JPH11207872A - Functionally gradient refractory material - Google Patents

Functionally gradient refractory material

Info

Publication number
JPH11207872A
JPH11207872A JP10009266A JP926698A JPH11207872A JP H11207872 A JPH11207872 A JP H11207872A JP 10009266 A JP10009266 A JP 10009266A JP 926698 A JP926698 A JP 926698A JP H11207872 A JPH11207872 A JP H11207872A
Authority
JP
Japan
Prior art keywords
alumina
layer
refractory
refractory material
agalmatolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10009266A
Other languages
Japanese (ja)
Inventor
Manabu Tetsu
学 鐵
Kenichi Kubo
久保  健一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10009266A priority Critical patent/JPH11207872A/en
Publication of JPH11207872A publication Critical patent/JPH11207872A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To be applicable to all linings of a ladle such as a bottom or the like by forming its one end of a material having a high pyrometric cone equivalent, the other of a material having a low thermal conductivity and an intermediate part between the one end and the other of a material obtained by mixing both the materials, thereby reducing a difference of thermal expansion characteristics of both the materials for forming a boundary surface. SOLUTION: A surface of a ladle in contact with a molten steel is formed of an alumina 5 having a high pyrometric cone equivalent, and a ladle shell side is formed of a material containing 60 to 100 wt.% of an agalmatolite having a low thermal conductivity as a main component. A central part is formed of a material dividing into two or more layers and having inclined properties of the thermal conductivity and the pyrometric cone equivalent from a surface layer to a shell side by changing a content ratio by mixing the alumina and the agalmatolite. As to an intermittent functionally gradient refractory material with the alumina and the agalmatolite, the surface layer contains 100% of the alumina, a second layer 6 is formed of a composite material containing 75% of the alumina and 25% of the agalmatolite, a third layer 7 is formed of that containing 50% of the alumina and 50% of the agalmatolite, a fourth layer 8 is formed of that containing 25% of the lumina and 75% of the agalmatolite, and a final layer 9 contains 100% of the agalmatolite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、傾斜機能を有する
複合耐火材に関する。さらに詳しくは、主に取鍋用の耐
火材であって、全体として高耐火度,低熱伝導率であ
り、溶鋼温度が低下せず、かつ安価な傾斜機能を有する
複合耐火材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite refractory having a tilt function. More specifically, the present invention relates to a refractory material mainly for a ladle, which has a high fire resistance and a low thermal conductivity as a whole, does not lower the temperature of molten steel, and has an inexpensive tilting function.

【0002】[0002]

【従来の技術】一般に、取鍋用の耐火材には、ロー石
質,炭化硅素質,アルミナ質,マグクロ質等の単一組成
で製造した耐火レンガが用いられる。単一の材料で耐火
材が製作された場合、通常、高耐火度の材質では耐食性
に優れ、減肉が少ないために寿命が長くなる。ところ
が、その反面において、熱伝導性が良いために断熱性に
劣り、溶融金属が冷えて固まった量が増える。すなわ
ち、付着損失量が増加する。逆に、断熱性に優れる材質
では、熱伝導性は低いが、耐火度が低下してしまう。
2. Description of the Related Art In general, a refractory brick made of a single composition such as loache, silicon carbide, alumina, or magcro is used as a refractory for a ladle. When a refractory material is made of a single material, a material having a high refractory degree generally has a longer corrosion resistance and a shorter life due to less wall thinning. On the other hand, on the other hand, the heat conductivity is good, so that the heat insulation is inferior, and the amount of the molten metal that has cooled and solidified increases. That is, the amount of adhesion loss increases. Conversely, a material having excellent heat insulation properties has low thermal conductivity, but has a low fire resistance.

