JPH11206872A - In vivo sliding member and its manufacture - Google Patents

In vivo sliding member and its manufacture

Info

Publication number
JPH11206872A
JPH11206872A JP10017059A JP1705998A JPH11206872A JP H11206872 A JPH11206872 A JP H11206872A JP 10017059 A JP10017059 A JP 10017059A JP 1705998 A JP1705998 A JP 1705998A JP H11206872 A JPH11206872 A JP H11206872A
Authority
JP
Japan
Prior art keywords
titanium
sliding
metal
coating layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10017059A
Other languages
Japanese (ja)
Inventor
Tsunehiro Ishii
経裕 石井
Yasunori Tamura
保典 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Tanaka Ltd
Original Assignee
Kyocera Corp
Tanaka Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Tanaka Ltd filed Critical Kyocera Corp
Priority to JP10017059A priority Critical patent/JPH11206872A/en
Publication of JPH11206872A publication Critical patent/JPH11206872A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate elution of a metal material from a metal surface and make a sliding opposite hard to be worn, by forming a cover layer with a specific value of average thickness comprising titanium carbide and carbon solution titanium on the sliding surface of a member which is to slide with another member in vivo and comprises titanium metal. SOLUTION: On the sliding surface of a member which slides with another member in vivo and comprises titanium metal, a cover layer comprising titanium carbide and carbon solution titanium with average thickness 2-200 μm is formed. In an atmosphere of 0.5-1 Torr under 799-970 deg.C containing hydrocarbon gas, the sliding surface of the member comprising titanium metal is plasma-caburized to form a cover layer comprising titanium carbide and carbon solution titanium with thickness of 2-200 μm. Thus, an in vivo sliding member which hardly wear a sliding opposite comprising a polymer material and whose cover layer is hard to be peeled off can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、生体内の関節部分
を置換するための部材であって、且つ、生体内において
他部材と摺動する表面を備えた摺動部材であって、特
に、機械的強度が大きく生体為害性の少ない金属材から
なる生体内摺動部材およびその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a member for replacing a joint part in a living body and a sliding member having a surface which slides with another member in the living body. The present invention relates to a sliding member in a living body made of a metal material having high mechanical strength and little harm to a living body, and a method for manufacturing the sliding member.

【0002】[0002]

【従来の技術】上記生体内摺動部材は、例えば人工膝関
節の大腿骨部材が、相手方として脛骨部材の摺動部分に
配備されたポリエチレン材と摺動するように、金属:高
分子材料の組合せにより、良好な摺動性とショックを適
度に吸収する弾性を備えた関節摺動面が構成されてい
た。具体的には、超高分子ポリエチレンに対してコバル
トクロム合金やチタン合金の組合せが主流であった。
2. Description of the Related Art A sliding member in a living body is made of a metal: polymer material so that, for example, a femoral member of an artificial knee joint slides against a polyethylene material provided on a sliding portion of a tibia member as a counterpart. The combination formed a sliding surface of the joint having good slidability and elasticity for appropriately absorbing shock. Specifically, the combination of a cobalt chromium alloy and a titanium alloy with ultra high molecular weight polyethylene has been the mainstream.

【0003】生体内摺動部材として金属材を一方に配し
た場合、金属材は機械的強度が大きいので、部材の損傷
や破損の恐れが非常に小さいという利点がある一方、生
体内の環境下で長年使用されると次第に金属表面、特
に、摺動面が腐食し始め、体内に溶出する結果、細胞組
織を壊死せしめ、周囲の組織が破壊されてしまうなどの
恐れ等があり、必ずしも、安全性に関する若干の危惧を
拭いきれないまま使用されているのが実情であった。
When a metal material is arranged on one side as a sliding member in a living body, the metal material has a high mechanical strength, so that there is an advantage that the risk of damage or breakage of the member is very small. When used for many years, metal surfaces, especially sliding surfaces, gradually begin to corrode and elute into the body, resulting in necrosis of cell tissues and destruction of surrounding tissues. In fact, it was used without removing some concerns about gender.

