JPH11205205A - Multi-carrier signal transmitter - Google Patents

Multi-carrier signal transmitter

Info

Publication number
JPH11205205A
JPH11205205A JP10013506A JP1350698A JPH11205205A JP H11205205 A JPH11205205 A JP H11205205A JP 10013506 A JP10013506 A JP 10013506A JP 1350698 A JP1350698 A JP 1350698A JP H11205205 A JPH11205205 A JP H11205205A
Authority
JP
Japan
Prior art keywords
signal
carrier
antenna
transmission
subcarrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10013506A
Other languages
Japanese (ja)
Other versions
JP2962299B2 (en
Inventor
Yoichi Matsumoto
洋一 松本
Masahiro Umehira
正弘 梅比良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP10013506A priority Critical patent/JP2962299B2/en
Publication of JPH11205205A publication Critical patent/JPH11205205A/en
Application granted granted Critical
Publication of JP2962299B2 publication Critical patent/JP2962299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve considerably a code error rate characteristic without increasing a load of a device at a terminal side by applying transmission diversity technology at a base station side to a transmitter even when a transmission speed is high. SOLUTION: A coded transmission signal is converted into a parallel signal, a subcarrier is assigned to each of the parallel signal and allocated to one of a multi-carrier signal generating means 20. An output of each of the multi- carrier signal generating means 20 is up-converted by an up-conversion means 30 and emitted from a corresponding antenna. The allocation of the subcarrier and the multi-carrier signal generating means at a transmitter side is executed based on the information of the antenna in the best reception state for every subcarrier frequency of the received signal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ディジタル無線通
信において用いられるマルチキャリア信号伝送装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multicarrier signal transmission device used in digital radio communication.

【0002】[0002]

【従来の技術】比較的伝送速度が低速なディジタル無線
通信では(例えば、1Mb/s以下)、送信ダイバーシ
チあるいは受信ダイバーシチ技術により、大幅な符号誤
り率改善効果が期待できる。しかし、伝送速度が高速と
なるにつれ(例えば、数10Mb/s)、信号スペクト
ルが広帯域化し、シングルキャリア伝送では、伝送スペ
クトルの帯域がマルチパス等によるスペクトル歪みに比
べ広いため、ダイバーシチによる改善効果が期待できな
い。そこで、マルチキャリア伝送を適用し、高速伝送の
場合においても、一キャリア当たりの帯域を狭め、その
帯域毎に受信ダイバーシチを施す受信帯域分割型ダイバ
ーシチ合成受信方式が提案されている(「参考文献
1」)。
2. Description of the Related Art In digital wireless communication having a relatively low transmission rate (for example, 1 Mb / s or less), a significant effect of improving a code error rate can be expected by using transmission diversity or reception diversity technology. However, as the transmission speed increases (for example, several tens of Mb / s), the signal spectrum becomes wider, and in single-carrier transmission, the transmission spectrum is wider than the spectrum distortion due to multipath or the like. Can't expect. Therefore, even in the case of high-speed transmission, a multi-carrier transmission is applied, and a band per carrier is narrowed, and a reception band division type diversity combining reception system in which reception diversity is performed for each band has been proposed (see “Reference Document 1”). )).

【0003】また、マルチキャリア伝送の適用を前提と
した他の技術として、基地局において全サブキャリアを
N組のクラスタに分割し、それらクラスタをそれぞれ異
なるN本のアンテナを用いて送信する技術が提案されて
いる(「参考文献2」)。本技術は、分割された各クラ
スタがフェージングの影響を独立に受けることに注目
し、適切な誤り訂正方式と組み合わせることによりダイ
バーシチ効果を期待するものである。
[0003] Another technique premised on the application of multicarrier transmission is a technique in which all subcarriers are divided into N sets of clusters in a base station and the clusters are transmitted using N different antennas. It has been proposed ("Reference 2"). The present technology focuses on the fact that each divided cluster is independently affected by fading, and expects a diversity effect by combining with an appropriate error correction scheme.

【0004】ここでは、発明技術が基地局におけるダイ
バーシチ技術に関するものであることから、基地局側に
て処理を施す後者の従来技術について図3を用いて説明
する。図3に示す従来技術では、マルチキャリア伝送方
式にOFDM(Orthogonal Frequen
cy Division Multiplexing)
を用いている。まず、符号化手段80にて符号化された
データはシリアル−パラレル変換手段90によりパラレ
ル信号となる。前記パラレル化されたデータは、Kクラ
スタ化手段120においてK(K≧2)クラスタに分割
される。そして、Kクラスタに分割されたデータは、K
組の逆FFT(IFFT)手段120およびパラレル−
シリアル手段130により、それぞれのクラスタ別に時
間系列のマルチキャリア信号となる。なお、全サブキャ
リア数がNの場合、前記IFFT手段120のFFT演
算ポイント数は、N/Kとなる。さらに、各クラスタ系
列のマルチキャリア信号はアップコンバージョン手段1
40によりアンテナ送信周波数に変換され、それぞれク
ラスタ系列毎に異なるK本のアンテナ150により送信
される。
[0004] Here, since the present invention relates to the diversity technique in the base station, the latter conventional technique in which processing is performed on the base station side will be described with reference to FIG. In the prior art shown in FIG. 3, an OFDM (Orthogonal Frequency) is used in a multicarrier transmission system.
cy Division Multiplexing)
Is used. First, the data encoded by the encoding unit 80 is converted into a parallel signal by the serial-parallel conversion unit 90. The parallelized data is divided into K (K ≧ 2) clusters by the K clustering means 120. The data divided into K clusters is K
Sets of inverse FFT (IFFT) means 120 and parallel
The serial means 130 generates a time-series multicarrier signal for each cluster. When the number of all subcarriers is N, the number of FFT operation points of the IFFT means 120 is N / K. Further, the multi-carrier signal of each cluster sequence is supplied to
The frequency is converted to an antenna transmission frequency by 40 and transmitted by K antennas 150 different for each cluster sequence.

