JPH1120788A - Underwater towed body - Google Patents

Underwater towed body

Info

Publication number
JPH1120788A
JPH1120788A JP9175570A JP17557097A JPH1120788A JP H1120788 A JPH1120788 A JP H1120788A JP 9175570 A JP9175570 A JP 9175570A JP 17557097 A JP17557097 A JP 17557097A JP H1120788 A JPH1120788 A JP H1120788A
Authority
JP
Japan
Prior art keywords
weight
underwater
drive unit
angle
attitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9175570A
Other languages
Japanese (ja)
Inventor
Eiji Hishinuma
栄司 菱沼
Hideki Gama
英樹 蒲
恭司 ▲吉▼川
Kyoji Yoshikawa
Kazuhide Ishinoda
和英 石野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Oki Electric Industry Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Oki Electric Industry Co Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Oki Electric Industry Co Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP9175570A priority Critical patent/JPH1120788A/en
Publication of JPH1120788A publication Critical patent/JPH1120788A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To fix an underwater towed body and a towed point to a predetermined position, and control the attitude angle thereof at a required value by controlling a towed attitude through the automatic movement of a center of gravity with a weight. SOLUTION: When the underwater towed body 1 thrown into the water conducts rolling and pitching, a detector 15 in a main body 2 detects the rolling angle and the pitching angle, and a detected signal is sent to a microcomputer 16. After a predetermined computation based on the detected signal the microcomputer 16 sends a control signal to a drive unit 5. In the case of the control of the underwater towed body 1 roll angle, the microcomputer 16 sends the control signal to the X axis drive portion 10 of the drive unit 5, and drives the X axis drive part 10 in a forward or reverse direction. The center of gravity of the underwater towed body 1 changes with the movement of a weight 6, and the roll angle is corrected. In the case of the control of a pitch angle, the microcomputer 16 sends the control signal to a Y axis drive part 11, changes the position of the center of gravity, and corrects the pitch angle so as to maintain a proper towed attitude.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、各種のセンサ等を
内蔵して水中探査を行なったり、水中探査用のケーブル
状のセンサの展開等を行なうことのできる水中曳航体に
係り、より詳しくは、かかる水中曳航体において、ロー
ル角やピッチ角を矯正して姿勢制御を行ったり、姿勢角
を制御して曳航深度を変えることができるようにしたも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an underwater towed body capable of carrying out underwater exploration by incorporating various sensors and the like and deploying a cable-like sensor for underwater exploration, and more particularly, to an underwater towed body. In such an underwater towed vehicle, the roll angle and the pitch angle can be corrected to perform attitude control, or the attitude angle can be controlled to change the towing depth.

【0002】[0002]

【従来の技術】従来、船舶における水中曳航体(例えば
特開平7−230506号公報に開示)は、水平翼内に
上下にスライド自在に配設された一組の小翼と、この小
翼間を連結する小翼駆動軸とを有し、ロール角検出器か
らの入力信号によって駆動軸を駆動し、本体の回転する
側の水平翼から小翼を突出させて姿勢を制御するように
した姿勢装置を備えたものである。
2. Description of the Related Art Conventionally, an underwater towed vehicle (for example, disclosed in Japanese Patent Application Laid-Open No. Hei 7-230506) has a pair of small wings slidably arranged in a horizontal wing up and down, and a space between the small wings. And a wing drive shaft for connecting the wings, the drive shaft is driven by an input signal from the roll angle detector, and the wing is projected from the horizontal wing on the rotating side of the main body to control the posture. It is equipped with a device.

【0003】[0003]

【発明が解決しようとする課題】上記のように構成した
小翼を用いた水中曳航体によれば、(1)ピッチ角の姿
勢制御を行うことができない。(2)水中曳航体の投入
時や収容時に水平翼から小翼が突出して損傷する場合が
ある。(3)高速曳航時は小翼の受ける流体力が大きく
なるため、駆動系の出力を大きくし高強度にする必要が
あるため運用速力に対して制限がある。(4)小翼の突
出によりカルマン渦等の発生が増加し、流れの乱れや渦
による振動によって各種のセンサに悪影響を及ぼすおそ
れがあるなど、種々問題がある。
According to the underwater towing body using the small wings configured as described above, (1) the attitude control of the pitch angle cannot be performed. (2) The small wings may be protruded from the horizontal wing and damaged when the underwater towing body is thrown or stored. (3) At the time of high-speed towing, the fluid force received by the small wings is large, so that it is necessary to increase the output of the drive system and increase the strength, so there is a limit on the operating speed. (4) There are various problems such as the occurrence of Karman vortices and the like increased due to the projection of the small wings, and the turbulence of the flow and the vibration due to the vortices may adversely affect various sensors.

