Critical patent/JPH11208598A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize a stable landing movement being high in reliability after contriving the acceleration of miniaturization and lightweightiness. SOLUTION: Four propellers 13a to 13d of a first propulsive system are set up so as not to impart any variation to an attitude in corresponding to the center of gravity G of a landing machine body, while other propellers 14a to 14d of a second propulsive system are set up so as to take a torque balance around an optional coordinate axis to the first propulsive system, and a landing speed is controlled by a thrust to be produced in the first propulsive system as controlling an attitude of the landing machine body by the thrust to be produced ion the second propulsive system, and thus the landing machine body is landed on a planet. In the case where one of the propellers 13a to 13d and 14a to 14b on one side of both the first and second propulsive systems has trouble, the propellers 13a to 13d (14a to 14b) of the propulsive system on the other are driven and controlled so as to form each redundant system of the troubled propulsive systems, whereby the landing speed and the attitude are controlled and a landing movement is made up so as to be carried out.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えば宇宙空間
より月等の惑星に着陸するのに用いる惑星着陸機に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planetary lander used for landing on a planet such as the moon from outer space.

【0002】[0002]

【従来の技術】最近、宇宙開発の分野においては、月等
の惑星に惑星着陸機を送り込み、惑星探査を含む各種の
研究を行うことが考えられている。このような惑星着陸
機には、着陸時に使用する着陸速度制御用推進機と、着
陸時に姿勢を制御する姿勢制御用推進機の複数の推進系
が搭載される。これら着陸速度制御用推進機及び姿勢制
御用推進機は、例えば周知の推薬を燃焼させて推力を発
生する複数のスラスタでそれぞれ構成して、その姿勢制
御用推進機を継続的に駆動するいわゆるオフパルス駆動
で駆動して姿勢を維持しながら、着陸速度制御用推進機
を断続的に駆動するいわゆるオンパルス駆動を実行して
惑星上への着陸を実現する。
2. Description of the Related Art In the field of space development, it has recently been considered to send a planetary landing aircraft to a planet such as the moon to conduct various studies including planetary exploration. A plurality of propulsion systems, such as a landing speed control propulsion device used during landing and an attitude control propulsion device that controls the attitude during landing, are mounted on such a planetary lander. The landing speed control propulsion device and the attitude control propulsion device each include, for example, a plurality of thrusters that generate thrust by burning a known propellant, and continuously drive the attitude control propulsion device. A so-called on-pulse drive that intermittently drives the landing speed control propulsion device is performed while maintaining the attitude by driving with the off-pulse drive, thereby achieving landing on the planet.

【0003】ところで、このような惑星着陸機にあって
は、その各推進系の推進機が一つでも故障すると、安定
した着陸動作が困難となるために、推進機が故障した場
合にも安定した着陸動作を実現するように構成すること
が要請される。この着陸動作の確実化を図る方法とし
て、例えば各推進系に冗長用推進機を追加して冗長系を
構成し、推進機に故障が発生した状態で、冗長用推進機
を動作制御して安定した着陸動作を実現することが考え
られている。
[0003] In such a planetary landing aircraft, if one of the propulsion units of each propulsion system fails, stable landing operation becomes difficult. It is required to be configured so as to realize the landing operation performed. As a method of ensuring this landing operation, for example, a redundant propulsion unit is added to each propulsion system to configure a redundant system, and when a failure occurs in the propulsion unit, the operation of the redundant propulsion unit is controlled and stabilized. It is conceived to realize a landing motion that has been performed.

【0004】しかしながら、上記方法では、推進系に備
える推進機の数が増加されるために、大形となり、重量
の増加を招くという問題を有する。
[0004] However, the above method has a problem that the number of propulsion devices provided in the propulsion system is increased, so that the size of the propulsion system is increased and the weight is increased.