【0004】また、摺動特性に関しても長年の使用によ
りポリエチレンの摩耗粉が体内に蓄積され、骨と補綴部
材の間に入り込んでルーズニングの原因となったり等、
生体に悪影響を与えてしまった症例が数多く報告されて
いる。
[0004] In addition, with respect to sliding characteristics, wear powder of polyethylene accumulates in the body due to long-term use, and enters between the bone and the prosthetic member to cause loosening.
There have been many reports of adverse effects on living organisms.

【0005】[0005]

【発明が解決しようとする課題】このような従来技術の
問題に鑑み、本発明は、金属材からなる摺動部材におい
て、金属表面からの金属材の溶出がほとんどなく、且
つ、摺動特性、特に、高分子材料からなる摺動相手方を
摩耗させにくい被覆層を摺動表面に形成し、さらに、上
記被覆層が容易に剥離してしまわないようにすることを
課題とするものである。
SUMMARY OF THE INVENTION In view of the above-mentioned problems in the prior art, the present invention provides a sliding member made of a metal material, in which the metal material hardly elutes from the metal surface, and the sliding characteristics are improved. In particular, it is an object of the present invention to form a coating layer made of a polymer material on a sliding surface of a sliding counterpart which is hard to wear, and to prevent the coating layer from easily peeling off.

【0006】[0006]

【課題を解決するための手段】上記の課題を解決するた
め、本発明は、生体内において他部材と摺動し且つチタ
ン金属からなる部材の摺動表面に、炭化チタンおよび炭
素固溶チタンからなる平均厚さ2μm〜200μmの被
覆層を形成する。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a method of sliding a member made of titanium metal, which slides with other members in a living body, on a sliding surface of titanium metal. A coating layer having an average thickness of 2 μm to 200 μm is formed.

【0007】なお、このような被覆層は、チタン金属を
炭化水素ガスを含有する0.5〜1torr、700〜
970℃の雰囲気内でプラズマ処理する手段を採用する
ことにより形成することができる。
[0007] Such a coating layer is made of titanium metal containing hydrocarbon gas at 0.5 to 1 torr and 700 to 1 torr.
It can be formed by employing means for performing plasma treatment in an atmosphere of 970 ° C.

【0008】[0008]

【発明の実施の形態】以下に本発明の実施形態を詳細に
説明する。
Embodiments of the present invention will be described below in detail.

【0009】例えば、人工膝関節の大腿骨部材など、生
体内の関節部分を置換するための部材をチタン金属によ
り構成し、且つ、生体内において他部材と摺動し且つチ
タン金属からなる部材の摺動表面に、炭化チタンおよび
炭素固溶チタンからなる厚さ2μm〜200μmの被覆
層を形成することにより本発明の生体内摺動部材を得
る。
For example, a member for replacing a joint part in a living body, such as a femoral member of an artificial knee joint, is made of titanium metal, and a member made of titanium metal that slides with other members in the living body. An in vivo sliding member of the present invention is obtained by forming a coating layer of titanium carbide and carbon solid solution titanium with a thickness of 2 μm to 200 μm on the sliding surface.

【0010】このような被覆層を設けるため、チタン金
属を炭化水素ガスを含有する0.5〜1torr,70
0〜970℃の雰囲気内で部材表面の所望箇所をプラズ
マ浸炭する方法を採用することができる。以下、その具
体的方法を説明する。
[0010] In order to provide such a coating layer, titanium metal is added to a hydrocarbon gas containing 0.5 to 1 torr, 70 torr.
A method of plasma carburizing a desired portion of the member surface in an atmosphere of 0 to 970 ° C. can be adopted. Hereinafter, the specific method will be described.