【0003】ここで、従来の取鍋用耐火物の一例を図4
に示す。図4中、1は取鍋本体の鉄皮であり、この内側
には耐火度,熱伝導度を考慮して耐火レンガ2及び4を
モルタル3で接着してある。このような構造の耐火物
は、溶鋼運搬用取鍋として一般に使用される。この場
合、溶鋼と接触する耐火レンガ2は高耐火度が必要であ
るが、高耐火度のアルミナ質は熱伝導率が良く、溶鋼温
度が低下しやすく、かつ高価であるという問題があっ
た。また逆に、安価なロー石質からなる耐火物の場合に
は、熱伝導率が低く溶融温度保持には良いが、耐火度が
低いため、溶鋼に侵食されるという問題があった。そし
て、従来の耐火材の場合、耐熱性に優れる材料を溶鋼に
接触する面に使用する方が寿命的には良いが、コスト的
には高価になるため、低コストの材料が使用されること
が多かった。
Here, an example of a conventional refractory for a ladle is shown in FIG.
Shown in In FIG. 4, reference numeral 1 denotes an iron skin of a ladle main body, on which refractory bricks 2 and 4 are adhered with a mortar 3 in consideration of fire resistance and thermal conductivity. A refractory having such a structure is generally used as a ladle for transporting molten steel. In this case, the refractory brick 2 which comes into contact with the molten steel needs to have high fire resistance. However, there is a problem that alumina having high fire resistance has good thermal conductivity, the temperature of molten steel is easily lowered, and it is expensive. On the other hand, in the case of inexpensive relics made of low-stone, it has a low thermal conductivity and is good for maintaining the melting temperature, but has a problem that it is eroded by molten steel due to low refractory degree. In the case of conventional refractory materials, it is better to use a material with excellent heat resistance on the surface that comes into contact with molten steel in terms of service life, but it is expensive in terms of cost, so low-cost materials must be used. There were many.

【0004】一方、特公昭56−47153号公報に
は、2種の材料をそれぞれ単独で層状に積層した構造
で、かつ、取鍋の底部ライニングの耐食性を向上させた
耐火材が開示されている。この耐火材は、図5に示すよ
うに、材質の異なるA材11とB材12とを交互にサン
ドイッチした多層構造である。耐火材全体の組成として
は、A材とB材とが混ざり合ったものとなるが、耐火材
の各部分においてはA材あるいはB材が100%である
という構造を有している。したがって、A材とB材との
境界面においては、各材料の膨張差により剥離又は割れ
が生じる可能性があり問題であった。
On the other hand, JP-B-56-47153 discloses a refractory material having a structure in which two kinds of materials are individually laminated in layers, and having improved corrosion resistance of a bottom lining of a ladle. . As shown in FIG. 5, this refractory material has a multilayer structure in which A materials 11 and B materials 12 of different materials are alternately sandwiched. The composition of the entire refractory material is a mixture of the A material and the B material, but each portion of the refractory material has a structure in which the A material or the B material is 100%. Therefore, at the interface between the material A and the material B, there is a possibility that peeling or cracking may occur due to a difference in expansion of each material, which is a problem.

【0005】[0005]

【発明が解決しようとする課題】本発明者らは、上記問
題点に鑑み、高耐火度及び低熱伝導率という合い矛盾す
る性質を両立させ、高耐火度であっても、熱伝導率が低
く,溶鋼温度が低下せず、かつ安価な耐火材料を開発す
べく鋭意検討した。また、本発明者らは、異なる材料を
混合した複合材料からなる耐火材であっても、膨張差に
より剥離や割れが生じない耐火材を開発すべく鋭意検討
した。その結果、本発明者らは、一端を優れた耐火度を
有する材料にするとともに、他端を熱伝導率の低い材料
とし、一端と他端との中間は両端の材料を混合した材料
にすること、特に、一端から他端に至るまでの材料の混
合比率を連続的あるいは断続的に変化させた材料にする
ことにより、かかる問題点が解決されることを見い出し
た。
SUMMARY OF THE INVENTION In view of the above problems, the inventors of the present invention have achieved a contradictory property of high fire resistance and low thermal conductivity. Therefore, the intense study was conducted to develop an inexpensive refractory material that does not lower the molten steel temperature. In addition, the present inventors have studied diligently to develop a refractory material that does not cause separation or cracking due to a difference in expansion, even for a refractory material made of a composite material in which different materials are mixed. As a result, the present inventors have made one end a material having excellent fire resistance, the other end a material having a low thermal conductivity, and the middle between one end and the other end a material obtained by mixing the materials at both ends. In particular, it has been found that such a problem can be solved by changing the mixing ratio of the material from one end to the other end continuously or intermittently.

