JPH11204838A - Semiconductor light emitting device and its manufacture - Google Patents

Semiconductor light emitting device and its manufacture

Info

Publication number
JPH11204838A
JPH11204838A JP10006423A JP642398A JPH11204838A JP H11204838 A JPH11204838 A JP H11204838A JP 10006423 A JP10006423 A JP 10006423A JP 642398 A JP642398 A JP 642398A JP H11204838 A JPH11204838 A JP H11204838A
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor light
emitting diode
emitting device
glass layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10006423A
Other languages
Japanese (ja)
Other versions
JP2924961B1 (en
Inventor
Takeshi Sano
武志 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP10006423A priority Critical patent/JP2924961B1/en
Application granted granted Critical
Publication of JP2924961B1 publication Critical patent/JP2924961B1/en
Publication of JPH11204838A publication Critical patent/JPH11204838A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve environmental resistance and ultraviolet-ray resistance of a semiconductor light emitting device. SOLUTION: In a semiconductor light emitting device provided with a pair of wiring conductors (3, 4), a semiconductor light emitting device (2) fixed to one end part of the pair of wiring conductor (3, 4), and a light-transmittive insulating seal body covering the semiconductor light emitting device (2), the insulating seal body is constructed of a glass layer (10). A fluorescent material (10a), which has light-transmittivity to the light from the semiconductor light emitting device (2), and which absorbs the light from the semiconductor light emitting device (2) and converts it into other wavelength of light emission, is mixed into the glass layer (10). The light emitted by the semiconductor light emitting device (2) is converted into a desired wavelength of light emission by the fluorescent material (10a) in the glass layer (10), and is emitted outside through the glass layer (10) surrounding the semiconductor light emitting device (2).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光ダイオード装
置、特に半導体発光素子から照射される光を波長変換し
て外部に放出する半導体発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode device, and more particularly, to a semiconductor light emitting device that converts the wavelength of light emitted from a semiconductor light emitting element and emits the light to the outside.

【0002】[0002]

【従来の技術】図5は、発光ダイオードチップから照射
される光の波長を蛍光体によって変換する従来の発光ダ
イオード装置の断面図を示す。図5に示す発光ダイオー
ド装置(1)では、カソード側のリードとしての配線導
体(3)のカップ部(3a)の底面(3b)に発光ダイ
オードチップ(2)が固着され、ボンディングワイヤ
(5)により発光ダイオードチップ(2)のカソード電
極はカソード側の配線導体(3)の上端部(9a)に接
続される。また、発光ダイオードチップ(2)のアノー
ド電極はボンディングワイヤ(6)によりアノード側の
リードとしての配線導体(4)の上端部(9b)に接続
される。カップ部(3a)に固着された発光ダイオード
チップ(2)は、カップ部(3a)内に充填され且つ蛍
光物質が混入された光透過性の保護樹脂(7)により被
覆される。発光ダイオードチップ(2)、カソード側の
配線導体(3)のカップ部(3a)及び上端部(9
a)、アノード側の配線導体(4)の上端部(9b)、
ボンディングワイヤ(5、6)は、更に光透過性の封止
樹脂(8)内に封入される。
2. Description of the Related Art FIG. 5 is a sectional view of a conventional light emitting diode device for converting the wavelength of light emitted from a light emitting diode chip by a phosphor. In the light emitting diode device (1) shown in FIG. 5, a light emitting diode chip (2) is fixed to a bottom surface (3b) of a cup portion (3a) of a wiring conductor (3) as a cathode-side lead, and a bonding wire (5) is provided. As a result, the cathode electrode of the light emitting diode chip (2) is connected to the upper end (9a) of the wiring conductor (3) on the cathode side. The anode electrode of the light emitting diode chip (2) is connected to the upper end (9b) of the wiring conductor (4) as a lead on the anode side by a bonding wire (6). The light emitting diode chip (2) fixed to the cup (3a) is covered with a light transmitting protective resin (7) filled in the cup (3a) and mixed with a fluorescent substance. The light emitting diode chip (2), the cup (3a) and the upper end (9) of the cathode side wiring conductor (3)
a), the upper end portion (9b) of the anode-side wiring conductor (4),
The bonding wires (5, 6) are further sealed in a light-transmitting sealing resin (8).

