JPH11207451A - Production of single crystal alloy blade - Google Patents

Production of single crystal alloy blade

Info

Publication number
JPH11207451A
JPH11207451A JP1245198A JP1245198A JPH11207451A JP H11207451 A JPH11207451 A JP H11207451A JP 1245198 A JP1245198 A JP 1245198A JP 1245198 A JP1245198 A JP 1245198A JP H11207451 A JPH11207451 A JP H11207451A
Authority
JP
Japan
Prior art keywords
blade
single crystal
crystal alloy
natural frequency
chill plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1245198A
Other languages
Japanese (ja)
Inventor
Toshio Sakon
淑郎 佐近
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1245198A priority Critical patent/JPH11207451A/en
Publication of JPH11207451A publication Critical patent/JPH11207451A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a method, with which a single crystal alloy blade changed in a natural frequency without changing a blade profile design and the optimum aerodynamic design condition can be produced. SOLUTION: An inclined angle θ of the crystal main axial direction 2 with respect to the blade height direction 4, in which the natural frequency of the single crystal alloy blade becomes a prescribed value, is beforehand obtd. with an anisotropic vibration analysis. Successively, after connecting a chill plate 9 with a blade corresponding spacer 7 in a mold 6 in which the blade height direction 4 is inclined at an angle θ with respect to a gravity direction through a selector 8, the casting of the single crystal alloy blade is formed while pulling down this chill plate 9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、タービン翼等の固
有振動数の調整を要する単結晶合金翼の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a single crystal alloy blade which requires adjustment of a natural frequency of a turbine blade or the like.

【0002】[0002]

【従来の技術】単結晶合金翼は、それ自体が1個の結晶
であるため、部材形状が同一であっても、その形状と結
晶の主軸方向との相対関係により、翼の固有振動数が変
化する。
2. Description of the Related Art Since a single crystal alloy blade itself is a single crystal, even if the member shape is the same, the natural frequency of the blade is determined by the relative relationship between the shape and the principal axis direction of the crystal. Change.

【0003】従来の精密鋳造による単結晶合金翼におい
ては、図2に示す翼高さ方向4を鋳造時の重力方向と一
致させて鋳造するため、翼高さ方向4に対して1つの結
晶主軸方向2のなす角θ、即ち傾斜角はゼロとなる。
In a conventional single-crystal alloy blade made by precision casting, since the blade height direction 4 shown in FIG. 2 is cast in accordance with the gravity direction at the time of casting, one crystal main axis is provided for the blade height direction 4. The angle θ formed by the direction 2, that is, the inclination angle becomes zero.

【0004】翼高さ方向4に直交する面内の物体形状を
表す座標軸(例えば、翼回転方向とそれに直交する方向
の座標軸)5に対して結晶主軸方向2以外の2つの結晶
主軸方向(主軸2を<100>とすれば、<010>,
<001>の方向)3のなす角φ、即ち振れ角について
は、これを各翼共一定値とすることにより翼毎の固有振
動数の差異の発生を防止しており、固有振動数の調整は
主として翼の形状を変えることにより行われていた。
With respect to a coordinate axis (for example, a coordinate axis in a blade rotation direction and a direction orthogonal to the blade rotation direction) 5 representing an object shape in a plane orthogonal to the blade height direction 4, two crystal main axis directions other than the crystal main axis direction 2 (main axes) If 2 is <100>, <010>,
The direction φ of <001>), ie, the deflection angle, is set to a constant value for each blade to prevent the occurrence of a difference in the natural frequency of each blade, and to adjust the natural frequency. Was mainly done by changing the shape of the wings.

【0005】なお、2つの結晶主軸方向3を座標軸5に
対して角φだけ振ることについては、予め結晶方位の判
っている小さな結晶(種結晶という)を用い、この種結
晶の結晶主軸方向を座標軸5に対して角φだけ振ってチ
ルプレート上に置き、この種結晶から結晶成長させるこ
とにより可能である。
In order to swing the two crystal principal axis directions 3 by an angle φ with respect to the coordinate axis 5, a small crystal (referred to as a seed crystal) having a known crystal orientation is used, and the crystal principal axis direction of the seed crystal is changed. This is possible by shaking by an angle φ with respect to the coordinate axis 5, placing it on a chill plate, and growing a crystal from this seed crystal.