【0004】また、例えば、図3に示すような構造の従
来の水中曳航体においては、曳点位置、速力、形状によ
って曳航姿勢が異なるため、各速力における水中曳航体
の安定姿勢を得るためには、何度も試験を行って適正な
曳点位置を求めていた。そのため、(1)各速力におい
て水中曳航体の安定姿勢を得るためには何度も試験をし
なければならず、(2)モデル試験から実物を製作する
際は、重心の位置、曳点位置、翼の形状を、モデル試験
の位置、形状等に従わせる必要があって容易に構造変更
が出来ず、(3)水中曳航体の投入や収容の際、姿勢角
が乱れるため思いがけない挙動を示す場合もあり、取扱
いが困難である等の問題があった。
For example, in a conventional underwater towing body having a structure as shown in FIG. 3, since the towing position differs depending on the position, speed and shape of the towing point, it is necessary to obtain a stable position of the underwater towing member at each speed. Conducted a number of tests to determine the proper pulling point position. Therefore, (1) To obtain the stable attitude of the underwater towed vehicle at each speed, it is necessary to perform tests many times. (2) When producing the actual product from the model test, the position of the center of gravity and the position of the tow point It is necessary to make the shape of the wings conform to the position and shape of the model test, and the structure cannot be easily changed. (3) When the underwater towed vehicle is inserted or housed, the attitude angle is disturbed and unexpected behavior is caused. In some cases, handling was difficult.

【0005】本発明は、上記のような課題を解決するた
めになされたもので、曳点位置を選定して所望の曳航姿
勢をとらせたのち、ロール角とピッチ角を制御すること
によりこの曳航姿勢を維持するようにした水中曳航体、
及び曳点を所定の位置に固定してその姿勢角を所望の値
に制御することのできる水中曳航体を得ることを目的と
したものである。
[0005] The present invention has been made to solve the above-mentioned problems. After selecting a position of a tow point to obtain a desired towing posture, the roll angle and the pitch angle are controlled. An underwater tow body that maintains the towing attitude,
It is another object of the present invention to obtain an underwater towed body capable of fixing a tow point at a predetermined position and controlling its attitude angle to a desired value.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

(1)本発明に係る水中曳航体は、錘りにより重心位置
を自動的に移動させて曳航姿勢を制御するようにしたも
のである。
(1) The underwater towed body according to the present invention is such that the position of the center of gravity is automatically moved by a weight to control the towing attitude.

【0007】(2)また、上記(1)の水中曳航体にお
いて、本体内に、錘りと、この錘を前後方向及び左右方
向に移動させる駆動ユニットと、曳航姿勢の変化を検出
する検出器と、この検出器の出力信号を入力して駆動ユ
ニットに制御信号を出力する演算器とを備え、演算器か
らの制御信号により駆動ユニットを駆動し、錘りを前後
左右に移動させて本体の曳航姿勢を制御するようにした
ものである。
(2) In the underwater towed body of (1), a weight, a drive unit for moving the weight in the front-rear direction and the left-right direction, and a detector for detecting a change in the towing attitude are provided in the main body. And an arithmetic unit for inputting an output signal of the detector and outputting a control signal to the drive unit. The drive unit is driven by the control signal from the arithmetic unit, and the weight is moved back and forth and right and left, and The towing attitude is controlled.

【0008】(3)また、本発明に係る水中曳航体は、
本体と尾翼とからなり、本体内に、錘りと、この錘りを
前後方向若しくは上下方向又は前後方向と上下方向に移
動させる駆動ユニットと、本体の姿勢角を検出する検出
器と、この検出器の出力信号を入力して駆動ユニットに
制御信号を出力する演算器とを備え、演算器からの制御
信号により駆動ユニットを駆動し、錘りを前後方向若し
くは上下方向又は前後方向と上下方向に移動させて本体
の姿勢角を制御するようにしたものである。
(3) The underwater towed body according to the present invention comprises:
A weight, a drive unit for moving the weight in the front-rear direction or up-down direction or in the front-rear direction and up-down direction, a detector for detecting a posture angle of the main body, And an operation unit for inputting the output signal of the unit and outputting a control signal to the drive unit, driving the drive unit by the control signal from the operation unit, and moving the weight in the front-back direction or the up-down direction or the front-back direction The main body is moved to control the attitude angle of the main body.