【0006】本発明の耐火材は、異なる材料であるA材
とB材とを一端から他端にかけて連続的あるいは断続的
に濃度勾配をもたせて配合していることから、熱膨張特
性もそれらの配合比に合わせて変化することにより、境
界面があったとしても、その境界面を形成する両材料の
熱膨張特性の差が小さく、剥離や割れ等の問題を回避す
ることができる。また、本発明の耐火材は、取鍋の底部
ライニングの他、取鍋ライニング全てに適用可能であ
り、その応用範囲も広い。本発明は、かかる見地より完
成されたものである。
In the refractory material of the present invention, different materials A and B are continuously or intermittently mixed with a concentration gradient from one end to the other end. By changing according to the compounding ratio, even if there is a boundary surface, the difference in thermal expansion characteristics between the two materials forming the boundary surface is small, and problems such as peeling and cracking can be avoided. Further, the refractory material of the present invention is applicable to all ladle linings in addition to the bottom lining of the ladle, and its application range is wide. The present invention has been completed from such a viewpoint.

【0007】[0007]

【課題を解決するための手段】すなわち、本発明は、一
端を耐火度の高い材料にするとともに、他端を熱伝導率
の低い材料とし、一端と他端との中間は両材料を混合し
た材料にすることを特徴とする傾斜機能耐火材を提供す
る。本発明の傾斜機能耐火材は、1枚の耐火材、その物
自体が傾斜機能材質からなるものである。ここで、傾斜
機能材質とは、耐火材に用いられる複数の材料(例えば
2つの材料)について、この複数の材料の配合比率を一
端(例えば表層)から他端(例えば鉄皮側)に適時変化
させたものであり、連続的変化及び断続的変化等が含ま
れる。ここで、上記傾斜機能耐火材は、一端から他端に
至るまでの中間においては、両端の材料の混合比率を連
続的に変化させたものがより好ましい。
That is, according to the present invention, one end is made of a material having a high degree of fire resistance, the other end is made of a material having a low thermal conductivity, and the middle between the one end and the other end is a mixture of both materials. A functionally graded refractory material characterized by being made of a material is provided. The functionally graded refractory material of the present invention is one refractory material, which itself is made of a graded functional material. Here, the functionally graded material means that, for a plurality of materials (for example, two materials) used for the refractory material, the mixing ratio of the plurality of materials is changed from one end (for example, the surface layer) to the other end (for example, the steel shell side) in a timely manner. It includes continuous changes and intermittent changes. Here, as for the above-mentioned functionally graded refractory material, in the middle from one end to the other end, it is more preferable that the mixing ratio of the materials at both ends is continuously changed.

【0008】このような本発明によれば、一つの耐火材
が2種以上の性質を共存することにより、従来の材料で
は達成できなかった高耐火性及び低熱伝導率の2つの特
性を1つの耐火材が共有し、耐火材の寿命延長及び取鍋
耐火材組み立て時間短縮等が可能になる。以下、本発明
について、詳細に説明する。
According to the present invention, since one refractory coexists with two or more kinds of properties, two properties of high fire resistance and low thermal conductivity, which cannot be achieved by conventional materials, can be combined into one property. The refractory material is shared, which makes it possible to extend the life of the refractory material and shorten the time required for assembling the ladle refractory material. Hereinafter, the present invention will be described in detail.