【0011】この発明に用いるチタン金属は、純チタン
またはチタン合金のいずれであってもよく、合金の場合
は特にその組成を限定するものではないが、従来より生
体用材料として用いられえいるTi−6Al−7Nb,
Ti−6Al−4Vなどのチタン合金が好ましい。
The titanium metal used in the present invention may be either pure titanium or a titanium alloy. In the case of an alloy, the composition thereof is not particularly limited, but the titanium metal conventionally used as a biomaterial has been used. -6Al-7Nb,
Titanium alloys such as Ti-6Al-4V are preferred.

【0012】そして、このようなチタン金属からなる部
材の摺動面について、予めラップ等でRa0.1μm以
下の表面粗さまで鏡面状に仕上げを行っておく。
The sliding surface of such a titanium metal member is mirror-finished in advance to a surface roughness of Ra 0.1 μm or less with a wrap or the like.

【0013】その後、表面の脱脂を行った後、有機溶媒
にて超音波洗浄処理を行う。さらに、チタン金属を処理
室内にセットし、排気した後、処理温度まで加熱し、水
素、アルゴン、窒素等のクリーニング用ガスを導入し、
高温中で直流高電圧を印加して表面のクリーニングを行
う。これは、導入されたガスがプラズマ化し、プラズマ
中の電位は陽極から陰極までの大部分が一様であったと
ころに、陰極付近で急激に電位が低下するため、プラズ
マ中の水素イオンやアルゴンイオンが陰極降下によって
加速され、チタン金属表面に衝突して表面の酸化物その
他の付着物を跳ね飛ばしてチタン金属表面をクリーニン
グするものである。
Then, after the surface is degreased, ultrasonic cleaning is performed with an organic solvent. Furthermore, after setting the titanium metal in the processing chamber, evacuating, heating to the processing temperature, introducing a cleaning gas such as hydrogen, argon, and nitrogen,
The surface is cleaned by applying a DC high voltage at a high temperature. This is because the introduced gas turns into plasma, and the potential in the plasma is almost uniform from the anode to the cathode, but the potential drops rapidly near the cathode. The ions are accelerated by the cathodic descent, collide with the titanium metal surface and bounce off oxides and other deposits on the surface to clean the titanium metal surface.

【0014】続いて、メタンガス、エタンガス、プロパ
ンガスなど炭化水素ガスを0.5〜1torrの範囲で
導入するとプラズマガス中に活性炭素が発生し、これが
チタン金属表面に付着し且つ内部に拡散していく浸炭反
応を進行させ、前記被覆層を形成する。この時、上記活
性炭素は炭素固溶チタンとして被覆層中に存在する他、
残りはチタンと化合する。
Subsequently, when a hydrocarbon gas such as methane gas, ethane gas or propane gas is introduced in a range of 0.5 to 1 torr, activated carbon is generated in the plasma gas, which adheres to the titanium metal surface and diffuses inside. The carburizing reaction proceeds to form the coating layer. At this time, the activated carbon is present in the coating layer as carbon solid solution titanium,
The rest combines with titanium.

【0015】ここで、前記したプラズマ浸炭処理の条件
における炭化水素ガスの圧力は、0.5〜1torrで
あるが、0.5torr未満の圧力では、浸炭層内で炭
化物が生成され難く、性能的に劣った被膜となってしま
う恐れがあり、他方、1torrを超えるとチタン金属
表面にガラス状カーボンが形成され、炭素の浸入、拡散
が起こり難くなる恐れがある。
Here, the pressure of the hydrocarbon gas under the conditions of the plasma carburizing treatment is 0.5 to 1 torr. However, if the pressure is less than 0.5 torr, carbides are not easily generated in the carburized layer and the performance is low. On the other hand, when it exceeds 1 torr, glassy carbon is formed on the surface of the titanium metal, and carbon intrusion and diffusion may not easily occur.