【0005】端末側(受信側)100では、アンテナ1
01を用いて受信し、ダウンコンバージョン手段10
2、シリアル−パラレル手段103、FFT手段104
を経て、受信信号は、サブキャリア毎に分離されたパラ
レル信号に変換される。そして、検波手段105におい
て、サブキャリア単位で検波され、検波データは、パラ
レル−シリアル手段106にてシリアルデータに変換さ
れた後、復号化手段107により、最終的な受信データ
となる。なお、端末側における前記FFT回路84の演
算ポイント数は、Nである。
On the terminal side (reception side) 100, the antenna 1
01 and down-conversion means 10
2. Serial-parallel means 103, FFT means 104
, The received signal is converted into a parallel signal separated for each subcarrier. Then, detection is performed by the detection means 105 on a subcarrier basis, and the detected data is converted into serial data by the parallel-serial means 106, and then becomes final reception data by the decoding means 107. The number of operation points of the FFT circuit 84 on the terminal side is N.

【0006】[参考文献1]浜住 啓之 他、“広帯域
信号移動受信用帯域分割型ダイバーシチ合成受信方式の
特性−OFDM移動受信における特性改善例”、電子情
報通信学会論文誌、B−ll,Vol.J80−B−l
l,No.6,pp.464−474,1997. [参考文献2]L.J.Cimini,et.al,
“ClusteredOFDM with Trans
mitter Diversity andCodin
g”, IEEE GCOM’97,pp.703−7
07,1997.
[Reference Document 1] Hiroyuki Hamazumi, et al., "Characteristics of Band-Division-Type Diversity Combining Reception System for Wideband Signal Mobile Reception-Example of Performance Improvement in OFDM Mobile Reception", IEICE Transactions, B-ll, Vol . J80-B-1
1, No. 6, pp. 464-474, 1997. [Reference Document 2] J. Cimini, et. al,
“Clustered OFDM with Trans
mitter Diversity and Codin
g ", IEEE GCOM '97, pp. 703-7
07, 1997.

【0007】[0007]

【発明が解決しようとする課題】TDMA−TDD(t
ime division multiple acc
ess−time division duplex)
を前提とした低速度伝送では、端末装置に負担をかけず
符号誤り率を改善する技術として、基地局側で複数のア
ンテナで受信し、受信状態のより良いアンテナを選択的
に用いて送信する、送信ダイバーシチ技術が有効であ
る。しかしながら、シングルキャリア伝送では、伝送速
度が高速の場合、伝送スペクトルの帯域がマルチパス等
によるスペクトル歪みに比べ広いため、ダイバーシチに
よる改善効果が期待できない。
SUMMARY OF THE INVENTION TDMA-TDD (t
im division multiple acc
ess-time division duplex)
In low-speed transmission based on the premise, as a technique for improving the bit error rate without burdening the terminal device, the base station side receives the signal with a plurality of antennas, and selectively transmits using the antenna with a better reception state. The transmission diversity technology is effective. However, in single carrier transmission, when the transmission speed is high, the improvement effect of diversity cannot be expected because the band of the transmission spectrum is wider than the spectrum distortion due to multipath or the like.

【0008】そこで、マルチキャリア伝送を適用し、広
帯域信号をサブチャネルに狭帯域化し、そのサブチャネ
ル毎に受信ダイバーシチを施す受信帯域分割型ダイバー
シチ合成受信方式が提案されている。しかしながら、こ
の場合、端末側装置への負担が大きく、小型化・低消費
電力化の点で不利である。
Accordingly, a reception band division type diversity combining reception system has been proposed in which multicarrier transmission is applied, a wideband signal is narrowed into subchannels, and reception diversity is performed for each subchannel. However, in this case, the burden on the terminal device is large, and it is disadvantageous in terms of miniaturization and low power consumption.

【0009】また、マルチキャリア伝送を対象とした別
の方法として、基地局において、全サブキャリア数をK
組のクラスタに分割し、それらクラスタ毎に異なるK本
のアンテナを用いて送信する方法が提案されているが、
「参考文献2」に示されるように、ピーク電力低減効果
および誤り訂正符号適用時の誤り訂正効果の向上は望め
るものの、ダイバーシチ効果による大幅な特性改善の効
果は得られないという問題があった。また、後者の方式
を端末側からの伝送に適用するためには、端末側にもK
本のアンテナを用いて伝送する必要があり、やはり小型
化・低消費電力化の点で不利である。
[0009] As another method for multicarrier transmission, in the base station, the total number of subcarriers is set to K
A method has been proposed in which the data is divided into sets of clusters and transmitted using K different antennas for each cluster.
As described in Reference 2, although the peak power reduction effect and the error correction effect when the error correction code is applied can be expected, there is a problem in that the effect of a significant characteristic improvement by the diversity effect cannot be obtained. Also, in order to apply the latter method to transmission from the terminal side, K
It is necessary to transmit using a book antenna, which is also disadvantageous in miniaturization and low power consumption.

【0010】本発明技術によるマルチキャリア信号伝送
装置は、TDMA−TDD通信を前提に、伝送速度が高
速な場合(広帯域通信の場合)においても、基地局側に
おける送信ダイバーシチ技術の適用を可能とし、端末側
における装置負担を増大することなく、大幅に符号の誤
り率特性を改善するものである。
The multicarrier signal transmission apparatus according to the present invention makes it possible to apply the transmission diversity technology on the base station side even when the transmission speed is high (in the case of wideband communication) on the premise of TDMA-TDD communication. It is intended to greatly improve the code error rate characteristics without increasing the device load on the terminal side.