【0009】[0009]

【発明の実施の形態】添付図面を参照しながら、本発明
の実施の形態を説明する。実施の形態(その1) 図1に、高耐火度,耐食性のアルミナ質、及び、低熱伝
導性,断熱性のロー石質の両者の特性を共存する傾斜機
能を有する複合耐火材の一例を示す。耐火材は、その主
要組成(化学成分)の含有率により、熱伝導率,耐火度
が変化する。本発明は、図1に示す通り、溶鋼と接触す
る面には高耐火度のアルミナ質5、取鍋鉄皮側には低熱
伝導率のロー石質を主成分として、それぞれ60〜10
0重量%含有している。また、その中央部には2層以上
に分割して、アルミナ質及びロー石質を混合して含有比
率を変化させ、熱伝導率,耐火度を表層から鉄皮側に向
けて性質を傾斜させる。
Embodiments of the present invention will be described with reference to the accompanying drawings. Embodiment (No. 1) FIG. 1 shows an example of a composite refractory material having a gradient function that coexists with the characteristics of both high fire resistance and corrosion-resistant alumina, and low thermal conductivity and heat-insulating rholite. . The thermal conductivity and the fire resistance of the refractory material change depending on the content of the main composition (chemical component). As shown in FIG. 1, the present invention mainly comprises a high-fired alumina 5 on the surface in contact with molten steel and a low-heat-conducting rhodium on the ladle steel side, each having 60 to 10 parts.
It contains 0% by weight. In the center, it is divided into two or more layers, mixed with alumina and rholite to change the content ratio, and the thermal conductivity and fire resistance are graded from the surface layer toward the steel shell side. .

【0010】ここで、本発明の傾斜機能耐火材は、一端
から他端に至るまでの中間においては、両端の材料の混
合比率を断続的あるいは連続的に変化させてある。断続
的に混合比率を変化させた例としては、図1又は図2の
ような耐火材が挙げられ、連続的に変化させた例として
は、図3のような耐火材が挙げられる。このような構造
により、安価であり、かつ低熱伝導率,高耐火度の傾斜
機能耐火材を提供できる。耐火材に用いられる複合材料
としては、現存する全ての耐火材から2種以上の材料を
用い、2層以上の材料から製造される全てが含まれる。
Here, in the functionally graded refractory material of the present invention, in the middle from one end to the other end, the mixing ratio of the materials at both ends is changed intermittently or continuously. An example in which the mixing ratio is changed intermittently is a refractory material as shown in FIG. 1 or FIG. 2, and an example in which the mixing ratio is changed continuously is a refractory material as shown in FIG. With such a structure, it is possible to provide a functionally graded refractory material which is inexpensive, has a low thermal conductivity and a high refractory degree. The composite material used for the refractory material includes all materials manufactured from two or more layers using two or more materials from all existing refractory materials.

【0011】アルミナ質及びロー石質を用いた断続的な
傾斜機能耐火材の具体例は、例えば図1に示すような全
体で5層構造の耐火材である。この場合、耐火材(耐火
レンガ)の組成分布としては、表層5にアルミナ質を1
00%、2層目6にアルミナ質75%及びロー石質25
%の複合材料、3層目7にアルミナ質50%及びロー石
質50%の複合材料、4層目8にアルミナ質25%及び
ロー石質75%の複合材料、最終層9にロー石質を10
0%とする。このように表層は高耐火度,耐食性の材
料、鉄皮側は低伝導率,断熱性の材料とすることによ
り、本発明の耐火材は、双方の特徴を共有するという特
性を有する。
A specific example of an intermittently graded refractory material using alumina and rholite is, for example, a refractory material having a five-layer structure as shown in FIG. In this case, the composition distribution of the refractory material (refractory brick) is as follows.
00%, 75% alumina and 25 stones in the second layer 6
% Composite material, the third layer 7 is a composite material of 50% alumina and 50% rholite, the fourth layer 8 is a composite material of 25% alumina and 75% rholite, and the final layer 9 is rholite 10
0%. As described above, the surface layer is made of a material having high fire resistance and corrosion resistance, and the steel shell side is made of a material having low conductivity and heat insulation, so that the refractory material of the present invention has characteristics of sharing both characteristics.