【0016】また、前記プラズマ浸炭処理における雰囲
気温度は、700〜970℃であるが、700℃未満の
温度では、スーティングの発生が起こり易く、そのため
希釈用のガス(水素、アルゴン、窒素など)の分圧が高
くなってしまう結果、浸炭反応が起こりにくくなってし
まい、他方、970℃を超えると、チタン金属がα型か
らβ型に変態することにより、大幅に強度劣化してしま
う。
The ambient temperature in the plasma carburizing treatment is 700 to 970 ° C., but if the temperature is lower than 700 ° C., sooting is apt to occur, so that a dilution gas (hydrogen, argon, nitrogen, etc.) is used. As a result, the carburizing reaction hardly occurs. On the other hand, when the temperature exceeds 970 ° C., the titanium metal transforms from α-type to β-type, so that the strength is significantly deteriorated.

【0017】また、前記プラズマ浸炭処理による浸炭深
さ、すなわち、被覆層の平均厚みとしては、2μm以上
は必要である。これは、被覆層の平均厚みが2μm未満
では、生体内でのチタンの溶出量が多くなる傾向がある
とともに、摺動性の点で例えば、摺動相手方がポリエチ
レンなどの高分子材料である場合に、相手方の摩耗量を
多くしてしまったり、また、自身が剥離してしまう恐れ
がある。これに対して、プラズマ浸炭処理を970℃以
下の温度で行った場合に被覆層の厚みが200μmより
厚い場合には、工程上無理があり、また、コストもかか
り実用的ではない。
Further, the carburizing depth by the plasma carburizing treatment, that is, the average thickness of the coating layer needs to be 2 μm or more. This is because when the average thickness of the coating layer is less than 2 μm, the amount of titanium dissolved in the living body tends to increase, and in terms of slidability, for example, when the sliding partner is a polymer material such as polyethylene. In addition, there is a risk that the wear amount of the other party may be increased, or the self may be peeled off. On the other hand, when the plasma carburizing treatment is performed at a temperature of 970 ° C. or less, if the thickness of the coating layer is larger than 200 μm, the process is unreasonable, the cost is high, and it is not practical.

【0018】このように形成された上記被覆層は、浸炭
により炭化物TiCと炭素固溶チタンとを含むことによ
って潤滑性を発揮し、特に、ポリエチレンなとの高分子
材料を摺動相手方とした場合に、相手方材料の摩耗を抑
えることができ、さらに、生体内でのチタン金属の溶出
も殆どないので、生体内の摺動表面を構成するのに最適
である。
The coating layer formed as described above exhibits lubricity by containing carbide TiC and carbon-dissolved titanium by carburization, and especially when a polymer material such as polyethylene is used as a sliding partner. In addition, since the wear of the mating material can be suppressed and the titanium metal is hardly eluted in the living body, it is most suitable for forming a sliding surface in the living body.

【0019】ところで、上記被覆層の層厚さを確認する
には、生体内摺動部材の摺動面を垂直にカットし、その
断面を顕微鏡にて拡大して観察する。浸炭による上記被
覆層は浸炭していない部分と比べて層状に区別できる
程、結晶組織の形態が相違するので、厚さの測定は極め
て簡単に行うことができる。そして、10点ほどを任意
に抽出しその膜厚を測定することにより平均厚みを算出
することができる。
In order to confirm the thickness of the coating layer, the sliding surface of the sliding member in a living body is cut vertically, and the cross section is enlarged and observed with a microscope. The thickness of the coating layer formed by carburization can be extremely easily measured because the morphology of the crystal structure is so different that the layer can be distinguished in layers from the uncarburized portion. The average thickness can be calculated by arbitrarily extracting about 10 points and measuring the thickness.

【0020】また、炭化チタンの存在を確認するには、
上記断面にX線を当ててそのピークを見ることで行う
他、ESCA分析で行うことができる。これに対して、
炭素固溶チタンについては、断面を顕微鏡にて拡大して
結晶組織を観察することにより、公知のようにその存在
を確認することができる。
In order to confirm the presence of titanium carbide,
In addition to applying X-rays to the cross section and viewing the peaks, it can be performed by ESCA analysis. On the contrary,
The presence of carbon solid solution titanium can be confirmed as is known by enlarging the cross section with a microscope and observing the crystal structure.