【0011】[0011]

【課題を解決するための手段】OFDM(Orthog
onal Frequency DivisionMu
ltiplexing)等のマルチキャリア変調方式を
用いたマルチキャリア信号伝送装置において、複数(2
本以上)のアンテナを有し、複数のアンテナにて受信さ
れた受信信号を、各アンテナ系列毎に後の信号処理に適
した低周波信号に変換して出力するダウンコンバージョ
ン手段と、前記ダウンコンバージョン手段より出力され
るマルチキャリア信号を、各アンテナ系列毎にサブキャ
リア信号に分離し出力するサブキャリア信号分離手段
と、各アンテナ系列で前記サブキャリア信号分離手段に
より出力される、各サブキャリア信号の信号品質(信号
強度等)を測定し、その測定結果を用いて、サブキャリ
ア周波数毎に最良な受信状態のアンテナを指定する、各
サブキャリア周波数毎最良受信状態アンテナ指定手段
と、前記サブキャリア周波数毎最良受信状態アンテナ指
定手段において得られた、サブキャリア周波数毎の最良
受信状態アンテナ情報を基に、送信すべき情報ビットを
各アンテナ系列の該当するサブキャリアに割り振る、各
アンテナ系列送信ビット割り振り手段と、各アンテナ系
列において、前記各アンテナ系列送信ビット割り振り手
段により、各アンテナ系列の使用すべきサブキャリアに
割り振られたビット系列を入力とし、該当するサブキャ
リアのみを選択的に用いてマルチキャリア信号とし出力
する、サブキャリア選択型マルチキャリア信号生成手段
と、各アンテナ系列において、前記サブキャリア選択型
マルチキャリア信号生成手段の出力信号をアンテナ送信
周波数へ変換するアップコンバージョン手段とを、備え
たことを特徴とする。
Means for Solving the Problems OFDM (Orthog)
onal Frequency DivisionMu
In a multi-carrier signal transmission apparatus using a multi-carrier modulation scheme such as
Down conversion means for converting the received signals received by the plurality of antennas into low frequency signals suitable for subsequent signal processing for each antenna series and outputting the converted signals, A subcarrier signal separating unit that separates and outputs a multicarrier signal output from the unit into subcarrier signals for each antenna sequence, and a subcarrier signal separating unit that outputs the subcarrier signal for each antenna sequence. A best reception state antenna designating means for each subcarrier frequency, which measures a signal quality (signal strength or the like) and designates an antenna in a best reception state for each subcarrier frequency using the measurement result; Best reception state antenna information for each subcarrier frequency obtained by each best reception state antenna designating means Based on the above, information bit to be transmitted is allocated to a corresponding subcarrier of each antenna sequence, and each antenna sequence transmission bit allocating means, and in each antenna sequence, each antenna sequence transmission bit allocation means is used by each antenna sequence. A sub-carrier selection type multi-carrier signal generating means, which receives as input a bit sequence allocated to a power sub-carrier and selectively outputs only a corresponding sub-carrier as a multi-carrier signal, and Up conversion means for converting an output signal of the selection type multi-carrier signal generation means into an antenna transmission frequency.

【0012】[0012]

【発明の実施の形態】図1に、本発明の一実施例による
マルチキャリア信号伝送装置の構成を示す。また、マル
チキャリア伝送方式にOFDMを用いた場合の、より具
体的な構成例を図2に示す。以下、図2を用い、実施例
を説明する。
FIG. 1 shows a configuration of a multicarrier signal transmission apparatus according to one embodiment of the present invention. FIG. 2 shows a more specific configuration example when OFDM is used for the multicarrier transmission scheme. The embodiment will be described below with reference to FIG.

【0013】まず、TDMA−TDD通信における基地
局側送信フレームタイミングにおける基地局装置の動作
を説明する。符号化手段80にて符号化されたデータ
は、シリアル−パラレル変換手段90によりパラレルデ
ータとなる。各アンテナ系列送信ビット割り振り手段1
0は、前記パラレルデータを、各サブキャリア周波数毎
最良受信アンテナ指定手段70(動作は後述)の情報を
基に、各アンテナ系列のIFFT手段21において使用
されるサブキャリアに対応づけて、割り振る。なお、送
信に使用しないサブキャリアについては、前記各アンテ
ナ系列送信ビット割り当て手段10において、振幅ゼロ
の信号を割り振ることにより、該当するサブキャリア出
力をゼロ(つまり未使用)とすることが可能である。そ
して、前記IFFT手段21より出力されるパラレル信
号は、パラレル−シリアル変換手段22においてシリア
ル信号に変換され、アップコンバージョン手段30によ
りアンテナ送信周波数に変換され、各アンテナ系列毎に
個別のアンテナ40を用いて送信される。
First, the operation of the base station apparatus at the transmission frame timing on the base station side in TDMA-TDD communication will be described. The data encoded by the encoding unit 80 is converted into parallel data by the serial-parallel conversion unit 90. Transmission bit allocation means 1 for each antenna sequence
0 assigns the parallel data in association with the subcarriers used in the IFFT means 21 of each antenna series based on information of the best reception antenna designating means 70 (the operation will be described later) for each subcarrier frequency. For each subcarrier not used for transmission, the corresponding subcarrier output can be set to zero (that is, unused) by allocating a signal of zero amplitude in each antenna sequence transmission bit allocating unit 10. . The parallel signal output from the IFFT means 21 is converted into a serial signal by the parallel-serial conversion means 22, converted into an antenna transmission frequency by the up-conversion means 30, and the individual antenna 40 is used for each antenna series. Sent.