【0006】上記種結晶を置くチルプレートとは、水冷
してある金属の台であり、この部分で溶湯(溶けた金
属)を冷やし、この部分から溶湯が凝固し始めるように
するものである。
The chill plate on which the seed crystal is placed is a water-cooled metal base, which cools the molten metal (molten metal) at this portion so that the molten metal starts to solidify from this portion.

【0007】[0007]

【発明が解決しようとする課題】従来の単結晶合金翼に
おいて、その固有振動数の調整は、前記のように、主と
して翼の形状を変えることにより行われていた。
In the conventional single-crystal alloy blade, the natural frequency is adjusted mainly by changing the shape of the blade as described above.

【0008】この方法による場合は、翼形状設計後に固
有振動数を変化させる必要が生じると、再び翼の形状変
更を行うことが必要となるが、この場合、翼型設計を見
直すことが必要になるだけでなく、最適空力設計条件を
くずすことにもなる。そのため、形状変更を必要とせず
にその固有振動数が変更できる翼の製造方法が望まれて
いた。本発明は上記の課題を解決しようとするものであ
る。
According to this method, if it is necessary to change the natural frequency after designing the blade shape, it is necessary to change the blade shape again. In this case, it is necessary to review the airfoil design. In addition, it degrades the optimal aerodynamic design conditions. Therefore, there has been a demand for a method of manufacturing a blade whose natural frequency can be changed without requiring a shape change. The present invention seeks to solve the above problems.

【0009】[0009]

【課題を解決するための手段】請求項1の発明に係る単
結晶合金翼は、単結晶合金翼の固有振動数が所定値とな
る翼高さ方向に対する結晶主軸方向の傾斜角を異方性振
動解析により予め求め、次に、その翼高さ方向を重力方
向に対して上記傾斜角とした鋳型の翼部相当空間にセレ
クタを介してチルプレートを接続した後、このチルプレ
ートを引き下げながら単結晶合金翼の鋳物を形成するこ
とを特徴としている。
According to a first aspect of the present invention, there is provided a single crystal alloy blade having an anisotropic inclination angle in a crystal principal axis direction with respect to a blade height direction in which a natural frequency of the single crystal alloy blade becomes a predetermined value. The chill plate is obtained in advance by vibration analysis, and then the chill plate is connected to a space corresponding to the wing portion of the mold with the wing height direction being the above-mentioned inclination angle with respect to the direction of gravity via a selector. It is characterized by forming a casting of a crystal alloy blade.

【0010】上記において、単結晶合金翼は、その形状
の結晶の主軸方向との相対関係によりその固有振動数が
変化するため、固有振動数が所定値となる傾斜角を異方
性振動数解析により求めることができる。
In the above, since the natural frequency of the single crystal alloy blade changes depending on the relative relationship with the direction of the principal axis of the crystal of the shape, the inclination angle at which the natural frequency becomes a predetermined value is determined by anisotropic frequency analysis. Can be obtained by

【0011】上記の傾斜角となるように鋳型を傾斜させ
た場合、鋳物の結晶の主軸方向は重力方向となるため、
翼高さ方向に対して結晶主軸方向が上記傾斜角で傾斜し
た翼を得ることができる。
When the mold is inclined so as to have the above-mentioned inclination angle, the principal axis direction of the crystal of the casting is in the direction of gravity.
A blade whose main crystal axis direction is inclined at the above-mentioned inclination angle with respect to the blade height direction can be obtained.

【0012】また、鋳型とチルプレートの間にセレクタ
を設け、これを介して鋳型の翼部相当空間をチルプレー
トに接続しているため、単結晶合金翼を形成することが
できる。
Further, since a selector is provided between the mold and the chill plate, and a space corresponding to the wing portion of the mold is connected to the chill plate via the selector, a single crystal alloy blade can be formed.

【0013】そのため、翼高さ方向に対して結晶主軸方
向が所定の傾斜角で傾斜した単結晶合金翼を得ることが
可能となり、固有振動数が所定値の単結晶合金翼を得る
ことが可能となる。
Therefore, it is possible to obtain a single crystal alloy blade in which the main crystal axis direction is inclined at a predetermined inclination angle with respect to the blade height direction, and it is possible to obtain a single crystal alloy blade having a natural frequency of a predetermined value. Becomes

【0014】[0014]

【発明の実施の形態】本発明の実施の一形態に係る単結
晶合金翼の製造方法について、図1及び図2(a),
(b)により説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for manufacturing a single crystal alloy blade according to an embodiment of the present invention will be described with reference to FIGS.
This will be described with reference to FIG.