【0003】発光ダイオード装置(1)のカソード側の
配線導体(3)とアノード側の配線導体(4)との間に
電圧を印加し、発光ダイオードチップ(2)に通電する
と、発光ダイオードチップ(2)から照射される光は、
保護樹脂(7)内を通り配線導体(3)のカップ部(3
a)の側壁(3c)で反射した後に、透明な封止樹脂
(8)を通り発光ダイオード装置(1)の外部に放出さ
れる。また、発光ダイオードチップ(2)の上面から放
射されてカップ部(3a)の側壁(3c)で反射されず
に直接に保護樹脂(7)及び封止樹脂(8)を通って発
光ダイオード装置(1)の外部に放出される光もある。
封止樹脂(8)の先端にはレンズ部(8a)が形成さ
れ、封止樹脂(8)内を通過する光は、レンズ部(8
a)によって集光されて指向性が高められる。発光ダイ
オードチップ(2)の発光時に、発光ダイオードチップ
(2)から照射される光は保護樹脂(7)内に混入され
た蛍光物質によって異なる波長に変換されて放出され
る。この結果、発光ダイオードチップ(2)から照射さ
れた光とは異なる波長の光が発光ダイオード装置(1)
から放出される。
When a voltage is applied between the wiring conductor (3) on the cathode side and the wiring conductor (4) on the anode side of the light emitting diode device (1) and the light emitting diode chip (2) is energized, the light emitting diode chip (2) is turned on. The light emitted from 2) is
The inside of the protective resin (7) passes through the cup portion (3) of the wiring conductor (3).
After being reflected by the side wall (3c) of a), the light is emitted to the outside of the light emitting diode device (1) through the transparent sealing resin (8). Further, the light-emitting diode device is radiated from the upper surface of the light-emitting diode chip (2) and is not reflected by the side wall (3c) of the cup portion (3a) but directly passes through the protective resin (7) and the sealing resin (8). Some light is emitted to the outside of 1).
A lens portion (8a) is formed at the tip of the sealing resin (8), and light passing through the sealing resin (8) is transmitted through the lens portion (8).
The light is condensed by a) and the directivity is enhanced. When the light emitting diode chip (2) emits light, light emitted from the light emitting diode chip (2) is converted into a different wavelength by a fluorescent substance mixed in the protective resin (7) and emitted. As a result, light having a different wavelength from the light emitted from the light emitting diode chip (2) is emitted from the light emitting diode device (1).
Released from

【0004】複数の発光ダイオード装置(1)が互いに
隣接して配置されるとき、通電され且つ点灯された発光
ダイオード装置(1)からの放射光によって隣接する他
の発光ダイオード装置(1)の保護樹脂(7)中の蛍光
体が励起されて、非通電時でも、あたかも点灯している
ように見える不具合(偽灯)が生じるおそれがある。保
護樹脂(7)がカップ部(3a)の上端部(9a)より
上方に突出しないように保護樹脂(7)の充填量を調整
すると、保護樹脂(7)により光の波長変換を行いつつ
外部光による偽灯も防止できる。
When a plurality of light emitting diode devices (1) are arranged adjacent to each other, protection of another adjacent light emitting diode device (1) by radiation emitted from the light emitting diode device (1) that is energized and turned on. The fluorescent substance in the resin (7) is excited, and there is a possibility that a defect (false lamp) that appears as if the lamp is lit even when no current is supplied. When the filling amount of the protective resin (7) is adjusted so that the protective resin (7) does not protrude above the upper end (9a) of the cup portion (3a), the protective resin (7) converts the wavelength of light to the external False lighting by light can also be prevented.

【0005】[0005]

【発明が解決しようとする課題】蛍光体を含有する保護
樹脂(7)で発光ダイオードチップ(2)を包囲し、更
に全体を封止樹脂(8)で包囲する従来の発光ダイオー
ド装置(1)では、実用上種々の問題が生ずる。第1
に、保護樹脂(7)及び封止樹脂(8)の耐環境性が必
ずしも十分でないとき、保護樹脂(7)に配合できる蛍
光体が特定の種類に限定される。即ち、一般に樹脂は水
分を透過し、高湿度の雰囲気中に放置されると、時間の
経過とともに樹脂の内部に水分が浸透する。この場合、
侵入する水分によって分解又は変質して光波長変換機能
が低下し又は消失する耐湿性の悪い蛍光体もある。例え
ば、水分によって加水分解する公知の代表的な硫化カル
シュウム系の蛍光体は従来の発光ダイオード装置(1)
に使用できない。
A conventional light emitting diode device (1) in which a light emitting diode chip (2) is surrounded by a protective resin (7) containing a phosphor and the whole is further surrounded by a sealing resin (8). Then, various problems arise practically. First
In addition, when the environmental resistance of the protective resin (7) and the sealing resin (8) is not always sufficient, the phosphor that can be blended in the protective resin (7) is limited to a specific type. That is, generally, resin permeates moisture, and when left in an atmosphere of high humidity, moisture permeates into the resin over time. in this case,
There is also a phosphor having poor moisture resistance, which is decomposed or deteriorated by invading moisture to reduce or eliminate the light wavelength conversion function. For example, a known typical calcium sulfide-based phosphor that is hydrolyzed by moisture is a conventional light emitting diode device (1).
Can not be used for