【0014】次に、TDMA−TDD通信における基地
局側受信フレームタイミングにおける基地局装置の動作
を説明する。まず、異なるM本のアンテナにて受信され
た端末側より送信されたマルチキャリア信号は、ダウン
コンバージョン手段50を経た後、シリアルパラレル変
換手段60により、パラレル信号に変換され、FFT手
段61に入力される。前記FFT手段61は、FFT演
算により、入力信号を各サブキャリア信号に分離し出力
する。そして、各サブキャリア周波数毎最良受信アンテ
ナ指定手段70は、各アンテナ系列の前記FFT手段よ
り出力される、サブキャリア毎に分離された信号の信号
品質(信号強度等)を測定し、その測定結果を用いて、
サブキャリア周波数毎に、最良な受信状態のアンテナを
指定する。そして、前記各サブキャリア毎最良受信アン
テナ選択手段70は、サブキャリア周波数毎の最良受信
状態を有するアンテナ情報を、前記の各アンテナ系列送
信ビット割り振り手段10に伝達する。本情報は、次の
基地局側送信フレームタイミングにおいて使用される。
Next, the operation of the base station apparatus at the base station side reception frame timing in TDMA-TDD communication will be described. First, the multicarrier signal transmitted from the terminal side received by the M different antennas passes through the down-conversion means 50, is converted into a parallel signal by the serial / parallel conversion means 60, and is input to the FFT means 61. You. The FFT means 61 separates an input signal into respective subcarrier signals by an FFT operation and outputs the separated subcarrier signals. Then, the best reception antenna designating means 70 for each subcarrier frequency measures the signal quality (signal strength, etc.) of the signal separated for each subcarrier, output from the FFT means for each antenna series, and the measurement result Using,
The antenna in the best reception state is specified for each subcarrier frequency. Then, the sub-carrier best reception antenna selecting means 70 transmits the antenna information having the best reception state for each sub-carrier frequency to the antenna sequence transmission bit allocating means 10. This information is used at the next base station side transmission frame timing.

【0015】ここで、一連の上記処理について定式化す
る。IFFT/FTTの演算ポイント数をNとし、基地
局側アンテナの数をMとするとする。i番目(i=1,
2,…,M)のアンテナにおいて使用されるサブキャリ
アの集合を {mi}={subcarrier number chosen for Antenna #i} で表す。なお、{1,2,…,N}={m1 }∪{m
2 }∪…∪{mM }である。OFDMシンボルの同期は
理想的な状態であると仮定すると、複素数表示によるベ
ースバンド送信信号は cn =an +jbn (1) (添字n:サブキャリア番号)で与えられる。このとき
i番目のアンテナ系列におけるパラレル−シリアル変換
回路22出力は、
Here, a series of the above processes will be formulated. It is assumed that the number of IFFT / FTT operation points is N and the number of base station-side antennas is M. i-th (i = 1,
A set of subcarriers used in (2,..., M) antennas is represented by {m i } = {subcarrier number chosen for Antenna #i}. Incidentally, {1,2, ..., N} = {m 1} ∪ {m
2 } ∪… {m M }. Assuming that the synchronization of the OFDM symbol is in an ideal state, the baseband transmission signal represented by the complex number is given by c n = a n + jb n (1) (subscript n: subcarrier number). At this time, the output of the parallel-serial conversion circuit 22 in the i-th antenna series is

【0016】[0016]

【数1】 (Equation 1)

【0017】となる。各アンテナ系列のアップコンバー
ジョン手段30において、複数のキャリア周波数発振器
を用いた場合においても、それらの周波数差異が無視で
きる程度に小さい場合(あるいは、共通キャリア周波数
発振器により共通のキャリア周波数が供給されている場
合[請求項2に相当])、各アンテナからの出力信号
は、RF周波数をωRFとして、
## EQU1 ## Even when a plurality of carrier frequency oscillators are used in the up-conversion means 30 of each antenna series, if the frequency difference between them is negligibly small (or a common carrier frequency is supplied by a common carrier frequency oscillator). If [corresponding to claim 2), the output signals from each antenna, as omega RF to RF frequencies,

【0018】[0018]

【数2】 (Equation 2)

【0019】として与えられる。なお、Δti ≡Ti
1 は、i番目アンテナ位置差により生じる送信信号時
間差(1番目アンテナの位置を基準とした場合)を示
す。よって、空間合成後の信号は、
[0019] Note that Δt i ≡T i
T 1 indicates a transmission signal time difference (based on the position of the first antenna) caused by the position difference of the i-th antenna. Therefore, the signal after spatial synthesis is

【0020】[0020]

【数3】 (Equation 3)

【0021】で与えられる。Is given by

【0022】受信側での動作は、[従来の技術]の項目
で述べたものと同様であり、単一のアンテナを用いて上
記の式(4)で与えられる空間合成後の信号を受信す
る。この場合、端末側ベースバンド帯におけるFFT手
段104の出力信号は、
The operation on the receiving side is the same as that described in the section of [Prior Art], and the signal after spatial synthesis given by the above equation (4) is received using a single antenna. . In this case, the output signal of the FFT means 104 in the terminal side baseband is

【0023】[0023]

【数4】 (Equation 4)

【0024】として与えられる。上式に示されるよう
に、基地局側に設置された各アンテナ間距離に依存し
た、アンテナ系列毎に異なる任意のキャリア位相が生じ
るが、これは後段の検波手段105において、サブキャ
リア単位で除去可能である(例えば、遅延検波を用いる
ことにより、容易に任意の位相成分は除去できる)。以
上の動作原理により、広帯域通信においても、送信ダイ
バーシチ技術の適用が可能となる。
[0024] As shown in the above equation, an arbitrary carrier phase different for each antenna sequence occurs depending on the distance between the antennas installed on the base station side, and this is removed by the detection unit 105 at the subsequent stage in units of subcarriers. It is possible (for example, an arbitrary phase component can be easily removed by using differential detection). According to the above operation principle, the transmission diversity technology can be applied even in broadband communication.

【0025】最後に、基地局側の送受信号電力、および
端末側アンテナにおける受信電力と、サブキャリアの関
係について、基地局側アンテナ数が2、サブキャリア数
6(N=6)の場合を例に、図4に示す。本図は、基地
局側において、サブキャリア周波数毎に、受信状態が最
良であるアンテナを選択することにより、端末側アンテ
ナにおける各サブキャリア受信電力の状態も良好となる
ことを示している。
Finally, the relationship between the transmission and reception power at the base station side, the reception power at the terminal side antenna, and the subcarriers is described in the case where the number of base station side antennas is 2 and the number of subcarriers is 6 (N = 6). FIG. This figure shows that by selecting the antenna having the best reception state for each subcarrier frequency on the base station side, the state of each subcarrier reception power at the terminal side antenna is also improved.