【0009】[0009]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施の形態1.図1は本発明の実施の形態1の一部を断
面で示した斜視図である。図において、1は種々のセン
サを内蔵して水中探査を行い、あるいはケーブル状のセ
ンサの展開を行うことのできる水中曳航体で、2は水中
曳航体1の本体、3は左右一対からなる水平翼、4は尾
翼、5は水中曳航体1の姿勢を自動的に制御する駆動ユ
ニットである。6は駆動ユニット5に設けられた錘り
で、本体2と水平翼3内を前後方向(本体2の軸方向)
及び左右方向(水平翼3方向)に移動して、水中曳航体
1の重心位置を調整する。
Embodiment 1 FIG. FIG. 1 is a perspective view showing a part of the first embodiment of the present invention in cross section. In the figure, reference numeral 1 denotes an underwater towed body capable of carrying out underwater exploration by incorporating various sensors, or deploying a cable-like sensor. The wings, 4 are tails, and 5 is a drive unit for automatically controlling the attitude of the underwater towed vehicle 1. Reference numeral 6 denotes a weight provided on the drive unit 5, and the longitudinal direction between the main body 2 and the horizontal wing 3 (axial direction of the main body 2).
Then, the center of gravity of the underwater towed vehicle 1 is adjusted by moving in the horizontal direction (the direction of the horizontal wing 3).

【0010】駆動ユニット5は、水平翼3内に平行に対
向して設けられた一対の平行枠7a,7b、この平行枠
7a,7b間の前部側に回転可能に支持されたねじ棒
8、平行棒7a,7b間の後部側に固定された案内棒
9、一方の平行枠(例えば、7b)に取付けられ、ねじ
棒8を可逆に回転する例えば平衡電動機の如きx軸駆動
部10、ねじ棒8に螺合されためねじ(ナット)を有す
る平衡電動機の如きy軸駆動部11、案内棒9に摺動可
能に嵌合されたガイド部12、及びy軸駆動部11とガ
イド部12との間に回転可能に支持され、錘り6に設け
ためねじ(ナット)が螺合されたねじ棒13からなって
いる。
The drive unit 5 comprises a pair of parallel frames 7a and 7b provided in parallel in the horizontal blade 3 so as to face each other, and a screw rod 8 rotatably supported on the front side between the parallel frames 7a and 7b. A guide rod 9 fixed to the rear side between the parallel rods 7a, 7b, an x-axis drive unit 10, such as a balanced motor, mounted on one of the parallel frames (for example, 7b) and reversibly rotating the screw rod 8, a screw; A y-axis drive unit 11 such as a balanced motor having a screw (nut) screwed to the rod 8, a guide unit 12 slidably fitted to the guide rod 9, and the y-axis drive unit 11 and the guide unit 12. And a screw rod 13 to which a screw (nut) is screwed to be provided on the weight 6.

【0011】15は本体2内に設けられ、水中曳航体1
のロール角及びピッチ角の如き曳航姿勢の変化を検出す
る検出器、16はマイクロコンピュータ(演算器)で、
検出器15の出力(検出)信号を入力し、所定の演算を
行ったのちその出力(制御)信号を駆動ユニット5のx
軸駆動部10又はy軸駆動部に出力する。17は本体2
の先端部に設けた曳航ケーブルで、水中曳航体1を曳航
すると共に、駆動ユニット5、検出器15及びマイクロ
コンピュータ16に給電を行う。
Reference numeral 15 is provided in the main body 2, and the underwater towing body 1
A detector for detecting changes in the towing attitude such as the roll angle and the pitch angle of the vehicle; 16 is a microcomputer (calculator);
An output (detection) signal of the detector 15 is input, a predetermined operation is performed, and the output (control) signal is output to the x of the drive unit 5.
Output to the axis driving unit 10 or the y-axis driving unit. 17 is the main body 2
The towing cable provided at the end of the towing unit tow the underwater towing body 1 and supply power to the drive unit 5, the detector 15, and the microcomputer 16.

【0012】次に、上記のように構成した本実施の形態
の作用を説明する。まず、水中に投入された水中曳航体
1がローリングやピッチングを行うと、そのロール角及
びピッチ角度を本体2内の検出器15が検出し、その検
出信号をマイクロコンピュータ16に送信する。マイク
ロコンピュータ16はこの検出信号に基いて所定の演算
を行ったのち、その制御信号を駆動ユニット5に送信す
る。
Next, the operation of the embodiment constructed as described above will be described. First, when the underwater towed vehicle 1 put into the water rolls or pitches, the roll angle and the pitch angle are detected by the detector 15 in the main body 2, and the detection signal is transmitted to the microcomputer 16. The microcomputer 16 performs a predetermined operation based on the detection signal, and transmits the control signal to the drive unit 5.