【0005】係る問題は、小形・軽量で、信頼性の高い
動作制御の要請される宇宙開発の分野における、今後の
重要な課題となっている。
[0005] Such a problem will be an important issue in the future in the field of space development in which small, lightweight and highly reliable operation control is required.

【0006】[0006]

【発明が解決しようとする課題】以上述べたように、惑
星着陸機にあっては、信頼性の高い確実な着陸動作を実
現するように構成すると、推進系が大形で、重量が非常
に重くなるという問題を有する。
As described above, if the planetary landing aircraft is configured to realize a reliable and reliable landing operation, the propulsion system is large and the weight is very large. There is a problem of becoming heavy.

【0007】この発明は上記の事情に鑑みてなされたも
ので、小形・軽量化の促進を図り得、且つ、信頼性の高
い安定した着陸動作を実現し得るようにした惑星着陸機
を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and provides a planetary landing machine capable of promoting small size and light weight and realizing a reliable and stable landing operation. The purpose is to:

【0008】[0008]

【課題を解決するための手段】この発明は、惑星に着陸
する着陸機本体と、この着陸機本体に姿勢変動が起こら
ないように前記着陸機本体の重心に対応して配置され、
前記惑星に向けて噴射駆動されて前記着陸機本体に推力
を与える複数の推進機を有した着陸速度制御用の第1の
推進系と、前記着陸機本体の姿勢軸に対してトルクバラ
ンスが取れるように前記着陸機本体の重心に対応して配
置され、前記惑星に向けて噴射駆動されて前記着陸機本
体に推力を与える複数の推進機を有した姿勢制御用の第
2の推進系と、前記第1及び第2の推進手段の推進機を
選択的に駆動制御して前記着陸機本体の姿勢及び着陸速
度を制御するものであって、前記第1及び第2の推進系
の一方の推進機が故障した状態で、他方の推進機で故障
推進機の推力を兼用するように第1及び第2の推進系の
他の推進機を駆動制御する制御手段とを備えて惑星着陸
機を構成したものである。
According to the present invention, there is provided a lander main body for landing on a planet, and the lander main body is disposed in correspondence with the center of gravity of the lander main body so that the attitude of the main body does not change.
A first propulsion system for controlling the landing speed having a plurality of propulsion units that are driven to be jetted toward the planet to apply thrust to the landing unit body, and a torque balance can be obtained with respect to the attitude axis of the landing unit unit. A second propulsion system for attitude control having a plurality of propulsion units arranged in correspondence with the center of gravity of the landing aircraft main body and driven to jet to the planet to apply thrust to the landing aircraft main body, And selectively controlling the propulsion devices of the first and second propulsion means to control the attitude and landing speed of the landing aircraft main body, wherein one of the first and second propulsion systems is propelled. And a control means for controlling the driving of the other propulsion units of the first and second propulsion systems so that the other propulsion unit can also use the thrust of the failed propulsion unit in a state where the aircraft has failed. It was done.

【0009】上記構成によれば、第1及び第2の推進系
の各推進機は、その第2の推進系で発生する推力により
着陸機本体の姿勢を制御しながら、第1の推進系で発生
する推力により、その着陸速度を制御することにより、
惑星上への着陸を実行し、第1及び第2の推進系の一方
の推進機の一つが故障すると、他方の推進系の推進機で
冗長系を構成するように駆動制御することにより、着陸
速度及び姿勢制御を実行して着陸動作が行われる。従っ
て、第1及び第2の推進系の各冗長系推進機を備えるこ
となく、各推進系を冗長構成することが可能となり、小
形・軽量化を確保したうえで、信頼性の高い確実な惑星
着陸動作が可能となる。
According to the above configuration, each of the propulsion units of the first and second propulsion systems controls the attitude of the landing aircraft main body by the thrust generated in the second propulsion system while the propulsion units of the first and second propulsion systems use the thrusts. By controlling the landing speed by the generated thrust,
When a landing on the planet is executed and one of the first and second propulsion units fails, the other propulsion units control the driving so as to form a redundant system, thereby landing. The landing operation is performed by executing the speed and attitude control. Therefore, it is possible to configure each propulsion system redundantly without providing each of the redundant propulsion systems of the first and second propulsion systems. Landing operation becomes possible.