【0006】また、水分のみならずナトリウム又は塩素
等の不純物イオンも樹脂を透過し、発光ダイオードチッ
プに有害な影響を与える。従って、清浄な環境で製造さ
れた発光ダイオード装置(1)でも、不純物イオンを含
む雰囲気中に放置すると、不純物イオンが樹脂の内部に
次第に浸透して発光ダイオードチップ(2)の電気的特
性が劣化する難点がある。特に、重大な問題は、有害不
純物イオンが遊離する化学的に不安定な有機蛍光体も少
なくない点である。従って従来の発光ダイオード装置
(1)では、この種の有機蛍光体を使用することができ
ない。
In addition, not only moisture but also impurity ions such as sodium and chlorine permeate the resin and have a harmful effect on the light emitting diode chip. Therefore, even if the light emitting diode device (1) manufactured in a clean environment is left in an atmosphere containing impurity ions, the impurity ions gradually penetrate into the resin and the electrical characteristics of the light emitting diode chip (2) deteriorate. There are difficulties to do. In particular, a serious problem is that there are many chemically unstable organic phosphors from which harmful impurity ions are released. Therefore, this kind of organic phosphor cannot be used in the conventional light emitting diode device (1).

【0007】次に、発光ダイオードチップ(2)から発
生する紫外線成分によって被覆樹脂及び蛍光体が劣化す
る問題がある。一般に、炭素、水素、酸素、窒素等の元
素が網目状に結合した有機高分子化合物によって構成さ
れる保護樹脂(7)及び封止樹脂(8)は、紫外線が照
射されると、有機高分子の繋ぎ目が切断され、各種の光
学的特性及び化学的特性が劣化することが知られてい
る。例えばGaN(窒化ガリウム)の青色発光ダイオー
ドチップは、可視光成分以外にも波長380nm以下の
紫外波長域に発光成分を持つため、被覆樹脂は光強度の
強い発光ダイオードチップの周囲から次第に黄変し、着
色現象が発生する。このため、発光ダイオードチップが
発した可視光は着色部で吸収され減衰する。更に、被覆
樹脂の劣化に伴って耐湿性が低下すると共にイオン透過
性が増大するため、発光ダイオードチップ自体も劣化
し、その結果、発光ダイオード装置(1)の発光強度は
相乗的に低減する。
Next, there is a problem that the coating resin and the phosphor are deteriorated by the ultraviolet component generated from the light emitting diode chip (2). Generally, the protective resin (7) and the encapsulating resin (8), which are composed of an organic polymer compound in which elements such as carbon, hydrogen, oxygen, and nitrogen are bonded in a mesh pattern, emit organic polymer when irradiated with ultraviolet rays. It is known that the seam of the is cut and various optical and chemical properties are degraded. For example, a blue light emitting diode chip of GaN (gallium nitride) has a light emitting component in an ultraviolet wavelength range of 380 nm or less in addition to a visible light component, so that the coating resin gradually turns yellow from around the light emitting diode chip having a high light intensity. , A coloring phenomenon occurs. Therefore, the visible light emitted from the light emitting diode chip is absorbed and attenuated by the colored portion. Furthermore, since the moisture resistance is reduced and the ion permeability is increased with the deterioration of the coating resin, the light emitting diode chip itself is also deteriorated, and as a result, the light emitting intensity of the light emitting diode device (1) is reduced synergistically.

【0008】また、被覆樹脂と同様に、紫外線によって
劣化する蛍光体もある。例えば、硫化亜鉛系の蛍光体は
放射線や紫外線によって光分解を起こし亜鉛が遊離する
いわゆる「黒化」現象を起こすことが知られている。被
覆樹脂中の蛍光体が光分解を生ずると、発光ダイオード
装置(1)の発光強度は著しく低下する。
Also, there are phosphors that are deteriorated by ultraviolet rays, like the coating resin. For example, it is known that a zinc sulfide-based phosphor undergoes photodecomposition by radiation or ultraviolet rays to cause a so-called "blackening" phenomenon in which zinc is released. When the phosphor in the coating resin undergoes photodecomposition, the light emission intensity of the light emitting diode device (1) is significantly reduced.