【0015】図1及び図2に示す本実施形態に係る単結
晶合金翼の製造方法においては、予め、有限要素法等に
よる異方性振動数解析により、単結晶合金翼の固有振動
数が所定値となる、鋳型6の翼部相当空間7の翼高さ方
向4の重力方向に対する傾斜角θと、翼回転方向に対す
る振れ角φを求める。
In the method for manufacturing a single crystal alloy blade according to the present embodiment shown in FIGS. 1 and 2, the natural frequency of the single crystal alloy blade is determined in advance by anisotropic frequency analysis using a finite element method or the like. The inclination angle θ with respect to the gravity direction in the blade height direction 4 of the blade-equivalent space 7 of the mold 6 and the deflection angle φ with respect to the blade rotation direction, which are values, are obtained.

【0016】次に、翼部相当空間7の翼高さ方向4の傾
斜角をθとした鋳型6の翼部相当空間7をセレクタ8を
介してチルプレート9に接続し、結晶主軸方向の振れ角
をφとした種結晶をチルプレート9上に置き、チルプレ
ート9を引き下げながら単結晶合金翼の鋳物を形成す
る。
Next, the space 7 corresponding to the blade of the mold 6 with the inclination angle of the blade height direction 4 of the space 7 corresponding to the blade height 4 as θ is connected to the chill plate 9 via the selector 8, and the deflection in the direction of the crystal main axis is performed. A seed crystal having an angle of φ is placed on the chill plate 9 and a casting of a single crystal alloy blade is formed while the chill plate 9 is being lowered.

【0017】上記において、単結晶合金翼は、その形状
と結晶の主軸方向との相対関係によりその固有振動数が
変化するため、上記のように、この固有振動数が所定値
となる傾斜角θ及び振れ角φを有限要素法等による異方
性振動数解析により求めることができる。
In the above description, since the natural frequency of the single crystal alloy blade changes depending on the relative relationship between the shape and the direction of the principal axis of the crystal, the inclination angle θ at which the natural frequency becomes a predetermined value as described above. And the deflection angle φ can be determined by anisotropic frequency analysis using a finite element method or the like.

【0018】また、チルプレート9から金属が凝固する
場合、複数の結晶が同時並行的に凝固し始めるため、チ
ルプレート9と鋳型6を直接つなぐと、複数の結晶が同
じ方向に凝固した、いわゆる一方向凝固翼ができる。
When the metal is solidified from the chill plate 9, a plurality of crystals start to solidify simultaneously and in parallel. Therefore, when the chill plate 9 and the mold 6 are directly connected, the plurality of crystals solidify in the same direction. A one-way solidification wing is formed.

【0019】これに対して、上記のように、細い通路で
あるセレクタ8をチルプレート9と鋳型6の間に設けた
場合、セレクタ8を通過して結晶が成長する間に1つの
結晶だけが生き残って鋳型6に達し、その後、単結晶と
して成長する。
On the other hand, as described above, when the selector 8 which is a narrow passage is provided between the chill plate 9 and the mold 6, only one crystal is grown while the crystal passes through the selector 8 and grows. It survives and reaches the mold 6, and then grows as a single crystal.

【0020】そのため、上記セレクタ8を用い、翼部相
当空間7の翼高さ方向4の傾斜角をθとし、種結晶の結
晶主軸方向の振れ角をφとして翼の鋳物を形成した場
合、傾斜角がθ、振れ角がφの単結晶合金翼を形成する
ことができる。
Therefore, when the above-described selector 8 is used to form a blade casting when the inclination angle of the blade equivalent direction 7 in the blade height direction 4 is θ and the deflection angle of the seed crystal in the principal axis direction is φ, A single crystal alloy blade having an angle of θ and a deflection angle of φ can be formed.

【0021】本実施形態においては、傾斜角θと振れ角
φを調整することにより、固有振動数を広い範囲で変化
させることができるとともに、1次,2次,……等の各
固有振動数の比も変えることができるため、翼の固有振
動数の変更を必要とする場合、翼形状設計や最適空力設
計条件を変更することなく、上記傾斜角θと振れ角φの
調整により固有振動数の調整が可能となった。
In the present embodiment, the natural frequency can be changed in a wide range by adjusting the inclination angle θ and the deflection angle φ, and the natural frequencies such as primary, secondary,. Can be changed, so if the natural frequency of the blade needs to be changed, the natural frequency can be adjusted by adjusting the inclination angle θ and the deflection angle φ without changing the blade shape design and the optimum aerodynamic design conditions. Can be adjusted.