【0026】[0026]

【発明の効果】本発明の技術は、TDMA−TDDマル
チキャリア通信を前提に、基地局のみに複数のアンテナ
を設置する、送信ダイバーシチ技術の広帯域通信への適
用を可能とし、端末側装置への負担を増加することな
く、大幅に符号誤り率特性を改善する。
The technology of the present invention makes it possible to apply transmission diversity technology to broadband communication, in which a plurality of antennas are installed only in a base station, on the premise of TDMA-TDD multicarrier communication, and to a terminal device. Significantly improve the bit error rate characteristics without increasing the burden.

【0027】[0027]

【表1】 [Table 1]

【0028】具体的な効果を示す一例として、表1に示
す評価パラメータを用いた、周波数選択フェージング通
信路におけるシミュレーション結果(符号誤り率)を、
図5に示す。本図から明らかなように、本発明技術の適
用により、符号誤り率特性が大幅に改善される。また、
本発明技術は、基地局側各アンテナ系列における使用サ
ブキャリア数が均等に分散するため、マルチキャリア信
号のピーク電力低減に効果がある。つまり、本発明技術
は、信号増幅器において要求される所要バック条件を緩
和する効果を有する。
As an example showing a specific effect, a simulation result (code error rate) in a frequency selective fading channel using the evaluation parameters shown in Table 1 is shown below.
As shown in FIG. As is clear from the figure, the application of the technique of the present invention significantly improves the bit error rate characteristics. Also,
The technology of the present invention is effective in reducing the peak power of a multicarrier signal because the number of subcarriers used in each antenna sequence on the base station side is evenly dispersed. That is, the technology of the present invention has an effect of relaxing the required back condition required in the signal amplifier.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例によるマルチキャリア信号伝
送装置の構成[一般例]である。
FIG. 1 is a configuration [general example] of a multicarrier signal transmission device according to an embodiment of the present invention.

【図2】本発明の一実施例によるマルチキャリア信号伝
送装置の構成[OFDMを用いた具体例]である。
FIG. 2 is a configuration [specific example using OFDM] of a multicarrier signal transmission device according to an embodiment of the present invention.

【図3】従来技術によるマルチキャリア信号伝送装置の
構成である。
FIG. 3 shows a configuration of a multicarrier signal transmission device according to the related art.

【図4】基地局各アンテナにおける受信/送信電力、お
よび端末における受信電力の例示(基地局側アンテナ数
が2、サブキャリア数が6の場合)である。
FIG. 4 is an example of reception / transmission power at each antenna of a base station and reception power at a terminal (when the number of base station side antennas is 2 and the number of subcarriers is 6).

【図5】周波数選択制フェージング通信路における符号
誤り率の例(基地局送信、端末受信の場合)である。
FIG. 5 is an example of a code error rate in a frequency selective fading channel (in the case of base station transmission and terminal reception).

【符号の説明】 10 各アンテナ系列送信ビット割り振り手段 20 サブキャリア選択型マルチキャリア信号生成手段 21 IFFT手段 22 パラレル・シリアル変換手段 30 アップコンバージョン手段 31 共通キャリア周波数発振器 40 アンテナ 50 ダウンコンバージョン手段 60 サブキャリア信号分離抽出手段 61 シリアル・パラレル変換手段 62 FFT手段 70 各サブキャリア周波数毎最良受信状態アンテナ指
定手段 80 符号化手段 90 シリアル・パラレル変換手段 100 端末側受信機 101 アンテナ 102 ダウンコンバージョン手段 103 シリアル・パラレル変換手段 104 FFT手段 105 検波手段 106 パラレル・シリアル変換手段 107 復号化手段
[Description of Signs] 10 Each antenna sequence transmission bit allocation means 20 Subcarrier selection type multicarrier signal generation means 21 IFFT means 22 Parallel / serial conversion means 30 Up conversion means 31 Common carrier frequency oscillator 40 Antenna 50 Down conversion means 60 Subcarrier Signal separation / extraction means 61 Serial / parallel conversion means 62 FFT means 70 Best reception state antenna designation means for each subcarrier frequency 80 Encoding means 90 Serial / parallel conversion means 100 Terminal side receiver 101 Antenna 102 Down conversion means 103 Serial / Parallel Conversion means 104 FFT means 105 Detection means 106 Parallel / serial conversion means 107 Decoding means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 マルチキャリア変調方式を用いたマルチ
キャリア信号伝送装置において、 複数のアンテナを有し、 複数のアンテナにて受信された受信信号を、各アンテナ
系列毎に後の信号処理に適した低周波信号に変換して出
力するダウンコンバージョン手段と、 前記ダウンコンバージョン手段より出力されるマルチキ
ャリア信号を、各アンテナ系列毎にサブキャリア信号に
分離し出力するサブキャリア信号分離手段と、 各アンテナ系列で前記サブキャリア信号分離手段により
出力される、各サブキャリア信号の信号品質を測定し、
その測定結果を用いて、サブキャリア周波数毎に最良な
受信状態のアンテナを指定する、各サブキャリア周波数
毎最良受信状態アンテナ指定手段と、 前記サブキャリア周波数毎最良受信状態アンテナ指定手
段において得られた、サブキャリア周波数毎の最良受信
状態アンテナ情報を基に、送信すべき情報ビットを各ア
ンテナ系列の該当するサブキャリアに割り振る、各アン
テナ系列送信ビット割り振り手段と、 各アンテナ系列において、前記各アンテナ系列送信ビッ
ト割り振り手段により、各アンテナ系列の使用すべきサ
ブキャリアに割り振られたビット系列を入力とし、該当
するサブキャリアのみを選択的に用いてマルチキャリア
信号とし出力する、サブキャリア選択型マルチキャリア
信号生成手段と、 各アンテナ系列において、前記サブキャリア選択型マル
チキャリア信号生成手段の出力信号をアンテナ送信周波
数へ変換するアップコンバージョン手段とを、備えたこ
とを特徴とするマルチキャリア信号伝送装置。
1. A multi-carrier signal transmission apparatus using a multi-carrier modulation method, comprising: a plurality of antennas, wherein a reception signal received by a plurality of antennas is suitable for subsequent signal processing for each antenna sequence. Down-conversion means for converting into a low-frequency signal and outputting; a sub-carrier signal separating means for separating and outputting a multi-carrier signal output from the down-conversion means into sub-carrier signals for each antenna sequence; Measured signal quality of each subcarrier signal output by the subcarrier signal separation means at,
Using the measurement result, the antenna in the best reception state is designated for each subcarrier frequency, the best reception state antenna designation means for each subcarrier frequency, and the best reception state antenna designation means for each subcarrier frequency are obtained. Based on the best reception state antenna information for each subcarrier frequency, allocating information bits to be transmitted to corresponding subcarriers of each antenna sequence, and transmitting bit allocating means for each antenna sequence; A sub-carrier selection type multi-carrier signal, in which a bit sequence allocated to a sub-carrier to be used for each antenna sequence is input by a transmission bit allocating unit, and is output as a multi-carrier signal by selectively using only the corresponding sub-carrier. Generating means; and Multicarrier signal transmission apparatus characterized by an up-conversion unit comprises a for converting the output signal of the carrier selective multicarrier signal generating means to the antenna transmission frequency.
【請求項2】 請求項1における、サブキャリア選択型
マルチキャリア信号生成手段の出力信号をアンテナ送信
周波数へ変換するアップコンバージョン手段に対し、単
一のキャリア周波数発振器が全てのアップコンバージョ
ン手段に共通のキャリア周波数を供給することを特徴と
するマルチキャリア信号伝送装置。
2. An up-conversion means for converting an output signal of a sub-carrier selection type multi-carrier signal generation means into an antenna transmission frequency according to claim 1, wherein a single carrier frequency oscillator is common to all the up-conversion means. A multicarrier signal transmission device for supplying a carrier frequency.
【請求項3】 前記マルチキャリア変調方式が、OFD
M方式であり、TDMA−TDD伝送方式が用いられる
請求項1又は2に記載のマルチキャリア信号伝送装置。
3. The method of claim 2, wherein the multi-carrier modulation scheme is OFD.
The multicarrier signal transmission device according to claim 1, wherein the M-system is a TDMA-TDD transmission system.
JP10013506A 1998-01-09 1998-01-09 Multi-carrier signal transmission device Expired - Lifetime JP2962299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10013506A JP2962299B2 (en) 1998-01-09 1998-01-09 Multi-carrier signal transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10013506A JP2962299B2 (en) 1998-01-09 1998-01-09 Multi-carrier signal transmission device