【0009】紫外線による被覆樹脂及び蛍光体の劣化を
防止するため、被覆樹脂中に紫外線吸収物質を混入する
方法も考えられるが、可視光成分自体を吸収せず、被覆
樹脂本来の特性に悪影響を与えない紫外線吸収物質を慎
重に選定しなければならない。また、紫外線吸収物質を
採用する際に、付加的に使用する材料及び作業工程が増
加するので、製品価格が上昇する難点がある。
In order to prevent the deterioration of the coating resin and the phosphor due to ultraviolet rays, a method of mixing an ultraviolet absorbing substance into the coating resin is conceivable. However, it does not absorb the visible light component itself and adversely affects the intrinsic properties of the coating resin. Care must be taken to select UV absorbers that will not be given. In addition, when an ultraviolet absorbing material is used, the number of additional materials and the number of working processes are increased, so that there is a problem that the product price increases.

【0010】更に、紫外線を発する紫外線発光ダイオー
ドチップを使用できないため、蛍光体の材料選択と発光
ダイオード装置の発光特性が大きな制限を受けることが
第三の問題である。蛍光ランプ又は水銀ランプに使用す
る紫外線で励起される紫外線用の蛍光体は、古くから開
発・改良が行われた結果、現在では様々な発光波長分布
を持つ安価で光変換効率の高い数多くの蛍光体が実用化
されている。紫外線発光ダイオードチップと紫外線用の
蛍光体を組み合わせると、一層明るく且つ変化に富む色
調の発光ダイオード装置が得られると予想される。しか
しながら、紫外線により樹脂が劣化する従来の発光ダイ
オード装置では、紫外線発光ダイオードチップを使用で
きず、優れた蛍光体を利用できない。
A third problem is that since an ultraviolet light emitting diode chip that emits ultraviolet light cannot be used, the selection of a phosphor material and the light emitting characteristics of the light emitting diode device are greatly restricted. Ultraviolet phosphors excited by ultraviolet light used in fluorescent lamps or mercury lamps have been developed and improved for a long time. The body is in practical use. It is expected that a combination of an ultraviolet light emitting diode chip and a phosphor for ultraviolet light will provide a light emitting diode device with a brighter and more varied color tone. However, in a conventional light emitting diode device in which the resin is deteriorated by ultraviolet light, an ultraviolet light emitting diode chip cannot be used, and an excellent phosphor cannot be used.

【0011】第四の問題は、耐熱性が低い被覆樹脂が黄
変・着色するため、発光ダイオードチップから照射され
た光が被覆樹脂を通過する際に減衰する点にある。例え
ば順方向電圧が高いGaN(窒化ガリウム)の青色発光
ダイオードチップは、比較的低い順方向電流でも電力損
失が大きく、作動時にチップ温度はかなり上昇する。一
般に、樹脂は高温に加熱されると次第に劣化して黄変・
着色を起こすことが知られている。従ってGaNの発光
ダイオードチップを従来の発光ダイオード装置に用いる
と、高温の発光ダイオードチップと接する部分から樹脂
が次第に黄変・着色するため、発光ダイオード装置
(1)の外観品質と発光強度は次第に低下する。このよ
うに、従来の発光ダイオード装置では、蛍光体を樹脂中
に配合すると前記問題が生じ、このため選択する材料種
類の減少、信頼性の低下、光変換機能の不完全性、製品
価格の上昇を招来する原因となる。
A fourth problem is that since the coating resin having low heat resistance is yellowed and colored, the light emitted from the light emitting diode chip is attenuated when passing through the coating resin. For example, a GaN (gallium nitride) blue light emitting diode chip having a high forward voltage has a large power loss even at a relatively low forward current, and the chip temperature rises considerably during operation. Generally, the resin gradually deteriorates when heated to a high temperature,
It is known to cause coloring. Therefore, when a GaN light emitting diode chip is used in a conventional light emitting diode device, the resin gradually turns yellow and is colored from the portion in contact with the high-temperature light emitting diode chip, so that the appearance quality and light emission intensity of the light emitting diode device (1) gradually decrease. I do. As described above, in the conventional light emitting diode device, when the phosphor is mixed in the resin, the above-described problem occurs. Therefore, the selection of the material type is reduced, the reliability is reduced, the light conversion function is incomplete, and the product price is increased. May cause inconvenience.