【0021】また、上記プラズマ浸炭の手法を用いる場
合に、被覆層の厚みをコントロールするには、処理温
度、処理時間、分圧のファクターをそれぞれ適宜調整す
れば良い。すなわち、表1に示すように、処理時間、分
圧を一定にし、処理温度を変えると、処理温度が高いほ
ど被覆層の厚みが大きくなる。また、表2に示すよう
に、同一の処理温度と分圧の下では処理時間を長くする
に応じて被覆層の厚みを大きくすることができる。ま
た、表3に示すように処理温度と時間が同一条件の下で
は、分圧を大きくする程、被覆層の厚みが大きくなる。
When the above-mentioned plasma carburizing technique is used, the thickness of the coating layer can be controlled by appropriately adjusting the factors of the processing temperature, the processing time and the partial pressure. That is, as shown in Table 1, when the processing time and the partial pressure are fixed and the processing temperature is changed, the higher the processing temperature, the larger the thickness of the coating layer. Further, as shown in Table 2, under the same processing temperature and partial pressure, the thickness of the coating layer can be increased as the processing time is increased. Further, as shown in Table 3, under the same processing temperature and time conditions, as the partial pressure increases, the thickness of the coating layer increases.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】実験例1 Ti−6Al−4Vのチタン合金によりφ9mm×5m
mの円筒体をなすピンを作製し、ラップによりRa=
0.1μm以下まで鏡面仕上げを行ってから、アセトン
中で超音波洗浄し、以下の装置および条件でプラズマ浸
炭処理を行った。
EXPERIMENTAL EXAMPLE 1 φ9 mm × 5 m with titanium alloy of Ti-6Al-4V
A pin that forms a cylindrical body of m is made, and Ra = Ra =
After performing mirror finishing to 0.1 μm or less, ultrasonic cleaning was performed in acetone, and plasma carburizing was performed using the following apparatus and conditions.

【0026】すなわち、加熱炉内にグラファイトファイ
バー等の断熱材で囲まれた処理室を有し、この処理室内
をロッドグラファイトからなる発熱体で加熱すると共
に、処理室内の上部に直流グロー放電の正極を接続し、
かつ処理品の載置台に陰極を接続し、また処理室内の要
所にはガスマニホールドを設置して炭化水素、窒素、ア
ルゴン、水素などのプロセスガスを適宜導入するように
した公知の浸炭処理装置(日本電子工業社製)を用い
た。
That is, a processing chamber surrounded by a heat insulating material such as graphite fiber is provided in a heating furnace, and the processing chamber is heated by a heating element made of rod graphite, and a positive electrode of a DC glow discharge is provided on the upper part of the processing chamber. And connect
A known carburizing apparatus in which a cathode is connected to the mounting table of the processed product, and a gas manifold is installed at a key point in the processing chamber to appropriately introduce a process gas such as hydrocarbon, nitrogen, argon, and hydrogen. (Manufactured by JEOL Ltd.) was used.

【0027】そして浸炭処理条件としては、ガス組成を
100%プロパンガスとし、また、ガス圧力、処理時
間、処理温度を表4に示すようにした。その結果、同じ
く表4に示す厚みの被覆層を有する試験片を得た。
The carburizing conditions were as follows: gas composition was 100% propane gas; and gas pressure, processing time and processing temperature were as shown in Table 4. As a result, a test piece having a coating layer having the thickness shown in Table 4 was obtained.

【0028】[0028]

【表4】 [Table 4]

【0029】なお、比較例品として上記試験片と同一形
状、サイズであり、プラズマ浸炭処理していないTi−
6Al−4V合金、TiNからそれぞれなる試験片を作
製した。
[0029] As a comparative example, the same shape and size as the above-mentioned test piece were used, and Ti-
Test specimens each made of a 6Al-4V alloy and TiN were produced.

【0030】これらの試験片を用い次のようなピンオン
フラットの摩耗試験を行った。
Using these test pieces, the following pin-on-flat wear test was performed.