【0010】[0010]

【発明の実施の形態】以下、この発明の実施の形態につ
いて、図面を参照して詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0011】図1は、この発明の一実施の形態に係る惑
星着陸機を示すもので、着陸機本体10には、着陸足1
1が設けられ、この着陸足11の間には、推進薬タンク
12が設けられる。そして、この推進薬タンク12に
は、着陸速度制御用の第1の推進系13及び姿勢制御用
の第2の推進系14(図2参照)がそれぞれ配管接続さ
れる。この第1及び第2の推進系13,14には、着陸
制御部15が接続される。着陸制御部15は、例えば図
示しない指令部からの指令信号に応動して、第1の推進
系13の推進機13a〜13dを継続的に駆動するいわ
ゆるオフパルス駆動で制御して惑星に向けて噴射させて
所望の推力を着陸機本体10に与えて着陸速度を制御す
る。同時に、第2の推進系14は、その推進機14a〜
14dが断続的に駆動されるいわゆるオンパルス駆動で
制御されて、惑星に向けて噴射され、所望の推力を着陸
機本体10に与えて姿勢を制御する。
FIG. 1 shows a planetary landing aircraft according to an embodiment of the present invention.
A propellant tank 12 is provided between the landing feet 11. A first propulsion system 13 for controlling the landing speed and a second propulsion system 14 for controlling the attitude (see FIG. 2) are connected to the propellant tank 12 by piping. A landing control unit 15 is connected to the first and second propulsion systems 13 and 14. In response to a command signal from, for example, a command unit (not shown), the landing control unit 15 controls the propulsion devices 13a to 13d of the first propulsion system 13 by so-called off-pulse driving to continuously drive the propulsion units 13a to 13d, and ejects them toward the planet. Then, a desired thrust is given to the landing gear body 10 to control the landing speed. At the same time, the second propulsion system 14
14d is controlled by a so-called on-pulse drive that is intermittently driven, is injected toward the planet, and gives a desired thrust to the landing aircraft body 10 to control the attitude.

【0012】第1及び第2の推進系13,14は、例え
ば図2に示すようにスラスタと称する推進機13a〜1
3d及び14a〜14dが4台で構成され、着陸機本体
10の着陸面側に惑星に向けて噴射駆動されて所望の推
力を発生する。
The first and second propulsion systems 13 and 14 are, for example, as shown in FIG.
3d and 14a to 14d are composed of four units, and are jet-driven toward the planet on the landing surface side of the landing aircraft body 10 to generate a desired thrust.

【0013】このうち第1の推進系13の推進機13a
〜13dは、着陸速度制御によって着陸機本体10の姿
勢に変動を与えないように着陸機本体10の重心Gを通
る略直交するl軸及びm軸上に2台一組でトルクバラン
スを取って配置される。
The propulsion unit 13a of the first propulsion system 13
13d is to balance the torque of the two units on the substantially orthogonal l-axis and m-axis passing through the center of gravity G of the landing aircraft main body 10 so that the attitude of the landing aircraft main body 10 is not changed by the landing speed control. Be placed.

【0014】他方、第2の推進系14の推進機14a〜
14dは、着陸機本体10の重心Gを中心とする姿勢軸
(x軸,y軸)上に、第1の推進系13の推進機13a
〜13dの配置されるl軸及びm軸回りに姿勢変動を与
えないようにトルクバランスを取って配置される。これ
により、第2の推進系14の推進機14a〜14dは、
着陸機本体10のx軸及びy軸回りの姿勢を制御する。
On the other hand, the propulsion devices 14a to 14a of the second propulsion system 14
14d is a propulsion device 13a of the first propulsion system 13 on an attitude axis (x axis, y axis) about the center of gravity G of the landing aircraft body 10.
1313d are arranged with a torque balance so as not to change the attitude around the l axis and the m axis. Thus, the propulsion devices 14a to 14d of the second propulsion system 14
The attitude of the landing aircraft body 10 around the x-axis and the y-axis is controlled.