【0012】本発明は、耐環境性及び耐紫外線性を有す
る半導体発光装置を提供することを目的とする。
An object of the present invention is to provide a semiconductor light emitting device having environmental resistance and ultraviolet light resistance.

【0013】[0013]

【課題を解決するための手段】本発明による半導体発光
装置は、一対の配線導体(3、4)と、一対の配線導体
(3、4)の一方の端部に固着された半導体発光素子
(2)と、半導体発光素子(2)を被覆する光透過性の
絶縁物封止体とを備えている。ガラス層(10)により
構成される。半導体発光素子(2)から照射される光に
対して光透過性を有し且つ半導体発光素子(2)から照
射される光を吸収して他の発光波長に変換する蛍光物質
(10a)をガラス層(10)中に混入させる。半導体
発光素子(2)の発光をガラス層(10)中の蛍光物質
(10a)によって所望の発光波長に変換し、半導体発
光素子(2)を包囲するガラス層(10)を通して外部
に放出される。
A semiconductor light emitting device according to the present invention comprises a pair of wiring conductors (3, 4) and a semiconductor light emitting element (3) fixed to one end of the pair of wiring conductors (3, 4). 2) and a light-transmitting insulator sealing body that covers the semiconductor light emitting element (2). It is constituted by a glass layer (10). A fluorescent material (10a) having a light transmitting property to light emitted from the semiconductor light emitting element (2) and absorbing the light emitted from the semiconductor light emitting element (2) and converting the light to another emission wavelength is glass. Mix into layer (10). The light emission of the semiconductor light emitting device (2) is converted into a desired emission wavelength by the fluorescent substance (10a) in the glass layer (10), and is emitted outside through the glass layer (10) surrounding the semiconductor light emitting device (2). .

【0014】金属アルコキシド(テトラメトキシシラ
ン、テトラエトキシシラン等)を出発原料とする塗布形
ガラス材料又はセラミック前駆体ポリマー(ペルヒドロ
ポリシラザン等)等から成る塗布型ガラス材料は、摂氏
150度前後で焼成可能であり、低温領域でのガラス層
の形成が可能である。これらの塗布型ガラス材料は通常
は液状であるが、空気中又は酸素雰囲気中で加熱する
と、成分の分解又は酸素の吸収によりSiO2(酸化珪
素)のシロキサン(siloxane)結合を主体とした透明な
固形ガラス層を生成する。これらのガラス材料に蛍光物
質(10a)粉末を混合して半導体発光素子(2)の周
囲に塗布すれば、光変換作用のみならず、下記の優れた
特性を兼ねそなえた蛍光物質(10a)含有ガラス層
(10)を形成することができる。 [1] 耐湿性に優れ、内部に水分を浸透させず、半導体
発光素子(2)及び蛍光物質(10a)を劣化させな
い。 [2] 有害イオンの浸透を防ぐイオンバリア効果が高い
ため、発光ダイオード装置の外部や蛍光物質(10a)
からの有害イオンで発光ダイオードチップを劣化させな
い。 [3] 紫外線耐性に優れ、高温環境下又は紫外線発光下
でも黄変・着色を起こさず、半導体発光素子(2)の発
光を減衰させない。 [4] ガラス中の珪素原子が金属又はセラミックの表面
酸化物層の酸素原子と強固に結合するので、半導体発光
素子(2)、配線導体(3、4)又は酸化物系無機蛍光
物質(10a)との密着性がよい。 [5] 配線導体(3、4)のカップ部(3a)内全体に
塗布した塗布型ガラス材料が固化する時、添加した蛍光
物質(10a)粉末が核となるので、厚塗りをしてもク
ラックが生じにくい。
A coating type glass material starting from a metal alkoxide (tetramethoxysilane, tetraethoxysilane, etc.) or a coating type glass material comprising a ceramic precursor polymer (perhydropolysilazane, etc.) is fired at about 150 degrees Celsius. It is possible to form a glass layer in a low temperature region. These coating-type glass materials are usually liquid, but when heated in air or an oxygen atmosphere, a transparent siloxane (siloxane) bond of SiO 2 (silicon oxide) is mainly formed due to decomposition of components or absorption of oxygen. Produce a solid glass layer. When a fluorescent substance (10a) powder is mixed with these glass materials and applied around the semiconductor light emitting device (2), the fluorescent substance (10a) containing not only the light conversion effect but also the following excellent properties is contained. A glass layer (10) can be formed. [1] It has excellent moisture resistance, does not penetrate moisture into the inside, and does not deteriorate the semiconductor light emitting element (2) and the fluorescent substance (10a). [2] Since it has a high ion barrier effect of preventing harmful ions from penetrating, it can be used outside the light-emitting diode device or in a fluorescent substance
Do not degrade the light emitting diode chip with harmful ions from [3] It has excellent resistance to ultraviolet light, does not cause yellowing or coloring even in a high-temperature environment or under ultraviolet light emission, and does not attenuate the light emission of the semiconductor light emitting element (2). [4] Since the silicon atoms in the glass are strongly bonded to the oxygen atoms in the surface oxide layer of the metal or ceramic, the semiconductor light-emitting element (2), the wiring conductor (3, 4) or the oxide-based inorganic fluorescent material (10a ) And good adhesion. [5] When the coating type glass material applied to the entire inside of the cup portion (3a) of the wiring conductor (3, 4) solidifies, the added fluorescent substance (10a) powder becomes a nucleus. Cracks are less likely to occur.