【0012】また、アルミナ質及びロー石質を用いた断
続的な4層構造の傾斜機能耐火材の具体例は、例えば図
2に示す通りである。耐火レンガの組成分布として、表
層5にアルミナ質を100%、2層目6にアルミナ質6
7%及びロー石質33%の複合材料、3層目7にアルミ
ナ質33%及びロー石質67%の複合材料、最終層9に
ロー石質を100%とした耐火材とする。このような構
造によっても、上記と同様に表層は高耐火度,耐食性の
材料、鉄皮側は低伝導率,断熱性の材料となり、双方の
特徴を共有することができる。なお、このような層構成
は、耐火材の使用の目的,状態等によって適宜選択する
ことができ、特定の層構成が優れるというものではない
が、表面層及び鉄皮側層をも含めた層の数が全体で3〜
7層の範囲にあることが好ましい。また、各層の厚さ
は、それぞれ均一でも異なっていても良い。例えば、図
1に示すように、表層側から最終層側に向かって、順次
厚さを増していくこともできる。そして、このような断
続的に濃度勾配を有する構造を採用することによって、
熱膨張特性もそれらの配合比に合わせて段階的変化が可
能となるので、境界面において、その境界面を形成する
両材料の熱膨張特性の差を小さくすることが可能であ
り、剥離や割れ等の問題を回避できる。
FIG. 2 shows a specific example of a refractory material having an intermittent four-layer structure using alumina and rholite. As the composition distribution of the refractory brick, the surface layer 5 is made of 100% alumina and the second layer 6 is made of alumina 6
The third layer 7 is a composite material of 33% alumina and 67% rholite, and the final layer 9 is a refractory material having 100% rholite. Even with such a structure, the surface layer is made of a material having high fire resistance and corrosion resistance, and the steel shell is made of a material having low conductivity and heat insulation, as described above, and both characteristics can be shared. Note that such a layer configuration can be appropriately selected depending on the purpose and state of use of the refractory material, and does not mean that a specific layer configuration is excellent. The total number is 3 ~
It is preferably in the range of 7 layers. The thickness of each layer may be uniform or different. For example, as shown in FIG. 1, the thickness can be sequentially increased from the surface layer side to the final layer side. And by adopting such a structure having an intermittent concentration gradient,
Since the thermal expansion characteristics can also be changed stepwise according to their compounding ratio, it is possible to reduce the difference between the thermal expansion characteristics of the two materials forming the boundary surface at the boundary surface, and to cause separation or cracking. And other problems can be avoided.

【0013】更に、アルミナ質及びロー石質を用いた連
続的な傾斜機能耐火材の具体例を示せば、例えば図3の
ようになる。この場合、表層5にアルミナ質100%、
鉄皮側層(最終層)9にロー石質100%であるが、そ
の中間10では、アルミナ質及びロー石質の混合比率が
連続的に変化する。すなわち、表層のアルミナ質は10
0%、鉄皮側層のアルミナ質は0%であり、一定の濃度
勾配を有している。一方、表層のロー石質0%、鉄皮側
層のロー石質は100%であり、同様の濃度勾配を有し
ている。このような構造によっても、上記断続的な傾斜
機能耐火材と同様に、表層は高耐火度,耐食性の材料、
鉄皮側は低伝導率,断熱性の材料となり、双方の特徴を
共有することができる。また、このような実施の形態に
よれば、材料の境界面がないので、材料の境界面におけ
る熱膨張特性の差が生ぜず、剥離や割れ等の問題を有効
に防止することができる。
FIG. 3 shows a specific example of a continuous functionally graded refractory material using alumina and rholite. In this case, the surface layer 5 has 100% alumina,
The iron-crust side layer (final layer) 9 is made of 100% loasite, but in the middle 10, the mixing ratio of alumina and loasite changes continuously. That is, the alumina of the surface layer is 10
0%, and the alumina of the steel shell side layer is 0%, and has a certain concentration gradient. On the other hand, the surface layer is 0% and the layer side is 100% and has the same concentration gradient. Even with such a structure, the surface layer is made of a material with high fire resistance and corrosion resistance, similar to the above-described intermittent functionally graded refractory material.
The steel side is a low-conductivity, heat-insulating material, and can share both features. Further, according to such an embodiment, since there is no material boundary surface, a difference in thermal expansion characteristics at the material boundary surface does not occur, and problems such as peeling and cracking can be effectively prevented.