【0015】即ち、第1及び第2の推進系13,14
は、FA 1 〜4 を第2の推進系14の推進機14a〜1
4dの推力、FV 1 〜4 を第1の推進系13の推進機1
3a〜13dの推力、(lV ,mV )を第1の推進系1
3の推進機13a〜13dのOlm座標系の位置、(lA
,mA )を第2の推進系14の推進機14a〜14d
のOlm座標系の位置とすると、 FA 3 ・mA 3 +FA 4 ・mA 4 +FV 1 ・mV 1 =0 FA 4 ・mA 4 +FA 1 ・mA 1 +FV 2 ・mV 2 =0 FA 1 ・mA 1 +FA 2 ・mA 2 +FV 3 ・mV 3 =0 FA 2 ・mA 2 +FA 3 ・mA 3 +FV 4 ・mV 4 =0 FA 1 ・lA 1 +FA 2 ・lA 2 +FA 3 ・lA 3 +F
A 4 ・lA 4 =0 の関係が成立するように配置構成される。
That is, the first and second propulsion systems 13 and 14
Sets the FAs 1 to 4 to the propulsion devices 14a to 14a of the second propulsion system 14.
The thrust of 4d, FV 1-4 are applied to the propulsion unit 1 of the first propulsion system 13.
The thrust of 3a to 13d, (lV, mV) is applied to the first propulsion system 1
3 in the Olm coordinate system of the thrusters 13a to 13d, (lA
, MA) to the propulsion units 14a to 14d of the second propulsion system 14.
Of when the position of Olm coordinate system, FA 3 · mA 3 + FA 4 · mA 4 + FV 1 · mV 1 = 0 FA 4 · mA 4 + FA 1 · mA 1 + FV 2 · mV 2 = 0 FA 1 · mA 1 + FA 2・ MA 2 + FV 3・ mV 3 = 0 FA 2・ mA 2 + FA 3・ mA 3 + FV 4・ mV 4 = 0 FA 1・ lA 1 + FA 2・ lA 2 + FA 3・ lA 3 + F
Arranged configured such relationship A 4 · lA 4 = 0 is established.

【0016】例えば、第1の推進系13の推進機13c
の発生トルク(FV 3 ・mV 3 )は、第2の推進系14
の推進機14a,14bによる発生トルク(FA 1 ・m
A 1+FA 2 ・mA 2 )に対して図3に示す関係を有
し、第1の推進系13の推進機13cと第2の推進系1
4の推進機14a,14bの関係は、第2の推進系14
の推進機14a,14bの設置位置を変化させ(トルク
アームLを変化させ)、発生トルク(FV 3 ・mV 3
と、発生トルク(FA 1 ・mA 1 +FA 2 ・mA2 )の
交点(図中Z点)が最適なトルクアームmA 1 (mA
2 )に設定される。但し、m軸回りのトルクバランス
は、取れているものとする。
For example, the propulsion device 13c of the first propulsion system 13
Is generated by the second propulsion system 14 (FV 3 · mV 3 ).
Generated by the propulsion devices 14a and 14b (FA 1 · m
A 1 + FA 2 · mA 2 ) has a relationship shown in FIG. 3, and the propulsion device 13 c of the first propulsion system 13 and the second propulsion system 1
The relationship between the propulsion devices 14a and 14b of the second propulsion system 14
Of propulsion unit 14a, to change the installation position of 14b (to change the torque arm L), the generated torque (FV 3 · mV 3)
And the generated torque (FA 1 · mA 1 + FA 2 · mA 2 ) (point Z in the figure) is the optimal torque arm mA 1 (mA
2 ) is set. However, it is assumed that the torque balance around the m axis is maintained.