Publications (2)

Publication Number Publication Date
JPH11205205A true JPH11205205A (en) 1999-07-30
JP2962299B2 JP2962299B2 (en) 1999-10-12

Family

ID=11835035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10013506A Expired - Lifetime JP2962299B2 (en) 1998-01-09 1998-01-09 Multi-carrier signal transmission device

Country Status (1)

Country Link
JP (1) JP2962299B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028687A1 (en) * 1998-11-06 2000-05-18 Matsushita Electric Industrial Co., Ltd. Ofdm transmitting/receiving device and method
WO2001017148A1 (en) * 1999-08-27 2001-03-08 Matsushita Electric Industrial Co., Ltd. Ofdm communication device
JP2002135228A (en) * 2000-08-24 2002-05-10 Sony Internatl Europ Gmbh Communication apparatus and communication method
EP1207662A1 (en) * 2000-11-20 2002-05-22 Sony International (Europe) GmbH OFDM system with antenna diversity in the transmitter and pre-equalisation
WO2002098018A1 (en) * 2001-06-01 2002-12-05 Koninklijke Philips Electronics N.V. Antenna diversity arrangement in frequency hopping system
WO2003043243A1 (en) * 2001-11-13 2003-05-22 Matsushita Electric Industrial Co., Ltd. Transmission method, transmission apparatus, and reception apparatus
WO2005013528A1 (en) * 2003-08-04 2005-02-10 Mitsubishi Denki Kabushiki Kaisha Radio transmission control method, radio receiver apparatus, and radio transmitter apparatus
WO2005088884A1 (en) * 2004-03-11 2005-09-22 Matsushita Electric Industrial Co., Ltd. Data transmission method and data reception method
WO2006090486A1 (en) * 2005-02-25 2006-08-31 Kyocera Corporation Communications systems
WO2007023555A1 (en) * 2005-08-25 2007-03-01 Fujitsu Limited Mobile terminal and base station device
US7414994B2 (en) 2001-01-19 2008-08-19 Adaptix, Inc. Multi-carrier communication with time division multiplexing and carrier-selective loading
US7545732B2 (en) 2003-08-22 2009-06-09 Samsung Electronics Co., Ltd. Apparatus and method for assigning sub-carriers in an orthogonal frequency division multiplex system
JP2013066181A (en) * 2003-10-16 2013-04-11 Qualcomm Inc Methods and apparatus of providing transmit and/or receive diversity with multiple antennas in wireless communication systems
JPWO2011093514A1 (en) * 2010-01-29 2013-06-06 日本電気株式会社 Wireless communication system, transmitter, and multicarrier communication method
JPWO2011093511A1 (en) * 2010-01-29 2013-06-06 日本電気株式会社 Wireless communication system, transmitter, and multicarrier communication method
JP2013545339A (en) * 2010-10-04 2013-12-19 マーベル ワールド トレード リミテッド Compressed feedback format for WLAN