【0013】水中曳航体1のロール角を制御する場合
は、マイクロコンピュータ16はその制御信号を駆動ユ
ニット5のx軸駆動部10に送り、x軸駆動部10を正
又は逆方向に駆動する。これにより、ねじ棒8が回転
し、これに螺合されためねじを有するy軸駆動部11を
ねじ棒8に沿って移動させ、これに連結された錘り6を
ねじ棒13と平行にx1 又はx2 方向に移動させる。錘
り6の移動に伴って水中曳航体1の重心位置が変るため
ロール角が修正され、適正な曳航姿勢に維持される。
When controlling the roll angle of the underwater towed vehicle 1, the microcomputer 16 sends the control signal to the x-axis drive unit 10 of the drive unit 5 to drive the x-axis drive unit 10 in the forward or reverse direction. As a result, the screw rod 8 rotates, and the y-axis driving unit 11 having a screw is screwed to the screw rod 8 to move along the screw rod 8, and the weight 6 connected thereto is moved in parallel with the screw rod 13 by x. moving one or x 2 directions. Since the position of the center of gravity of the underwater tow body 1 changes with the movement of the weight 6, the roll angle is corrected, and the proper towing posture is maintained.

【0014】また、水中曳航体1のピッチ角を制御する
場合は、同様にしてマイクロコンピュータ16はその制
御信号をy軸駆動部11に送り、ねじ棒13を駆動す
る。これにより、ねじ棒13に螺合されためねじを有す
る錘り6は、ねじ棒13に沿ってy1 又はy2 方向に移
動し、重心の位置を変えてピッチ角を修正し、水中曳航
体を適正な曳航姿勢に維持する。なお、これらの操作
は、船上においてディスプレイによって行うことができ
る。
When controlling the pitch angle of the underwater towed vehicle 1, the microcomputer 16 similarly sends a control signal to the y-axis drive unit 11 to drive the screw rod 13. Accordingly, governor weight 6 having screwed the female screw in the threaded rod 13 is moved in y 1 or y 2 along the threaded rod 13, to correct the pitch angle by changing the position of the center of gravity, water tow body In a proper towing position. Note that these operations can be performed on a display by a display.

【0015】このように、本実施の形態においては、水
中曳航体1内に収容された錘り6を移動させて重心位置
を変えることにより、ピッチ角又はロール角を修正する
ことができるので、水中曳航体1の曳航姿勢を常に正常
に保つことができる。また、従来の水中曳航体のよう
に、小翼を設けて水平翼から出し入れする必要がないの
で、水中曳航体が外的な力の影響を受けたり、投入や収
容時に小翼が損傷することもなく、さらに、小翼によっ
て発生するカルマン渦等による流れの乱れが生ずること
もない。
As described above, in the present embodiment, the pitch angle or the roll angle can be corrected by changing the position of the center of gravity by moving the weight 6 accommodated in the underwater towed vehicle 1. The towing posture of the underwater towing body 1 can always be kept normal. Also, unlike conventional underwater towed bodies, there is no need to provide small wings and put them in and out of the horizontal wings, so that the underwater towed bodies are affected by external forces and the small wings are damaged during insertion and storage. Furthermore, there is no flow disturbance due to Karman vortices generated by the small wings.

【0016】実施の形態2.図2に示すような水平翼が
なく、上下方向の高さが高く尾翼4が設けられた構造の
水中曳航体においては、従来、各速度における安定姿勢
を得るために、前述のように何度も試験を行って適正な
曳点位置を求めなければならなかったが、本実施の形態
においては、曳点位置を1か所に定め、重心位置を調整
して水中曳航体の姿勢角を制御するようにしたものであ
る。
Embodiment 2 In a submersible towing body having no horizontal wings as shown in FIG. 2 and having a high height in the vertical direction and provided with a tail fin 4, conventionally, in order to obtain a stable posture at each speed, as described above, In the present embodiment, the position of the tow point was set at one location, and the position of the center of gravity was adjusted to control the attitude angle of the underwater tow body. It is something to do.