【0015】このように、ガラス層(10)を使用する
ことにより従来の発光ダイオード装置の種々の弱点を克
服でき、安価で信頼性の高い、蛍光物質(10a)によ
る波長変換機能を有する半導体発光装置を得ることがで
きる。
As described above, by using the glass layer (10), various weaknesses of the conventional light emitting diode device can be overcome, and the semiconductor light emitting device having the wavelength conversion function by the fluorescent material (10a) which is inexpensive and highly reliable. A device can be obtained.

【0016】本発明の実施の形態では、ガラス層(1
0)は、金属アルコキシドを出発原料とする塗布形ガラ
ス材料又はセラミック前駆体ポリマー等から成る塗布形
ガラス材料より選択され、摂氏150度前後の温度で焼
成可能である。ガラス層(10)は、シロキサン(silo
xane)結合を主体とする透明な固形ガラス層で、空気中
又は酸素雰囲気中で加熱されたとき、成分の分解又は酸
素の吸収によりSiO2(酸化珪素)のシロキサン結合を
発生する。半導体発光素子(2)の上面に形成された電
極(2a、2b)と一対の配線導体(3、4)とはボン
ディングワイヤ(5、6)により電気的に接続され、ガ
ラス層(10)は半導体発光素子(2)、電極(2a、
2b)及び電極(2a、2b)に接続されたボンディン
グワイヤ(5、6)の端部を被覆する。一対の配線導体
(3、4)の一方の端部にカップ部(3a)が形成さ
れ、半導体発光素子(2)はカップ部(3a)の底部
(3b)に接着される。
In the embodiment of the present invention, the glass layer (1
0) is selected from a coated glass material made of a metal alkoxide as a starting material or a coated glass material made of a ceramic precursor polymer or the like, and can be fired at a temperature of about 150 degrees Celsius. The glass layer (10) is made of siloxane (silo).
xane) A transparent solid glass layer mainly composed of bonds. When heated in air or an oxygen atmosphere, siloxane bonds of SiO 2 (silicon oxide) are generated by decomposition of components or absorption of oxygen. The electrodes (2a, 2b) formed on the upper surface of the semiconductor light emitting element (2) and the pair of wiring conductors (3, 4) are electrically connected by bonding wires (5, 6), and the glass layer (10) is Semiconductor light-emitting element (2), electrode (2a,
2b) and the ends of the bonding wires (5, 6) connected to the electrodes (2a, 2b). A cup (3a) is formed at one end of the pair of wiring conductors (3, 4), and the semiconductor light emitting element (2) is bonded to the bottom (3b) of the cup (3a).

【0017】絶縁性基板(11)の一方の主面にカップ
部(3a)と、絶縁性基板(11)の一方の主面に沿っ
て互いに反対方向に延びる一対の配線導体(3、4)と
が形成され、カップ部(3a)の底部(3b)にて一対
の配線導体(3、4)の一方に半導体発光素子(2)が
固着される。ガラス層(10)はカップ部(3a)の上
端部(3d)から突出しない。配線導体(3、4)は絶
縁性基板(11)の一方の主面から側面に沿って他方の
主面に延びる。ガラス層(10)は更に封止樹脂(8)
により封止され、半導体発光素子(2)から照射される
光は、ガラス層(10)内を通過した後、封止樹脂
(8)の外部に放出される。
A cup (3a) is provided on one main surface of the insulating substrate (11), and a pair of wiring conductors (3, 4) extending in opposite directions along one main surface of the insulating substrate (11). Is formed, and the semiconductor light emitting element (2) is fixed to one of the pair of wiring conductors (3, 4) at the bottom (3b) of the cup (3a). The glass layer (10) does not protrude from the upper end (3d) of the cup (3a). The wiring conductors (3, 4) extend from one main surface of the insulating substrate (11) along the side surface to the other main surface. The glass layer (10) further comprises a sealing resin (8)
The light emitted from the semiconductor light emitting element (2) is emitted through the glass layer (10), and then emitted to the outside of the sealing resin (8).