【0031】すなわち、カウンターウエイトによって、
一端に1.96Nの荷重が掛かるように支持されたアー
ムの一端下面に、ピン型の試験片を固定し、これに対し
て10×40×5mmの平板状をなす超高分子ポリエチ
レンの摺動相手材を生理食塩水中に浸漬し、前記荷重に
て平板状の摺動相手材表面に押しつけた状態で、この相
手材をアームの長手方向と直角方向に強制的に速度20
mm/秒、5mmのストロークで往復運動させた。
That is, by the counter weight,
A pin-shaped test piece is fixed to the lower surface of one end of an arm supported so that a load of 1.96 N is applied to one end thereof, and sliding of a 10 × 40 × 5 mm plate-shaped ultra-high molecular weight polyethylene is performed on the test piece. With the mating member immersed in a physiological saline solution and pressed against the surface of the plate-shaped sliding mating member with the above-mentioned load, the mating member is forcibly forced at a speed of 20 in the direction perpendicular to the longitudinal direction of the arm.
It was reciprocated with a stroke of 5 mm / sec and 5 mm.

【0032】ストローク回数で、50万回、100万
回、150万回、200万回、250万回、300万回
の時点までの高分子ポリエチレンの累積摩耗量(体積摩
耗量/単位mm3 )を測定した。その結果を表4に示
す。
Cumulative wear of polymer polyethylene up to 500,000, 1,000,000, 1.5 million, 2 million, 2.5 million, and 3 million strokes (volume wear / mm 3 ) Was measured. Table 4 shows the results.

【0033】同表に示すように、厚さ2.0μmの被覆
層の試験片3は300万回時点までで僅かながら超高分
子ポリエチレンを摩耗させていたが、これより被覆層の
厚みの厚い試験片4、5では全く摩耗がなかった。ま
た、被覆層の厚みが0.5μmの試験片1では200万
回で被覆層の剥離が起こり、その後、高分子ポリエチレ
ンを摩耗させていた。さらに、被覆層の厚みが1μmの
試験片2の場合、250万回で被覆層の剥離が起こり、
その後、超高分子ポリエチレンを摩耗させていた。
As shown in the table, the test piece 3 having the coating layer having a thickness of 2.0 μm slightly abraded the ultra-high-molecular-weight polyethylene up to 3 million times, but the coating layer was thicker than this. Test pieces 4 and 5 showed no wear. In the test piece 1 having a coating layer thickness of 0.5 μm, the coating layer was peeled off after 2,000,000 times, and thereafter the high-molecular polyethylene was worn. Furthermore, in the case of the test piece 2 in which the thickness of the coating layer is 1 μm, the coating layer peels off after 2.5 million times,
Thereafter, the ultra high molecular weight polyethylene was worn.

【0034】上記比較例品である、試験片6はプラズマ
浸炭処理を行わないチタン合金からなるが、高分子ポリ
エチレンの摩耗量が際立って多かった。最後に、窒化チ
タンを用いた比較例品としての試験片7は、ポリエチレ
ンの摩耗量が多かった。
The test piece 6, which was a comparative example, was made of a titanium alloy that was not subjected to plasma carburizing treatment. However, the wear amount of the high molecular polyethylene was remarkably large. Finally, the test piece 7 as a comparative example using titanium nitride had a large amount of wear of polyethylene.

【0035】以上のように、疑似生体環境の生理食塩水
中浸漬状態で行った前記摩耗試験において、本実施例品
(試験片3〜5)は超高分子ポリエチレンを摺動相手方
とした摺動において優れた摩耗特性を発揮した。
As described above, in the abrasion test performed in a physiological saline immersion in a simulated living environment, the product of this example (test pieces 3 to 5) was used in sliding with ultra-high molecular weight polyethylene as the sliding partner. Demonstrated excellent wear characteristics.