【0017】本実施の形態においては、例えば、実施の
形態1における駆動ユニット5を、図3に示すように、
平行棒7a,7bが上下方向になるように水中曳航体1
の本体2内に設置する。この場合、x軸駆動部はz軸駆
動部10aとなる。そして、曳点を図2に示すように、
本体2の上面で前部側(18)に設けたものである。な
お、図示してないが、本実施の形態においても、本体2
内に水中曳航体1の姿勢角を検出する検出器、及びこの
検出器からの出力(検出)信号を入力して所定の演算を
行い、駆動ユニット5に出力(制御)信号を送るマイク
ロコンピュータが設けられている。
In the present embodiment, for example, the drive unit 5 in the first embodiment is
Underwater towing body 1 so that parallel bars 7a and 7b are oriented vertically.
Is installed in the main body 2. In this case, the x-axis drive becomes the z-axis drive 10a. Then, as shown in FIG.
It is provided on the front side (18) of the upper surface of the main body 2. Although not shown, the main body 2 is also provided in the present embodiment.
A detector for detecting the attitude angle of the underwater towing body 1 and a microcomputer for inputting an output (detection) signal from the detector and performing a predetermined calculation and sending an output (control) signal to the drive unit 5 Is provided.

【0018】図4は図2に示す錘り6の位置と、曳航速
力に対する水中曳航体1の姿勢角の関係を示す線図であ
る。図から明らかなように、錘り6がの位置あるとき
は、曳航速力に関係なくほぼ水平状態を維持する。一
方、錘り6が,,と本体2の後方になるに従って
姿勢角θは仰角となって増加し、の位置で最大とな
る。また、錘り6がの位置にあるときは、姿勢角θは
俯角となる。したがって、錘り6の位置を変えることに
より、所望の姿勢角θを得ることができる。
FIG. 4 is a diagram showing the relationship between the position of the weight 6 shown in FIG. 2 and the attitude angle of the underwater tow body 1 with respect to the towing speed. As is clear from the figure, when the weight 6 is at the position of, the horizontal state is maintained irrespective of the towing speed. On the other hand, as the weight 6 is located behind the body 2, the posture angle θ increases as the elevation angle, and reaches a maximum at the position. When the weight 6 is at the position, the attitude angle θ is a depression angle. Therefore, by changing the position of the weight 6, a desired posture angle θ can be obtained.

【0019】また、錘り6をy軸方向に移動させる代り
に、z軸駆動部10aにより錘り6を上下方向に移動さ
せても水中曳航体1の姿勢角θを調整することができ、
さらに、錘り6をy軸方向とz軸方向に同時に移動させ
て姿勢角θを調整してもよい。なお、これらの操作は、
船上に設けたディスプレイで行うことができる。
Also, instead of moving the weight 6 in the y-axis direction, the attitude angle θ of the underwater towing body 1 can be adjusted by moving the weight 6 in the vertical direction by the z-axis driving unit 10a.
Furthermore, the posture angle θ may be adjusted by simultaneously moving the weight 6 in the y-axis direction and the z-axis direction. Note that these operations are
This can be done on the display provided on the ship.

【0020】本実施の形態においては、姿勢角を変える
ことにより水中曳航体1の尾翼4の傾きが変わるため、
これにより揚力又は沈降力を発生させることができるの
で、アクティブディプレッサーとして用いることもでき
る。また、ケーブル長の変更、曳航速力の変更を行うこ
となく、水中曳航体1の深度を調節することができる。
In the present embodiment, changing the attitude angle changes the inclination of the tail 4 of the underwater towed vehicle 1.
As a result, a lift or a settling force can be generated, so that it can be used as an active depressor. Further, the depth of the underwater towed vehicle 1 can be adjusted without changing the cable length or the towing speed.

【0021】このように、本実施の形態においては、水
中曳航体の所望の姿勢角を得るにあたり、曳点位置を変
えることなく1点に固定し、駆動ユニット5により錘り
6を移動させて重心位置を変えるのみで、所望の曳航姿
勢(姿勢角)を得ることができる。
As described above, in the present embodiment, in order to obtain a desired attitude angle of the underwater tow body, the tow point position is fixed at one point without changing, and the weight 6 is moved by the drive unit 5. A desired towing attitude (attitude angle) can be obtained only by changing the position of the center of gravity.