【0018】半導体発光素子(2)から放射された光成
分の一部がガラス層(10)に達してガラス層(10)
内で異なる波長に波長変換された光と、波長変換されな
い半導体発光素子(2)からの光成分とが混合して封止
樹脂(8)を通して外部に放出される。特定の発光波長
を吸収する光吸収物質、半導体発光素子(2)の発光を
散乱する光散乱物質又はガラス層(10)のクラックを
防止する結合材をガラス層(10)内に配合してもよ
い。
Part of the light component emitted from the semiconductor light emitting element (2) reaches the glass layer (10) and
The light whose wavelength has been converted into a different wavelength and the light component from the semiconductor light emitting element (2) that has not been converted are mixed and emitted to the outside through the sealing resin (8). Even if a light absorbing substance that absorbs a specific emission wavelength, a light scattering substance that scatters light emitted from the semiconductor light emitting element (2), or a binder that prevents cracking of the glass layer (10) is mixed in the glass layer (10). Good.

【0019】[0019]

【発明の実施の形態】以下、発光ダイオード装置に適用
した本発明による半導体発光装置の実施の形態を図1〜
図4について説明する。図1〜図4に示す実施の形態で
は、図5に示す箇所と同一の部分には同一の符号を付
し、説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a semiconductor light emitting device according to the present invention applied to a light emitting diode device is shown in FIGS.
Referring to FIG. In the embodiment shown in FIGS. 1 to 4, the same parts as those shown in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted.

【0020】図1は、本発明による発光ダイオード装置
(20)の第1の実施の形態を示す断面図である。発光
ダイオード装置(20)ではカップ部(3a)に固着さ
れた発光ダイオードチップ(2)は、絶縁物封止体とし
て蛍光物質(10a)を含有するガラス層(10)によ
り被覆され、更に封止樹脂(8)により被覆される。製
造の際に、発光ダイオードチップ(2)の上部より蛍光
物質(10a)を含む塗布型ガラス材料をカップ部(3
a)内に注入して、約摂氏150度の温度で焼成し、蛍
光物質(10a)を含有するガラス層(10)を固化形
成した後に、配線導体(3、4)の端部全体を透明な封
止樹脂(8)で封止する。ガラス層(10)の焼成温度
は発光ダイオードチップ(2)の融点よりも十分に低
い。
FIG. 1 is a sectional view showing a first embodiment of a light emitting diode device (20) according to the present invention. In the light emitting diode device (20), the light emitting diode chip (2) fixed to the cup portion (3a) is covered with a glass layer (10) containing a fluorescent substance (10a) as an insulator sealing body, and further sealed. Coated with resin (8). At the time of manufacture, a coating-type glass material containing a fluorescent substance (10a) is applied from above the light emitting diode chip (2) to the cup part (3
a) and fired at a temperature of about 150 degrees Celsius to solidify and form the glass layer (10) containing the fluorescent substance (10a), and then the entire ends of the wiring conductors (3, 4) are transparent. Sealing with a suitable sealing resin (8). The firing temperature of the glass layer (10) is sufficiently lower than the melting point of the light emitting diode chip (2).

【0021】発光ダイオード装置(20)の配線導体
(3、4)間に電圧を印加して発光ダイオードチップ
(2)に通電して発光ダイオードチップ(2)を発光さ
せると、ガラス層(10)内の蛍光物質(10a)によ
ってその一部又は全部がその発光波長と異なる他の波長
に変換された後、封止樹脂(8)の先端部に形成された
レンズ部(8a)によって集光されて発光ダイオード装
置(20)の外部に放出される。例えば、半導体発光素
子には発光波長のピークが約440nmから約470n
mのGaN系の青色の発光ダイオードチップ(2)を用
い、蛍光物質(10a)には付活剤としてCe(セリウ
ム)を約6mol%添加したYAG(イットリウム・ア
ルミニウム・ガーネット、化学式Y3Al512、励起波
長のピーク約450nm、発光波長のピーク約540n
mの黄緑色光)を用いる。
When a voltage is applied between the wiring conductors (3, 4) of the light emitting diode device (20) to energize the light emitting diode chip (2) and cause the light emitting diode chip (2) to emit light, the glass layer (10) After a part or the whole thereof is converted into another wavelength different from the emission wavelength by the fluorescent substance (10a) in the inside, the light is condensed by the lens part (8a) formed at the tip of the sealing resin (8). And emitted to the outside of the light emitting diode device (20). For example, a semiconductor light emitting device has a peak emission wavelength of about 440 nm to about 470 n.
m, a GaN-based blue light emitting diode chip (2), and YAG (yttrium aluminum garnet, chemical formula Y 3 Al 5 ) to which about 6 mol% of Ce (cerium) is added as an activator to the fluorescent substance (10a) O 12 , excitation wavelength peak about 450 nm, emission wavelength peak about 540 n
m yellow-green light).