【0036】実験例2 前記実験例1の欄において説明した上記試験片1〜7
(ただし、上記実験例1に供したものではない試験片を
使用)を用いて以下の溶出性実験を行った。
Experimental Example 2 Test pieces 1 to 7 described in the section of Experimental Example 1 above.
(However, the following dissolution test was performed using a test piece not provided in the above-mentioned Experimental Example 1).

【0037】まず試験片をその表面積60cm2 に対し
て121℃に保持した20mlの生理食塩水中に浸漬
し、通法に従い表5に記載する各時点におけるチタンの
溶出量を測定した。その結果を表5に示す。
First, the test piece was immersed in 20 ml of physiological saline maintained at 121 ° C. with respect to its surface area of 60 cm 2 , and the amount of titanium eluted at each time point shown in Table 5 was measured according to a conventional method. Table 5 shows the results.

【0038】[0038]

【表5】 [Table 5]

【0039】表5より明らかなように、本実施例品とし
ての試験片3〜5は4週間後でもチタンの溶出が認めら
れなかった。また、被覆層の厚みが0.5μmの試験片
1では3日目よりチタンの溶出が認められ、さらに、被
覆層の厚みが1μmの試験片2の場合、14日目よりチ
タンの溶出が認められた。
As is clear from Table 5, no titanium elution was observed in Test pieces 3 to 5 as the products of this example even after 4 weeks. Further, in the test piece 1 having a coating layer thickness of 0.5 μm, titanium elution was recognized from the third day, and in the case of the test piece 2 having a coating layer thickness of 1 μm, titanium elution was recognized from the 14th day. Was done.

【0040】上記比較例品である、試験片6はプラズマ
浸炭処理を行わないチタン合金からなるが、6時間後か
らチタン溶出が起こっていた。最後に、窒化チタンを用
いた比較例品としての試験片7は、7日目よりチタンの
溶出が認められていた。
The test piece 6 of the comparative example was made of a titanium alloy not subjected to the plasma carburizing treatment, but titanium was eluted after 6 hours. Finally, the test piece 7 as a comparative example using titanium nitride showed titanium elution from the 7th day.

【0041】以上のように、疑似生体環境の生理食塩水
中で且つより厳しい121℃という加速条件で行った前
記溶出試験において、本実施例品(試験片3〜5)はチ
タンの溶出が起こらないという優れた特性を発揮した。
As described above, in the dissolution test performed in the physiological saline in the simulated living environment and under the stricter acceleration condition of 121 ° C., the product of this example (test pieces 3 to 5) does not dissolve titanium. Excellent characteristics were exhibited.

【0042】[0042]

【発明の効果】叙上のように本発明によれば、生体内に
おいて他部材と摺動し且つチタン金属からなる部材の摺
動表面に、炭化チタンおよび炭素固溶チタンからなる平
均厚さ2μm〜200μmの被覆層を形成したことによ
り、金属材の溶出がほとんどなく、且つ、摺動特性、特
に、高分子材料からなる摺動相手方を摩耗させにくく、
さらに、この被覆層は剥離し難いという非常に優れた作
用、効果を兼ね備えた生体内摺動部材を提供することが
できる。
As described above, according to the present invention, an average thickness of 2 μm made of titanium carbide and carbon solid solution titanium is slid on the sliding surface of a member made of titanium metal which slides with other members in a living body. By forming the coating layer of ~ 200 μm, there is almost no elution of the metal material, and the sliding characteristics, especially, the sliding partner made of a polymer material is hardly abraded,
Further, it is possible to provide an in-vivo sliding member having an extremely excellent action and effect that this coating layer is hard to peel off.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】生体内において他部材と摺動し且つチタン
金属からなる部材の摺動表面に、炭化チタンおよび炭素
固溶チタンからなる厚さ2μm〜200μmの被覆層が
形成されていることを特徴とする生体内摺動部材。
1. A coating layer of titanium carbide and carbon solid solution titanium having a thickness of 2 μm to 200 μm is formed on a sliding surface of a member made of titanium metal which slides with another member in a living body. A sliding member in a living body, characterized in that:
【請求項2】炭化水素ガスを含有する0.5〜1tor
r,700〜970℃の雰囲気内でチタン金属からなる
部材の摺動表面をプラズマ浸炭し、炭化チタンおよび炭
素固溶チタンからなる厚さ2μm〜200μmの被覆層
を形成することを特徴とする生体内摺動部材の製造方
法。
2. 0.5 to 1 torr containing hydrocarbon gas
r, a sliding surface of a member made of titanium metal is plasma carburized in an atmosphere of 700 to 970 ° C. to form a coating layer of 2 μm to 200 μm made of titanium carbide and carbon solid solution titanium. A method for manufacturing a body sliding member.
JP10017059A 1998-01-29 1998-01-29 In vivo sliding member and its manufacture Pending JPH11206872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10017059A JPH11206872A (en) 1998-01-29 1998-01-29 In vivo sliding member and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10017059A JPH11206872A (en) 1998-01-29 1998-01-29 In vivo sliding member and its manufacture