【0014】一方、本実施の形態には、高耐火度,耐食
性の材料としてアルミナ質の代わりにムライト質等を用
い、ムライト質及びロー石質の両者の特性を共存する傾
斜機能を有する複合耐火材も含まれる。この場合も耐火
材は、その主要組成(化学成分)の含有率により、熱伝
導率,耐火度が変化するが、溶鋼と接触する面にムライ
ト質、取鍋鉄皮側にロー石質を主成分として、それぞれ
60〜100重量%含有させる。そして、その中央部に
は2層以上に分割して、ムライト質及びロー石質を混合
して含有比率を変化させ、熱伝導率,耐火度等を表層か
ら鉄皮側に向けて性質を傾斜させる。
On the other hand, in the present embodiment, mullite or the like is used instead of alumina as a material having high fire resistance and corrosion resistance, and a composite refractory having a gradient function coexisting with characteristics of both mullite and rholite. Materials are also included. In this case as well, the thermal conductivity and fire resistance of the refractory material vary depending on the content of the main composition (chemical component), but the mullite material is mainly used on the surface in contact with the molten steel, and the limestone material is mainly used on the ladle steel bar. As components, 60 to 100% by weight are contained. The middle part is divided into two or more layers, mullite and rholitic are mixed to change the content ratio, and the properties such as thermal conductivity and fire resistance are inclined from the surface to the steel shell side. Let it.

【0015】実施の形態(その2) 本実施の形態の傾斜機能耐火材は、傾斜機能を有する材
質として、耐火性の他、耐塩基性及び断熱性に優れた特
性を兼ね備えたものである。耐塩基性に優れる材料とし
ては、マグネシア質,ジルコン質等が挙げられる。断熱
性に優れる材料としては、上記のロー石質等が挙げられ
る。これら両材料を組み合わせることにより、両材料の
特性を共存する傾斜機能を有する複合耐火材を得ること
ができる。
Embodiment (No. 2) The functionally graded refractory material of the present embodiment is a material having a graded function, which has not only fire resistance but also excellent properties in base resistance and heat insulation. Examples of the material having excellent base resistance include magnesia and zircon. Examples of the material having excellent heat insulating properties include the above-mentioned rholite. By combining these two materials, it is possible to obtain a composite refractory material having a gradient function that coexists the properties of both materials.

【0016】本実施の形態においても、一端を耐火度,
耐塩基性の高いマグネシア質等にするとともに、他端を
熱伝導率の高いロー石質等とし、一端と他端との中間は
両材料を混合した材料にする。一端から他端に至るまで
の中間においては、両端の材料の混合比率を断続的ある
いは連続的に変化させる。この場合も耐火材は、その主
要組成(化学成分)の含有率により、熱伝導率,耐火度
が変化するが、溶鋼と接触する面にマグネシア質等、取
鍋鉄皮側にロー石質を主成分として、それぞれ60〜1
00重量%含有する。そして、その中央部には2層以上
に分割して、マグネシア質等及びロー石質を混合して含
有比率を変化させ、熱伝導率,耐火度等を表層から鉄皮
側に向けて性質を傾斜させる。
Also in this embodiment, one end has a fire resistance,
The material is made of magnesia or the like having high base resistance, the other end is made of rhodium or the like having high thermal conductivity, and the middle between one end and the other end is made of a mixed material of both materials. In the middle from one end to the other end, the mixing ratio of the materials at both ends is changed intermittently or continuously. In this case as well, the thermal conductivity and fire resistance of the refractory material vary depending on the content of its main composition (chemical component), but the surface in contact with the molten steel is made of magnesia, etc. The main components are 60-1 each
It contains 00% by weight. The middle part is divided into two or more layers, and the content ratio is changed by mixing magnesia etc. and rholite, and the properties such as thermal conductivity, fire resistance etc. from the surface layer to the steel shell side are changed. Incline.