【0022】上記の各実施の形態では、駆動ユニットに
ねじ棒を用い、このねじ棒を回転して錘りを移動させる
場合を示したが、本発明はこれに限定するものではな
く、例えば、ワイヤを用いて錘りをx,y,z方向に移
動させるなど、他の手段を用いてもよい。
In each of the above embodiments, the case where a screw rod is used as the drive unit and the weight is moved by rotating the screw rod has been described. However, the present invention is not limited to this. Other means such as moving the weight in the x, y, and z directions using a wire may be used.

【0023】[0023]

【発明の効果】【The invention's effect】

(1)本発明に係る水中曳航体は、錘りにより重心位置
を自動的に移動させて曳航姿勢を制御するように構成
し、また、上記の水中曳航体において、本体内に、錘り
と、この錘りを前後方向及び左右方向に移動させる駆動
ユニットと、曳航姿勢の変化を検出する検出器と、この
検出器の出力信号を入力して駆動ユニットに制御信号を
出力する演算器とを備え、演算器からの制御信号により
駆動ユニットを駆動し、錘りを前後左右に移動させて本
体の曳航姿勢を制御するようにしたので、水中曳航体の
重心位置が移動して曳航姿勢を確実に制御することがで
きる。
(1) The underwater towed body according to the present invention is configured such that the position of the center of gravity is automatically moved by the weight to control the towing attitude, and in the underwater towed body, the weight is provided inside the main body. A drive unit that moves the weight in the front-rear direction and the left-right direction, a detector that detects a change in the towing attitude, and an arithmetic unit that inputs an output signal of the detector and outputs a control signal to the drive unit. The towing attitude of the body is controlled by driving the drive unit by the control signal from the arithmetic unit and moving the weight back and forth and left and right, so the center of gravity of the underwater towing body moves to ensure the towing attitude. Can be controlled.

【0024】また、従来のように小翼を用いて曳航姿勢
を制御する必要がないため、投入時や収容時に水中曳航
体が傾斜しても小翼が突出して損傷するおそれがなく、
また、高速曳航時に小翼の受ける流体力に対応させるた
めに駆動系の出力を大きくしたり駆動系及び小翼を高強
度にする必要もない。さらに、小翼の突出によってカル
マン渦等が発生して流れの乱れや振動増加が生じて各種
センサに悪影響を及ぼすこともない。
Further, since it is not necessary to control the towing attitude using the small wings as in the prior art, there is no possibility that the small wings will be protruded and damaged even if the underwater tow body is inclined at the time of insertion or storage.
Further, it is not necessary to increase the output of the drive system or to increase the strength of the drive system and the small wings in order to correspond to the fluid force received by the small wings during high-speed towing. Further, there is no possibility that Karman vortices or the like are generated due to the projection of the small wings, and the flow is disturbed or the vibration is increased, thereby adversely affecting various sensors.

【0025】(2)また、本発明に係る水中曳航体は、
本体と尾翼とからなり、本体内に、錘りと、この錘りを
前後方向若しくは上下方向又は前後方向と上下方向に移
動させる駆動ユニットと、本体の姿勢角を検出する検出
器と、この検出器の出力信号を入力して駆動ユニットに
制御信号を出力する演算器とを内蔵してなり、演算器か
らの制御信号により駆動ユニットを駆動し、錘りを前後
方向若しくは上下方向又は前後方向と上下方向に移動さ
せて本体の姿勢角を制御するようにしたので、曳点位置
を1点に固定しても水中曳航体の姿勢角を確実に制御す
ることができる。
(2) The underwater towed body according to the present invention comprises:
A weight, a drive unit for moving the weight in the front-rear direction or up-down direction or in the front-rear direction and up-down direction, a detector for detecting a posture angle of the main body, And an arithmetic unit for inputting the output signal of the unit and outputting a control signal to the drive unit. The drive unit is driven by the control signal from the arithmetic unit, and the weight is moved in the front-back direction or the up-down direction or the front-back direction. Since the attitude angle of the main body is controlled by moving the main body up and down, the attitude angle of the underwater towed body can be reliably controlled even if the position of the tow point is fixed at one point.

【0026】このため、各曳航速力において水中曳航体
の安定姿勢を得るために何度も試験する必要がない。ま
た、モデル試験から実物を作成する際、重心の位置、曳
点位置、翼の形状を、モデル試験の位置、形状に従わせ
る必要もなく、構造変更が容易である。さらに、水中曳
航体の投入や揚収の際、姿勢角が乱れて思いがけない挙
動を示すこともくなく、取扱いが容易である。
For this reason, it is not necessary to perform the test many times to obtain a stable posture of the underwater towed vehicle at each towing speed. In addition, when a real product is created from a model test, it is not necessary to make the position of the center of gravity, the position of the tow point, and the shape of the wing follow the position and shape of the model test, and the structure can be easily changed. Further, when the underwater towed body is inserted or unloaded, the attitude angle is not disturbed and unexpected behavior is prevented, and the handling is easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態1の一部を断面で示した斜
視図である。
FIG. 1 is a perspective view showing a part of a first embodiment of the present invention in cross section.