【0017】これにより、第1の推進系13の推進機1
3a(13b,13c,13d)が故障した場合には、
第2の推進系14の推進機14a〜14dと第1の推進
系13の残りの推進機13b〜13dにより、着陸速度
の制御が可能となる。この際、第2の推進系14の推進
機14a,14bと第1の推進系13の推進機13c
は、同時に駆動制御されることにより、着陸機本体10
の姿勢への影響がなく、姿勢制御が可能となる。
Thus, the propulsion device 1 of the first propulsion system 13
If 3a (13b, 13c, 13d) fails,
The landing speed can be controlled by the propulsion devices 14a to 14d of the second propulsion system 14 and the remaining propulsion devices 13b to 13d of the first propulsion system 13. At this time, the propulsion devices 14a and 14b of the second propulsion system 14 and the propulsion device 13c of the first propulsion system 13
Are controlled at the same time, so that the landing
Posture is not affected, and posture control becomes possible.

【0018】また、上記第1及び第2の推進系13,1
4の関係は、上述したように第2の推進系14の推進機
14a〜14dのトルクアームを変化させることなく、
第1の推進系13の推進機13b,13c,13dの推
力の関係を調整することによって設定してもよい。
Further, the first and second propulsion systems 13, 1
As described above, without changing the torque arms of the propulsion devices 14a to 14d of the second propulsion system 14,
It may be set by adjusting the relationship between the thrusts of the propulsion devices 13b, 13c, 13d of the first propulsion system 13.

【0019】上記構成において、着陸制御部15は、図
4に示すように定常運転時、その第2の推進系14の推
進機14a〜14dをオンパルス駆動して、その噴射方
向を惑星に向けて噴射させて所定の推力を着陸機本体1
0に与えて姿勢を制御する。同時に、第1の推進系13
の推進機13a〜13dは、オフパルス駆動されて姿勢
に変動を与えないように、その噴射方向を惑星に向けて
噴射させて所定の推力を着陸機本体10に与えて所望の
着陸速度に調整しながら着陸機本体10を惑星に着陸さ
せる。
In the above configuration, the landing control unit 15 performs on-pulse driving of the propulsion devices 14a to 14d of the second propulsion system 14 during normal operation as shown in FIG. Landing aircraft main body 1
0 to control the attitude. At the same time, the first propulsion system 13
The propulsion devices 13a to 13d are driven off-pulse to cause the attitude to fluctuate, so that the injection direction is directed toward the planet, and a predetermined thrust is given to the landing aircraft body 10 to adjust the landing speed to a desired landing speed. While landing, the landing aircraft body 10 is landed on the planet.

【0020】また、着陸制御部15は、惑星への着陸動
作に入った状態で、例えば第1の推進系13の推進機1
3aが故障して、その故障信号が入力されると、推進機
13aを停止させると共に、第2の推進系14の推進機
14a,14bを第1の推進系13と略同様に継続的に
駆動するオフパルス駆動に切換え設定する。これによ
り、第1の推進系13の推進機13cに対応して第2の
推進系14の推進機14a,14bが駆動されることに
より、推進機14a,14bは、第1の推進系13と第
2の推進系14の推力を兼用して、着陸機本体10の着
陸速度及び姿勢を制御して該着陸機本体10の惑星着陸
を実行する。
In a state where the landing operation on the planet has been started, the landing control unit 15, for example, the propulsion unit 1 of the first propulsion system 13
When the failure signal is input to the propulsion device 13a, the propulsion device 13a is stopped, and the propulsion devices 14a and 14b of the second propulsion system 14 are continuously driven in substantially the same manner as the first propulsion system 13. To off-pulse drive. As a result, the propulsion devices 14a and 14b of the second propulsion system 14 are driven corresponding to the propulsion devices 13c of the first propulsion system 13 so that the propulsion devices 14a and 14b Using the thrust of the second propulsion system 14, the landing speed and attitude of the landing aircraft main body 10 are controlled to execute the planet landing of the landing aircraft main body 10.