【0022】また、翼試作後の振動数計測により予測値
とのずれが判明した場合でも、翼形状及び鋳造用金型形
状を変更することなく、傾斜角θ、振れ角φを変更する
ことのみによって固有振動数を変えることが可能となっ
た。
Further, even if a deviation from the predicted value is found by the frequency measurement after the trial production of the blade, it is only necessary to change the inclination angle θ and the deflection angle φ without changing the blade shape and the casting mold shape. This makes it possible to change the natural frequency.

【0023】[0023]

【発明の効果】本発明の単結晶合金翼の製造方法におい
ては、単結晶合金翼の固有振動数が所定値となる翼高さ
方向に対する結晶主軸方向の傾斜角を異方性振動解析に
より予め求め、次に、その翼高さ方向を重力方向に対し
て上記傾斜角とした鋳型の翼部相当空間にセレクタを介
してチルプレートを接続した後、このチルプレートを引
き下げながら単結晶合金翼の鋳物を形成するものとした
ことによって、翼高さ方向に対する結晶主軸方向の傾斜
角を変化させることにより単結晶合金翼の固有振動数を
調整するものとしたため、翼の固有振動数の変更を必要
とする場合、翼形状設計や最適空力設計条件を変更する
ことなく、所定の固有振動数の翼の製造が可能となり、
また、翼試作後の振動計測により予測値とのずれが判明
した場合にも翼及び鋳造用金型形状を変更することな
く、調整された固有振動数の翼の製造が可能となる。
According to the method for manufacturing a single crystal alloy blade of the present invention, the inclination angle of the crystal main axis direction with respect to the blade height direction at which the natural frequency of the single crystal alloy blade becomes a predetermined value is determined in advance by anisotropic vibration analysis. Then, after connecting a chill plate via a selector to a space corresponding to the wing portion of the mold with the wing height direction being the above-mentioned inclination angle with respect to the direction of gravity, and lowering the chill plate, The natural frequency of the single crystal alloy blade is adjusted by changing the inclination angle of the crystal main axis direction with respect to the blade height direction by forming a casting, so it is necessary to change the natural frequency of the blade In this case, it is possible to manufacture blades having a predetermined natural frequency without changing the blade shape design and the optimum aerodynamic design conditions,
Further, even when a deviation from the predicted value is found by vibration measurement after the trial manufacture of the blade, it is possible to manufacture a blade having an adjusted natural frequency without changing the shape of the blade and the casting mold.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の一形態に係る単結晶合金翼の製
造方法の説明図である。
FIG. 1 is an explanatory diagram of a method for manufacturing a single crystal alloy blade according to an embodiment of the present invention.

【図2】従来の単結晶合金翼の説明図で、(a)は側面
図、(b)は(a)のA−A矢視図である。
2A and 2B are explanatory views of a conventional single crystal alloy blade, wherein FIG. 2A is a side view, and FIG. 2B is a view taken along the line AA of FIG.

【符号の説明】[Explanation of symbols]

1 翼 2 1つの結晶主軸方向 3 他の2つの単結晶主軸方向 4 翼高さ方向 5 翼高さ方向に直交する面内の座標軸 6 鋳型 7 翼部相当空間 8 セレクタ 9 チルプレート DESCRIPTION OF SYMBOLS 1 Wing 2 One crystal main axis direction 3 Other two single crystal main axis directions 4 Blade height direction 5 Coordinate axes in a plane orthogonal to the blade height direction 6 Mold 7 Wing part equivalent space 8 Selector 9 Chill plate