【図2】本発明の実施の形態2の説明図である。FIG. 2 is an explanatory diagram of Embodiment 2 of the present invention.

【図3】実施の形態2に使用する駆動ユニットの一例の
正面図である。
FIG. 3 is a front view of an example of a drive unit used in the second embodiment.

【図4】実施の形態2における錘りの位置と曳航姿勢と
の関係を示す線図である。
FIG. 4 is a diagram showing a relationship between a position of a weight and a towing attitude according to the second embodiment.

【符号の説明】[Explanation of symbols]

1 水中曳航体 2 本体 3 水平翼 4 尾翼 5 駆動ユニット 6 錘り 15 検出器 16 演算器 17 曳航ケーブル DESCRIPTION OF SYMBOLS 1 Underwater towing body 2 Main body 3 Horizontal wing 4 Tail wing 5 Drive unit 6 Weight 15 Detector 16 Computing unit 17 Towing cable

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲吉▼川 恭司 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 (72)発明者 石野田 和英 東京都港区虎ノ門1丁目7番12号 沖電気 工業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor ▲ Yoshi ▼ Kyoji Kawa 1-7-12 Toranomon, Minato-ku, Tokyo Oki Electric Industry Co., Ltd. (72) Inventor Kazuhide Ishinoda 1-7-7 Toranomon, Minato-ku, Tokyo No. 12 Oki Electric Industry Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 本体と水平翼等からなり探査用のセンサ
等を内蔵した水中曳航体において、 錘りにより重心位置を自動的に移動させて曳航姿勢を制
御するようにしたことを特徴とする水中曳航体。
An underwater towed vehicle comprising a main body, horizontal wings and the like and having a built-in exploration sensor and the like, characterized in that the position of the center of gravity is automatically moved by a weight to control the towing attitude. Underwater towing body.
【請求項2】 本体内に、錘りと、該錘りを前後方向及
び左右方向に移動させる駆動ユニットと、曳航姿勢の変
化を検出する検出器と、該検出器の出力信号を入力して
前記駆動ユニットに制御信号を出力する演算器とを備
え、 前記演算器からの制御信号により前記駆動ユニットを駆
動し、前記錘りを前後左右に移動させて前記本体の曳航
姿勢を制御することを特徴とする請求項1記載の水中曳
航体。
2. A weight, a drive unit for moving the weight in the front-rear direction and the left-right direction, a detector for detecting a change in towing attitude, and an output signal of the detector. An arithmetic unit that outputs a control signal to the drive unit, wherein the drive unit is driven by a control signal from the arithmetic unit, and the weight is moved back and forth and left and right to control the towing attitude of the main body. The underwater towed body according to claim 1, wherein
【請求項3】 本体と尾翼とからなり、前記本体内に、
錘りと、該錘りを前後方向若しくは上下方向又は前後方
向と上下方向に移動させる駆動ユニットと、本体の姿勢
角を検出する検出器と、該検出器の出力信号を入力して
前記駆動ユニットに制御信号を出力する演算器とを備
え、 前記演算器からの制御信号により前記駆動ユニットを駆
動し、前記錘りを前後方向若しくは上下方向又は前後方
向と上下方向に移動させて前記本体の姿勢角を制御する
ようにしたことを特徴とする水中曳航体。
3. A body comprising a main body and a tail, wherein the main body includes:
Weight, a drive unit for moving the weight in the front-back direction or up-down direction, or the front-back direction and up-down direction, a detector for detecting the attitude angle of the main body, An operation unit that outputs a control signal to the main unit by driving the drive unit according to the control signal from the operation unit and moving the weight in the front-rear direction or the up-down direction or the front-rear direction and the up-down direction. An underwater towed vehicle characterized in that the angle is controlled.
JP9175570A 1997-07-01 1997-07-01 Underwater towed body Pending JPH1120788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9175570A JPH1120788A (en) 1997-07-01 1997-07-01 Underwater towed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9175570A JPH1120788A (en) 1997-07-01 1997-07-01 Underwater towed body

Publications (1)