【0021】そして、着陸制御部15は、推進機13a
以外の第1の推進系13の推進機13b〜13dあるい
は第2の推進系14の推進機14a〜14dが故障した
場合にも略同様に故障していない他の推進系13(1
4)の推進機13a〜13d(14a〜14d)で故障
推進機の冗長系を構成して駆動制御し、着陸機本体10
の惑星着陸を実行する。
Then, the landing control unit 15 includes the propulsion device 13a
When the propulsion devices 13b to 13d of the first propulsion system 13 or the propulsion devices 14a to 14d of the second propulsion system 14 fail, the other propulsion systems 13 (1
4) The propulsion units 13a to 13d (14a to 14d) constitute a redundant system of the failure propulsion units and drive-control the same.
Perform a planet landing.

【0022】このように、上記惑星着陸機は、第1の推
進系13の推進機13a〜13dを、着陸機本体10の
重心Gに対応して姿勢に変動を与えないように配置し
て、第2の推進系14の推進機14a〜14dを第1の
推進系13に対して任意の座標軸回りにトルクバランス
を取るように配置し、着陸機本体10の姿勢を第2の推
進系14で発生する推力により制御しながら第1の推進
系13で発生する推力により着陸速度を制御して惑星上
に着陸させ、第1及び第2の推進系13,14の一方の
推進機13a〜13d及び14a〜14dの一つが故障
した場合、他方の推進系13(14)の推進機13a〜
13d(14a〜14d)を故障した推進系14(1
3)の冗長系を形成するように駆動制御して、着陸速度
及び姿勢を制御して着陸動作を行うように構成した。
As described above, in the above-mentioned planetary lander, the propulsion units 13a to 13d of the first propulsion system 13 are arranged so as not to change the attitude corresponding to the center of gravity G of the landing unit main body 10, The propulsion devices 14a to 14d of the second propulsion system 14 are arranged so as to balance the torque about an arbitrary coordinate axis with respect to the first propulsion system 13, and the attitude of the landing unit main body 10 is adjusted by the second propulsion system 14. The landing speed is controlled by the thrust generated by the first propulsion system 13 while landing on the planet while being controlled by the generated thrust, and the propulsion devices 13a to 13d of one of the first and second propulsion systems 13 and 14 and When one of 14a to 14d fails, the propulsion devices 13a to 13d of the other propulsion system 13 (14)
The propulsion system 14 (1) that has failed 13d (14a to 14d)
The driving control is performed so as to form the redundant system of 3), and the landing speed and the attitude are controlled to perform the landing operation.

【0023】これによれば、第1及び第2の推進系1
3,14の各冗長系推進機を備えることなく、各推進系
13及び14の推進機13a〜13d及び14a〜14
dを用いて故障推進機の冗長構成を実現していることに
より、小形・軽量化を実現したうえで、信頼性の高い確
実な惑星着陸動作が実現される。
According to this, the first and second propulsion systems 1
The propulsion devices 13a to 13d and 14a to 14d of the propulsion systems 13 and 14 are not provided with the redundant propulsion devices 3 and 14 respectively.
By realizing the redundant configuration of the failure propulsion device using d, a small and light weight is realized, and a reliable and reliable planetary landing operation is realized.

【0024】なお、上記実施の形態では、第1の推進系
13を4台の推進機13a〜13dで形成し、第2の推
進系14を4台の推進機14a〜14dで形成した場合
で説明したが、この推進機台数に限ることなく、各推進
系13及び14を形成することが可能である。
In the above embodiment, the first propulsion system 13 is formed by four propulsion devices 13a to 13d, and the second propulsion system 14 is formed by four propulsion devices 14a to 14d. Although described, the propulsion systems 13 and 14 can be formed without being limited to the number of propulsion devices.