【0017】本発明に係る傾斜機能耐火材は、上記実施
の形態(その1)(その2)に限らず、本発明の技術的
思想の範囲において、種々変形が可能であり、上記実施
の形態に何ら拘束されるものではない。
The functionally graded refractory material according to the present invention is not limited to the above-described embodiments (part 1) and (part 2), but can be variously modified within the scope of the technical idea of the present invention. You are not bound by anything.

【0018】[0018]

【発明の効果】本発明は、高耐火度であって、熱伝導率
が低く,溶鋼温度が低下せず,かつ安価な複合耐火材料
を提供できる。すなわち、本発明によれば、高耐火度及
び低熱伝導率という合い矛盾する性質を両立させ、高耐
火度であっても、熱伝導率が低く,溶鋼温度が低下せ
ず、かつ安価な耐火材料を提供できる。また、本発明に
よれば、異なる材料を混合した複合材料からなる耐火材
であっても、膨張差により剥離や割れが生じない耐火材
を提供できる。このように本発明の傾斜機能耐火材は、
低コストであり、1つの耐火レンガ等であっても2種以
上の性質を共存することにより、従来では得られなかっ
た高耐火性及び低熱伝導率を共有し、耐火材の寿命延長
及び取鍋耐火材組み立て時間短縮が可能になる。
According to the present invention, it is possible to provide a low-cost composite refractory material having a high degree of fire resistance, a low thermal conductivity, a low temperature of molten steel, and a low temperature. That is, according to the present invention, the contradictory properties of high fire resistance and low thermal conductivity are compatible, and even with high fire resistance, the heat conductivity is low, the molten steel temperature does not decrease, and an inexpensive refractory material is used. Can be provided. Further, according to the present invention, it is possible to provide a refractory material that does not cause separation or cracking due to a difference in expansion, even if the refractory material is made of a composite material obtained by mixing different materials. Thus, the functionally graded refractory material of the present invention,
It is low cost, and even if it is one refractory brick etc., by sharing two or more kinds of properties, it shares high fire resistance and low thermal conductivity that could not be obtained conventionally, extends the life of refractory material and ladle It is possible to shorten the refractory material assembling time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る傾斜機能耐火材において、断続的
な構成からなる実施の形態を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment having an intermittent configuration in a functionally graded refractory material according to the present invention.

【図2】本発明に係る傾斜機能耐火材において、断続的
な構成からなる実施の形態を示す構成図である。
FIG. 2 is a configuration diagram showing an embodiment having an intermittent configuration in the functionally graded refractory material according to the present invention.

【図3】本発明に係る傾斜機能耐火材において、連続的
な構成からなる実施の形態を示す構成図である。
FIG. 3 is a configuration diagram showing an embodiment having a continuous configuration in the functionally graded refractory according to the present invention.

【図4】従来の取鍋用耐火物の構造を示す概略図であ
る。
FIG. 4 is a schematic view showing the structure of a conventional ladle refractory.

【図5】従来の材質の異なるA材とB材とを交互にサン
ドイッチした多層構造からなる耐火材の構成図である。
FIG. 5 is a configuration diagram of a conventional refractory material having a multilayered structure in which A materials and B materials having different materials are alternately sandwiched.

【符号の説明】[Explanation of symbols]