Publications (1)

Publication Number Publication Date
JPH11206872A true JPH11206872A (en) 1999-08-03

Family

ID=11933424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10017059A Pending JPH11206872A (en) 1998-01-29 1998-01-29 In vivo sliding member and its manufacture

Country Status (1)

Country Link
JP (1) JPH11206872A (en)

Similar Documents

Publication Publication Date Title
Dearnley A brief review of test methodologies for surface-engineered biomedical implant alloys
Yildiz et al. Wear and corrosion behaviour of various surface treated medical grade titanium alloy in bio-simulated environment
Zhao et al. Tribocorrosion studies of metallic biomaterials: The effect of plasma nitriding and DLC surface modifications
Sahasrabudhe et al. Laser processing of in situ TiN/Ti composite coating on titanium
KR101004948B1 (en) A method of improving surface hardness, wear resistance or fatigue strength of a cobalt-chromium based alloy medical implant without loss of corrosion resistance and a surface-hardened cobalt-chromium based alloy medical implant producible by the method
Choy et al. Functionally graded diamond-like carbon coatings on metallic substrates
Dearnaley et al. Biomedical applications of diamond-like carbon (DLC) coatings: A review
Ju et al. Effect of heat treatment on microstructure and tribological behavior of Ti–6Al–4V alloys fabricated by selective laser melting
JP3181946B2 (en) Method for producing orthopedic implant made of titanium or titanium alloy and method for hardening the surface
Komotori et al. Corrosion response of surface engineered titanium alloys damaged by prior abrasion
Rahman et al. Structural and tribological properties of the plasma nitrided Ti-alloy biomaterials: Influence of the treatment temperature
Yıldız et al. Fretting fatigue properties of plasma nitrided AISI 316 L stainless steel: experiments and finite element analysis
AU2015203048A1 (en) Applications of diffusion hardening techniques
KR20100112586A (en) Surface alloyed medical implant
Fomin et al. Functionally graded Ti (C, N) coatings and their production on titanium using solid-state carburization associated with induction heat treatment
JPH0790542A (en) Surface treating method of titanium metal
US6723177B2 (en) Life extension of chromium coating and chromium alloys
Tang et al. Methane and nitrogen plasma immersion ion implantation of titanium metal
Xu et al. Improved wear and corrosion resistance of biomedical TiZrNbTaMo medium-entropy alloy by thermal oxidation treatment
Purandare et al. Improving tribocorrosion resistance of a medical grade CoCrMo alloy by the novel HIPIMS nitriding technique
JPH11206872A (en) In vivo sliding member and its manufacture
Vadiraj et al. Fretting fatigue behavior of surface modified biomedical titanium alloys
JP2007277710A (en) Cobalt-chromium base alloy material and method for manufacturing the same
Vadiraj et al. Fretting fatigue studies of titanium nitride-coated biomedical titanium alloys
Bayrak et al. Fatigue life determination of plasma nitrided medical grade CoCrMo alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080930