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 単結晶合金翼の固有振動数が所定値とな
る翼高さ方向に対する結晶主軸方向の傾斜角を異方性振
動解析により予め求め、次に、その翼高さ方向を重力方
向に対して上記傾斜角とした鋳型の翼部相当空間にセレ
クタを介してチルプレートを接続した後、このチルプレ
ートを引き下げながら単結晶合金翼の鋳物を形成するこ
とを特徴とする単結晶合金翼の製造方法。
An inclination angle in the crystal main axis direction with respect to the blade height direction at which the natural frequency of the single crystal alloy blade becomes a predetermined value is determined in advance by anisotropic vibration analysis, and then the blade height direction is determined in the gravity direction. After connecting a chill plate via a selector to a space corresponding to the wing portion of the mold having the above inclination angle, a single crystal alloy wing is formed while pulling down the chill plate to form a single crystal alloy wing. Manufacturing method.
JP1245198A 1998-01-26 1998-01-26 Production of single crystal alloy blade Withdrawn JPH11207451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245198A JPH11207451A (en) 1998-01-26 1998-01-26 Production of single crystal alloy blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245198A JPH11207451A (en) 1998-01-26 1998-01-26 Production of single crystal alloy blade

Publications (1)

Publication Number Publication Date
JPH11207451A true JPH11207451A (en) 1999-08-03

Family

ID=11805713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245198A Withdrawn JPH11207451A (en) 1998-01-26 1998-01-26 Production of single crystal alloy blade

Country Status (1)

Country Link
JP (1) JPH11207451A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104399894A (en) * 2014-12-15 2015-03-11 东方电气集团东方汽轮机有限公司 Wax tree structure applied to formation of high-temperature alloy single-crystal guide vane
CN104439077A (en) * 2014-12-15 2015-03-25 东方电气集团东方汽轮机有限公司 Wax tree structure for forming high-temperature alloy single-crystal turbine blade
CN109351951A (en) * 2018-11-29 2019-02-19 中国科学院金属研究所 A kind of process reducing single crystal blade platform rarefaction defect
CN115047160A (en) * 2022-04-28 2022-09-13 上海交通大学 Device and method for evaluating casting performance of single crystal high-temperature alloy

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104399894A (en) * 2014-12-15 2015-03-11 东方电气集团东方汽轮机有限公司 Wax tree structure applied to formation of high-temperature alloy single-crystal guide vane
CN104439077A (en) * 2014-12-15 2015-03-25 东方电气集团东方汽轮机有限公司 Wax tree structure for forming high-temperature alloy single-crystal turbine blade
CN109351951A (en) * 2018-11-29 2019-02-19 中国科学院金属研究所 A kind of process reducing single crystal blade platform rarefaction defect
CN109351951B (en) * 2018-11-29 2020-12-22 中国科学院金属研究所 Process method for reducing loosening defect of single crystal blade platform
CN115047160A (en) * 2022-04-28 2022-09-13 上海交通大学 Device and method for evaluating casting performance of single crystal high-temperature alloy
CN115047160B (en) * 2022-04-28 2023-11-03 上海交通大学 Device and method for evaluating casting performance of monocrystal superalloy

Similar Documents

Publication Publication Date Title
US4469160A (en) Single crystal solidification using multiple seeds
RU2490088C2 (en) Method of making blades with directional crystallisation
Dai et al. Grain selection in spiral selectors during investment casting of single-crystal turbine blades: Part I. Experimental investigation
US4804311A (en) Transverse directional solidification of metal single crystal articles
US9144842B2 (en) Unidirectional solidification process and apparatus and single-crystal seed therefor
JPH03352B2 (en)
JPH11207451A (en) Production of single crystal alloy blade
EP0127552B1 (en) Casting of articles with predetermined crystalline orientation
JP2001505175A (en) Method and apparatus for making directionally solidified castings
EP0059549B1 (en) Method of casting an article
EP0126550A1 (en) Casting articles by directional solidification
JPH0120951B2 (en)
EP0100150A2 (en) Single crystal metal airfoil
US10507521B2 (en) Mould for casting a monocrystalline component
RU2492025C1 (en) Method of producing monocrystalline articles from refractory nickel alloys with preset crystal-lattice orientation
JPH0569079B2 (en)
EP0171343A1 (en) Polygon cross section seed for directional solidification
CN1209505C (en) Method for controlling transverse crystal orientation of metal monocrystal
EP0066971A2 (en) Method of casting an article
RU2184010C1 (en) Apparatus for making castings with monocrystalline structure
RU2285580C2 (en) Apparatus for producing cast products by directional crystallization
JPH04231170A (en) Producing mold for member by solidifying as single crystal
RU2329120C1 (en) Method of producing single crystal cast of turbine working blade of gas turbine engine with specified axial and azimuthal orientation of alloy
JPH07310502A (en) Turbine rotor blade
Toloraya et al. Production of Single-Crystal Seeds [001] from Nickel–Tungsten Alloys by Directional Crystallization

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405