1 取鍋本体の鉄皮 2 耐火レンガ 3 モルタル 4 耐火レンガ 5 表層 6 2層目 7 3層目 8 4層目 9 最終層 10 連続層 11 A材 12 B材 DESCRIPTION OF REFERENCE NUMERALS 1 Ladle body of ladle 2 Refractory brick 3 Mortar 4 Refractory brick 5 Surface layer 6 2nd layer 7 3rd layer 8 4th layer 9 Final layer 10 Continuous layer 11 A material 12 B material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一端を耐火度の高い材料にするととも
に、他端を熱伝導率の低い材料とし、一端と他端との中
間は両材料を混合した材料にすることを特徴とする傾斜
機能耐火材。
1. A tilt function wherein one end is made of a material having a high degree of refractory, the other end is made of a material having a low thermal conductivity, and the middle between one end and the other end is made of a mixed material of both materials. Refractory material.
【請求項2】 一端から他端に至るまでの中間におい
て、両端の材料の混合比率を連続的に変化させたことを
特徴とする請求項1記載の傾斜機能耐火材。
2. The functionally graded refractory material according to claim 1, wherein the mixing ratio of the materials at both ends is continuously changed in the middle from one end to the other end.
JP10009266A 1998-01-21 1998-01-21 Functionally gradient refractory material Withdrawn JPH11207872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10009266A JPH11207872A (en) 1998-01-21 1998-01-21 Functionally gradient refractory material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10009266A JPH11207872A (en) 1998-01-21 1998-01-21 Functionally gradient refractory material

Publications (1)

Publication Number Publication Date
JPH11207872A true JPH11207872A (en) 1999-08-03

Family

ID=11715649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10009266A Withdrawn JPH11207872A (en) 1998-01-21 1998-01-21 Functionally gradient refractory material

Country Status (1)

Country Link
JP (1) JPH11207872A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805807A1 (en) * 2000-03-02 2001-09-07 Murata Manufacturing Co Insulating thick film composition calcined with a ceramic blank used in mobile communication devices consists of a first ceramic powder having the same setting system as the second ceramic powder contained in the blank
KR20180080465A (en) * 2017-01-04 2018-07-12 주식회사 원진월드와이드 Brick assembly and ladle comprising the same
CN110734042A (en) * 2018-07-20 2020-01-31 淄博华庆耐火材料有限公司 corundum-SiAlON-silicon nitride gradient brick for sulfur recovery reaction furnace and preparation process thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805807A1 (en) * 2000-03-02 2001-09-07 Murata Manufacturing Co Insulating thick film composition calcined with a ceramic blank used in mobile communication devices consists of a first ceramic powder having the same setting system as the second ceramic powder contained in the blank
KR20180080465A (en) * 2017-01-04 2018-07-12 주식회사 원진월드와이드 Brick assembly and ladle comprising the same
CN110734042A (en) * 2018-07-20 2020-01-31 淄博华庆耐火材料有限公司 corundum-SiAlON-silicon nitride gradient brick for sulfur recovery reaction furnace and preparation process thereof

Similar Documents

Publication Publication Date Title
ES2396113T3 (en) Crack resistant refractory composition
US10274255B2 (en) Molten metal-containing vessel, and methods of producing same
RU2573458C2 (en) Composite refractory material for internal lining of blast-furnace
CN102164695B (en) Refractory for nozzle used in continuous casting and nozzle for continuous casting
JPH11207872A (en) Functionally gradient refractory material
JPH0585853A (en) Monolithic refractory material, process for producing same and refractory material product formed therefrom
EA016194B1 (en) Baked refractory product
CN108580867A (en) A kind of safe ladle liner
JP2003095757A (en) Thermal insulation coating material for carbon- containing refractory
US5932348A (en) Composite with non-segregating reinforcing elements
JP4533051B2 (en) Continuous casting nozzle having an inner hole
JPH11131129A (en) Lining structure of refining furnace
KR880004873A (en) Continuous casting mold
CA2611360C (en) Insulating refractory lining
JPS61238909A (en) Lance for treating molten metal
JPH04100672A (en) Molten metal holding vessel
JPS622107Y2 (en)
JP2636953B2 (en) Ladle insulation lining
JPS60148649A (en) Nozzle for casting molten steel
JPH10130707A (en) Stave cooler
JPS60108374A (en) High alumina content flow-in material for molten metal vessel
JPH0311679Y2 (en)
JPH02154980A (en) Locking method for furnace lining and locking stud
JPS6070117A (en) Tuyere brick for out-of-furnace refining
JPS5948779B2 (en) Composite fireproof insulation materials and fireproof structures using them

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405