Publication Number Publication Date
JPH1120788A true JPH1120788A (en) 1999-01-26

Family

ID=15998400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9175570A Pending JPH1120788A (en) 1997-07-01 1997-07-01 Underwater towed body

Country Status (1)

Country Link
JP (1) JPH1120788A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013119433A1 (en) * 2012-02-07 2013-08-15 Oceaneering International, Inc. Semi-autonomous underwater vehicle
GB2499397A (en) * 2012-02-14 2013-08-21 Statoil Petroleum As Positioning towed underwater survey apparatus
JP2015030294A (en) * 2013-07-31 2015-02-16 地方独立行政法人東京都立産業技術研究センター Flight device and driving device
JP2016064798A (en) * 2014-09-26 2016-04-28 株式会社Ihi Attitude controller for underwater equipment
JP2016068877A (en) * 2014-10-01 2016-05-09 株式会社Ihi Rope-type underwater floating and sinking body
JP2016068670A (en) * 2014-09-29 2016-05-09 株式会社日立製作所 Underwater observation device
GB2551123A (en) * 2016-06-02 2017-12-13 Saab Seaeye Holdings Ltd System, method and computer program for determining ballast for an underwater vehicle
CN110304224A (en) * 2019-04-15 2019-10-08 清华大学 Side pushes away submariner device and submariner method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013119433A1 (en) * 2012-02-07 2013-08-15 Oceaneering International, Inc. Semi-autonomous underwater vehicle
GB2499397A (en) * 2012-02-14 2013-08-21 Statoil Petroleum As Positioning towed underwater survey apparatus
JP2015030294A (en) * 2013-07-31 2015-02-16 地方独立行政法人東京都立産業技術研究センター Flight device and driving device
JP2016064798A (en) * 2014-09-26 2016-04-28 株式会社Ihi Attitude controller for underwater equipment
JP2016068670A (en) * 2014-09-29 2016-05-09 株式会社日立製作所 Underwater observation device
JP2016068877A (en) * 2014-10-01 2016-05-09 株式会社Ihi Rope-type underwater floating and sinking body
GB2551123A (en) * 2016-06-02 2017-12-13 Saab Seaeye Holdings Ltd System, method and computer program for determining ballast for an underwater vehicle
GB2551123B (en) * 2016-06-02 2019-08-07 Saab Seaeye Ltd System, method and computer program for determining ballast for an underwater vehicle
CN110304224A (en) * 2019-04-15 2019-10-08 清华大学 Side pushes away submariner device and submariner method

Similar Documents

Publication Publication Date Title
EP3707068B1 (en) Motorized hydrofoil device
CN109799064B (en) Ship maneuverability hydrodynamic test device and method
JP3809525B2 (en) Dynamic wind tunnel test equipment
KR101879722B1 (en) Apparatus for vertical planar motion mechanism with a single strut and model test apparatus in towing tank using thereof
JP2014210551A (en) Underwater sailing body
CN110686857B (en) Full-aircraft flutter wind tunnel test model suspension system and state adjustment method thereof
JPH1120788A (en) Underwater towed body
KR20180094608A (en) Underwater robot system based surface craft
CN215323203U (en) Unmanned ship balance and remote visual monitoring device
KR101271194B1 (en) Wake measuring system for a model ship
Wen et al. A novel method based on a force-feedback technique for the hydrodynamic investigation of kinematic effects on robotic fish
CN110989617A (en) Unmanned ship obstacle avoidance control system and unmanned ship
CN210487227U (en) Full-aircraft flutter wind tunnel test model traction device
US11142314B2 (en) Flying machine and control method of flying machine
JP4884303B2 (en) Underwater vehicle control system
CN214248729U (en) Sonar detection device in pipeline
US20090020063A1 (en) Propelled Tow Body
KR102015649B1 (en) Stabilization module for side scan sonar
JP2003232699A (en) Dynamic wind testing model having rudder surface driving mechanism
JP3385474B2 (en) Measurement system of three components of wave drift force and six components of unconstrained oscillating displacement of floating body in waves
CN108572055B (en) AUV underwater recovery fluid dynamic test experimental device applied to pool laboratory
KR101810475B1 (en) Device and test method to obtain maneuvering hydrodynamic derivatives for high speed vessel
JP4776797B2 (en) Anti-vibration device
CN213800127U (en) Multi-posture adjusting device for deep sea towed body
CN113093762A (en) Undocking control method and control system for intelligent immersed tube carrying and installing integrated ship