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6747945B2 (en) 1998-11-06 2004-06-08 Matsushita Electric Industrial Co., Ltd. OFDM transmitting and receiving apparatus and OFDM transmitting and receiving method
US6345036B1 (en) 1998-11-06 2002-02-05 Matsushita Electric Industrial Co., Ltd. OFDM transmitting/receiving device and method
WO2000028687A1 (en) * 1998-11-06 2000-05-18 Matsushita Electric Industrial Co., Ltd. Ofdm transmitting/receiving device and method
WO2001017148A1 (en) * 1999-08-27 2001-03-08 Matsushita Electric Industrial Co., Ltd. Ofdm communication device
US6937557B1 (en) 1999-08-27 2005-08-30 Matsushita Electric Industrial Co., Ltd. OFDM communication apparatus
US7633848B2 (en) 2000-08-24 2009-12-15 Sony Deutschland Gmbh Communication device for receiving and transmitting OFDM signals in a wireless communication system
US8743675B2 (en) 2000-08-24 2014-06-03 Sony Deutschland Gmbh Communication device for receiving and transmitting OFDM signals in a wireless communication system
US7961588B2 (en) 2000-08-24 2011-06-14 Sony Deutschland Gmbh Communication device for receiving and transmitting OFDM signals in a wireless communication system
US9954710B2 (en) 2000-08-24 2018-04-24 Sony Deutschland Gmbh Communication device for receiving and transmitting OFDM signals in a wireless communication system
US7957258B2 (en) 2000-08-24 2011-06-07 Sony Deutschland Gmbh Communication device for receiving and transmitting OFDM signals in a wireless communication system
JP2002135228A (en) * 2000-08-24 2002-05-10 Sony Internatl Europ Gmbh Communication apparatus and communication method
US9596059B2 (en) 2000-08-24 2017-03-14 Sony Deutschland Gmbh Communication device for receiving and transmitting OFDM signals in a wireless communication system
US9455806B2 (en) 2000-08-24 2016-09-27 Sony Deutschland Gmbh Communication device for receiving and transmitting OFDM signals in a wireless communication system
EP1207662A1 (en) * 2000-11-20 2002-05-22 Sony International (Europe) GmbH OFDM system with antenna diversity in the transmitter and pre-equalisation
US9450792B2 (en) 2000-11-20 2016-09-20 Sony Deutschland Gmbh OFDM pre-equalizing
US8457250B2 (en) 2000-11-20 2013-06-04 Sony Deutschland Gmbh OFDM pre-equalizing
US9008224B2 (en) 2000-11-20 2015-04-14 Sony Deutschland Gmbh OFDM pre-equalizing
US8948302B2 (en) 2000-11-20 2015-02-03 Sony Deutschland Gmbh OFDM pre-equalizing
US9967118B2 (en) 2000-11-20 2018-05-08 Sony Deutschland Gmbh OFDM pre-equalizing
US7414994B2 (en) 2001-01-19 2008-08-19 Adaptix, Inc. Multi-carrier communication with time division multiplexing and carrier-selective loading
WO2002098018A1 (en) * 2001-06-01 2002-12-05 Koninklijke Philips Electronics N.V. Antenna diversity arrangement in frequency hopping system
US9647856B2 (en) 2001-11-13 2017-05-09 Wi-Fi One, Llc Transmission apparatus and transmission method
US8891678B2 (en) 2001-11-13 2014-11-18 Wi-Fi One, Llc Receiving apparatus and receiving method
US8155224B2 (en) 2001-11-13 2012-04-10 Panasonic Corporation Transmission method, transmission apparatus, and reception apparatus
US8229026B2 (en) 2001-11-13 2012-07-24 Panasonic Corporation Processor and processing method for signal transmission
US10263749B2 (en) 2001-11-13 2019-04-16 Panasonic Intellectual Property Corporation Of America Transmission and reception signal processor and method
WO2003043243A1 (en) * 2001-11-13 2003-05-22 Matsushita Electric Industrial Co., Ltd. Transmission method, transmission apparatus, and reception apparatus
US9735986B2 (en) 2001-11-13 2017-08-15 Panasonic Intellectual Property Corporation Of America Transmission and reception apparatus and method
US8428182B2 (en) 2001-11-13 2013-04-23 Panasonic Corporation Communication method and radio communication apparatus
US8446973B2 (en) 2001-11-13 2013-05-21 Panasonic Corporation Transmission and reception apparatus and method
US7974371B2 (en) 2001-11-13 2011-07-05 Panasonic Corporation Communication method and radio communication apparatus
US11223457B2 (en) 2001-11-13 2022-01-11 Panasonic Intellectual Property Corporation Of America Transmission and reception signal processor and method
US11218266B2 (en) 2001-11-13 2022-01-04 Redwood Technologies, Llc Methods and apparatus for transmitting modulation signals
US10491351B2 (en) 2001-11-13 2019-11-26 Panasonic Intellectual Property Corporation Of America Transmission and reception signal processor and method
US8594242B2 (en) 2001-11-13 2013-11-26 Panasonic Corporation Method of receiving modulation symbols
US11115166B2 (en) 2001-11-13 2021-09-07 Wi-Fi One, Llc Radio transmission apparatus and methods for transmitting a single or a plurality of modulation signals from one or more antenna
US8705656B2 (en) 2001-11-13 2014-04-22 Panasonic Corporation Transmission and reception apparatus and method
US7778339B2 (en) 2001-11-13 2010-08-17 Panasonic Corporation Transmission of a plurality of sub-carriers in an OFDM signal
US10003443B2 (en) 2001-11-13 2018-06-19 Wi-Fi One, Llc Methods and apparatus for transmitting modulation signals
US8934578B2 (en) 2001-11-13 2015-01-13 Wi-Fi One, Llc Method of demodulating modulation signals
US10341071B2 (en) 2001-11-13 2019-07-02 Wi-Fi One, Llc Radio transmission apparatus and methods
US8982998B2 (en) 2001-11-13 2015-03-17 Panasonic Intellectual Property Corporation Of America Transmission and reception apparatus and method
US7688901B2 (en) 2001-11-13 2010-03-30 Panasonic Corporation Transmission method, transmission apparatus, and reception apparatus
US9160596B2 (en) 2001-11-13 2015-10-13 Panasonic Intellectual Property Corporation Of America Transmission and reception signal processor and method
US10924241B2 (en) 2001-11-13 2021-02-16 Wi-Fi One, Llc Methods and apparatus for transmitting modulation signals
US10651993B2 (en) 2001-11-13 2020-05-12 Wi-Fi One, Llc Methods and apparatus for transmitting modulation signals
US9363124B2 (en) 2001-11-13 2016-06-07 Panasonic Intellectual Property Corporation Of America Transmission and reception signal processor and method
US10033551B2 (en) 2001-11-13 2018-07-24 Panasonic Intellectual Property Corporation Of America Transmission and reception signal processor and method
US10630443B2 (en) 2001-11-13 2020-04-21 Wi-Fi One, Llc Radio transmission apparatus and methods
US10355841B2 (en) 2001-11-13 2019-07-16 Wi-Fi One, Llc Methods and apparatus for transmitting modulation signals
US9628300B2 (en) 2001-11-13 2017-04-18 Wi-Fi One, Llc Method and signal generating apparatus for generating modulation signals
US8125963B2 (en) 2003-08-04 2012-02-28 Mitsubishi Denki Kabushiki Kaisha Radio transmission control method, radio receiver apparatus, and radio transmitter apparatus
WO2005013528A1 (en) * 2003-08-04 2005-02-10 Mitsubishi Denki Kabushiki Kaisha Radio transmission control method, radio receiver apparatus, and radio transmitter apparatus
US8385295B2 (en) 2003-08-04 2013-02-26 Mitsubishi Denki Kabushiki Kaisha Radio transmission control method, radio receiver apparatus, and radio transmitter apparatus
US7545732B2 (en) 2003-08-22 2009-06-09 Samsung Electronics Co., Ltd. Apparatus and method for assigning sub-carriers in an orthogonal frequency division multiplex system
JP2013066181A (en) * 2003-10-16 2013-04-11 Qualcomm Inc Methods and apparatus of providing transmit and/or receive diversity with multiple antennas in wireless communication systems
US7702027B2 (en) 2004-03-11 2010-04-20 Panasonic Corporation Data transmission method and data reception method
WO2005088884A1 (en) * 2004-03-11 2005-09-22 Matsushita Electric Industrial Co., Ltd. Data transmission method and data reception method
WO2006090486A1 (en) * 2005-02-25 2006-08-31 Kyocera Corporation Communications systems
US8306131B2 (en) 2005-02-25 2012-11-06 Kyocera Corporation Communications systems
US8588342B2 (en) 2005-08-25 2013-11-19 Fujitsu Limited Mobile terminal for performing a communication by using sub carriers
WO2007023555A1 (en) * 2005-08-25 2007-03-01 Fujitsu Limited Mobile terminal and base station device
JP5871210B2 (en) * 2010-01-29 2016-03-01 日本電気株式会社 Wireless communication system, transmitter, and multicarrier communication method
JP5799463B2 (en) * 2010-01-29 2015-10-28 日本電気株式会社 Wireless communication system, transmitter, and multicarrier communication method
JPWO2011093511A1 (en) * 2010-01-29 2013-06-06 日本電気株式会社 Wireless communication system, transmitter, and multicarrier communication method
JPWO2011093514A1 (en) * 2010-01-29 2013-06-06 日本電気株式会社 Wireless communication system, transmitter, and multicarrier communication method
US10075319B2 (en) 2010-10-04 2018-09-11 Marvell World Trade Ltd. Compressed feedback format for WLAN
US9712365B2 (en) 2010-10-04 2017-07-18 Marvell World Trade Ltd. Compressed feedback format for WLAN
JP2013545339A (en) * 2010-10-04 2013-12-19 マーベル ワールド トレード リミテッド Compressed feedback format for WLAN