【0025】また、上記実施の形態では、第1及び第2
の推進系13、14の推進機13a〜13d及び14a
〜14dとして、スラスタを用いるように構成した場合
で説明したが、これに限ることなく、他の推進機を用い
て着陸制御するように構成することも可能である。
In the above embodiment, the first and second
Thrusters 13a to 13d and 14a of the propulsion systems 13 and 14
Although the description has been given of the case where thrusters are used as to 14d, the present invention is not limited to this, and the landing control may be performed using another propulsion device.

【0026】よって、この発明は、上記実施の形態に限
ることなく、その他、この発明の要旨を逸脱しない範囲
で種々の変形を実施し得ることは勿論のことである。
Therefore, it is needless to say that the present invention is not limited to the above-described embodiment, but can be variously modified without departing from the gist of the present invention.

【0027】[0027]

【発明の効果】以上詳述したように、この発明によれ
ば、小形・軽量化の促進を図り得、且つ、信頼性の高い
安定した着陸動作を実現し得るようにした惑星着陸機を
提供することができる。
As described above in detail, according to the present invention, there is provided a planetary landing machine capable of promoting a small size and light weight and realizing a reliable and stable landing operation. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施の形態に係る惑星着陸機を示
した図。
FIG. 1 is a diagram showing a planetary landing aircraft according to an embodiment of the present invention.

【図2】図1の第1及び第2の推進系の配置構成を示し
た図。
FIG. 2 is a diagram showing an arrangement configuration of first and second propulsion systems in FIG. 1;

【図3】図2の配置例を説明するために示した図。FIG. 3 is a view shown for explaining the arrangement example of FIG. 2;

【図4】図1の推進系の噴射駆動例を示した図。FIG. 4 is a diagram showing an example of injection driving of the propulsion system of FIG. 1;

【符号の説明】[Explanation of symbols]

10…着陸機本体。 11…着陸足。 12…推進薬タンク。 13…第1の推進系。 13a〜13d…推進機。 14…第2の推進系。 14a〜14d…推進機。 15…着陸制御部。 10. Landing aircraft body. 11 ... Landing foot. 12 ... Propellant tank. 13: First propulsion system. 13a to 13d: thrusters. 14: Second propulsion system. 14a to 14d: thrusters. 15 Landing control unit.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 惑星に着陸する着陸機本体と、 この着陸機本体に姿勢変動が起こらないように前記着陸
機本体の重心に対応して配置され、前記惑星に向けて噴
射駆動されて前記着陸機本体に推力を与える複数の推進
機を有した着陸速度制御用の第1の推進系と、 前記着陸機本体の姿勢軸に対してトルクバランスが取れ
るように前記着陸機本体の重心に対応して配置され、前
記惑星に向けて噴射駆動されて前記着陸機本体に推力を
与える複数の推進機を有した姿勢制御用の第2の推進系
と、 前記第1及び第2の推進手段の推進機を選択的に駆動制
御して前記着陸機本体の姿勢及び着陸速度を制御するも
のであって、前記第1及び第2の推進系の一方の推進機
が故障した状態で、他方の推進機で故障推進機の推力を
兼用するように第1及び第2の推進系の他の推進機を駆
動制御する制御手段とを具備した惑星着陸機。
A landing machine body for landing on a planet, and a landing body arranged to correspond to the center of gravity of the landing machine body so that the attitude of the landing machine body does not change; A first propulsion system for controlling the landing speed having a plurality of propulsion units for applying thrust to the aircraft body, and a first propulsion system corresponding to a center of gravity of the landing machine body so that a torque balance can be obtained with respect to an attitude axis of the landing machine body. A second propulsion system for attitude control, comprising a plurality of propulsion units arranged and arranged to be propelled toward the planet by being jet-driven toward the planet; and propulsion of the first and second propulsion means. And controlling the attitude and landing speed of the landing aircraft body by selectively driving the aircraft, wherein one of the first and second propulsion systems is out of order while the other The first and second Control means for controlling driving of another propulsion system of the propulsion system.
【請求項2】 前記第1の推進系の複数の推進機は、オ
ンパルス駆動で断続的に駆動され、前記第2の推進系の
複数の推進機は、オフパルス駆動で継続的に駆動される
ことを特徴とする請求項1記載の惑星着陸機。
2. A plurality of propulsion units of the first propulsion system are intermittently driven by on-pulse driving, and a plurality of propulsion units of the second propulsion system are continuously driven by off-pulse driving. The planetary lander according to claim 1, wherein:
【請求項3】 前記第1及び第2の推進系の各推進機
は、推薬を燃焼させて推力を発生させるスラスタである
ことを特徴とする請求項1又は2記載の惑星着陸機。
3. The planetary lander according to claim 1, wherein each of the thrusters of the first and second propulsion systems is a thruster that generates thrust by burning a propellant.
JP10011678A 1998-01-23 1998-01-23 Planetary landing machine Pending JPH11208598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10011678A JPH11208598A (en) 1998-01-23 1998-01-23 Planetary landing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10011678A JPH11208598A (en) 1998-01-23 1998-01-23 Planetary landing machine