Also Published As

Publication number Publication date
JP2962299B2 (en) 1999-10-12

Similar Documents

Publication Publication Date Title
US10277374B2 (en) Methods and systems for orthogonal frequency division multiplexing (OFDM) multiple zone partitioning
US9629126B2 (en) Integrated circuit for communication resource allocation
JP5123368B2 (en) OFDM transmitter
US9788315B2 (en) Method and apparatus for allocating resource of multiple carriers in OFDMA system
JP2962299B2 (en) Multi-carrier signal transmission device
US7756208B2 (en) Multicarrier communication system and methods for communicating with subscriber stations of different bandwidth profiles
US8571132B2 (en) Constrained hopping in wireless communication systems
US9369326B2 (en) Method of transmitting pilot bits in a wireless communication system
EP1503534B1 (en) Method and device for selecting subcarriers according to quality of service requirements in a multicarrier communications system
JP5153009B2 (en) Beam formation by antenna puncture
US10250361B2 (en) Method and apparatus for transmitting data unit comprising guard intervals having different lengths
US20090257371A1 (en) Radio communication base station apparatus and transmission method in the radio communication base station apparatus
EP1677460A1 (en) System and method for providing services using a single frequency in a wireless communication system
CN101933283A (en) The OFDMA frame structure of up link in the MIMO network
CN101155399A (en) Device and method for control signal transmission in variable band width system
KR101981693B1 (en) Method and device for transmitting training field in wireless lan
US20070093252A1 (en) Apparatus and method for operating frequency resources in a mobile communication system
WO2022033028A1 (en) Multi-channel signal wireless transmission system and physical resource grid distribution control method
JPWO2005004361A1 (en) Multi-carrier wireless transmission system, transmitting apparatus and receiving apparatus
JP2000209145A (en) Multi-carrier signal transmitter-receiver
US20220182273A1 (en) Communication apparatus and communication method for ppdu format identification
CN105553631B (en) A kind of data transmission method, transmitting website and receiving station based on OFDM
CN105471567B (en) A kind of data transmission method, transmitting website and receiving station based on OFDM
US20050007946A1 (en) Multi-carrier transmission
JP2002261727A (en) Ofdm signal transmitter

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term