Publications (1)

Publication Number Publication Date
JPH11208598A true JPH11208598A (en) 1999-08-03

Family

ID=11784665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10011678A Pending JPH11208598A (en) 1998-01-23 1998-01-23 Planetary landing machine

Country Status (1)

Country Link
JP (1) JPH11208598A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520786A (en) * 2009-03-17 2012-09-10 アストリウム エスアーエス Landing device for space probe and landing method for spacecraft equipped with such device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520786A (en) * 2009-03-17 2012-09-10 アストリウム エスアーエス Landing device for space probe and landing method for spacecraft equipped with such device

Similar Documents

Publication Publication Date Title
US6565039B2 (en) Wing-drive mechanism and vehicle employing same
JPH06227498A (en) East west orbit control device between north and south stationary operations of space flight body
US6053455A (en) Spacecraft attitude control system using low thrust thrusters
US5868358A (en) Rendezvous spacecraft collision avoidance device
EP1188098B1 (en) Momentum position control
JPH115599A (en) Spacecraft attitude controller and method therefor
JPH11208598A (en) Planetary landing machine
US5826830A (en) Dual-half system, full torque reaction control thruster configuration for three-axis stabilized spacecraft
JP2008041065A (en) Method for controlling nonholonomic propelling body
JP4930072B2 (en) Satellite attitude control device
JP3001586B2 (en) Thruster control method
Shigeto et al. Development and Evaluation of the 1/30U Small-Sized 3 Axis Attitude Control Module, and its Application for the JEM Internal Ball Camera Robot
JP2018530475A (en) Propulsion system with differential throttling of electric thrusters
JPH10287298A (en) Astronautical body
Chavan et al. Small-Satellite Attitude Control Using Stroke-Limited Vibrating-Mass Actuators With Piecewise Constant Control Signals
US20230122828A1 (en) Method for orbit control and desaturation of a satellite by means of a single articulated arm carrying a propulsion unit
Bedrossian et al. Space station zero-propellant maneuver guidance trajectories compared to eigenaxis
JP3178858B2 (en) Spacecraft motion controller
JPH06127493A (en) Unloading device for space navigating object
Aguirre et al. Rotation Control About One Axis Using Two V-Gimbaled CMGs
Woodcock Controllability of large SEP for earth orbit raising
JP2739698B2 (en) How to control flying objects
Xie et al. Simultaneous attitude stabilization and power tracking for a spacecraft with two VSCMGs
JPH0820398A (en) Unloading device for space navigating body
Mody et al. An overview of space robotic operations principles for human spaceflight and exploration