【0022】ガラス層(10)は、YAG蛍光物質(1
0a)の粉末状微細結晶粒を塗布型ガラス材料に適量混
合して成るガラス混合物を作成し、これをカップ部(3
a)内にカップ部(3a)の上端部(3d)から突出し
ない量で注入した後に焼成して得られる。
The glass layer (10) is made of a YAG fluorescent material (1).
0a) to prepare a glass mixture by mixing an appropriate amount of the powdery fine crystal grains with a coating type glass material,
It is obtained by injecting into a) an amount that does not protrude from the upper end portion (3d) of the cup portion (3a), followed by firing.

【0023】一方、封止樹脂(8)は、液状で透明なエ
ポキシ樹脂を成形型に注入した後に発光ダイオードチッ
プ(2)、ボンディングワイヤ(5、6)、ガラス層
(10)を固着した配線導体(3、4)の端部をこのエ
ポキシ樹脂中に浸漬し且つ位置決め治具によりエポキシ
樹脂中の所定の位置に固定し、エポキシ樹脂を加熱し硬
化して得られる。発光ダイオード装置(20)から外部
に放出される光の指向角を広げるため、必要に応じて粉
末シリカ等の散乱剤を封止樹脂(8)に混合させてもよ
い。本実施の形態では、YAG蛍光物質(10a)の波
長変換効率の最大値が比較的高く、発光ダイオードチッ
プ(2)の発光波長とYAG蛍光物質(10a)の励起
波長とが約450nmのピークでほぼ一致するため、実
効波長変換効率の高い明るい発光ダイオード装置(2
0)が得られる。また、YAG蛍光物質(10a)の結
晶粒がガラス層(10)中に分散しているので、発光ダ
イオード装置(20)から外部に放出される光は、蛍光
物質(10a)で波長変換された光成分以外に蛍光物質
(10a)の結晶粒を透過せず波長変換されない本来の
発光成分即ち発光ダイオードチップ(2)から照射され
た光成分も含まれる。
On the other hand, the sealing resin (8) is formed by injecting a liquid and transparent epoxy resin into a molding die and then fixing the light emitting diode chip (2), the bonding wires (5, 6) and the glass layer (10). The ends of the conductors (3, 4) are immersed in the epoxy resin and fixed at predetermined positions in the epoxy resin by a positioning jig, and the epoxy resin is heated and cured. If necessary, a scattering agent such as powdered silica may be mixed with the sealing resin (8) in order to increase the directional angle of light emitted from the light emitting diode device (20) to the outside. In the present embodiment, the maximum value of the wavelength conversion efficiency of the YAG fluorescent substance (10a) is relatively high, and the emission wavelength of the light-emitting diode chip (2) and the excitation wavelength of the YAG fluorescent substance (10a) have a peak at about 450 nm. Since they almost match, a bright light emitting diode device (2
0) is obtained. Further, since the crystal grains of the YAG fluorescent substance (10a) are dispersed in the glass layer (10), the light emitted from the light emitting diode device (20) to the outside is wavelength-converted by the fluorescent substance (10a). In addition to the light component, an original light-emitting component that does not transmit the crystal grains of the fluorescent substance (10a) and is not wavelength-converted, that is, a light component emitted from the light-emitting diode chip (2) is also included.

【0024】従って、発光波長ピーク約440nm〜約
470nmの青色光である発光ダイオードチップ(2)
の発光成分と、半値幅約130nmの幅広い波長分布を
持った発光波長ピーク約540nmの黄緑色光であるY
AG蛍光物質(10a)の発光成分とが混合された白色
光が発光ダイオード装置(20)から外部に放出され
る。この場合、塗布型ガラス材料に混合するYAG蛍光
物質(10a)粉末の量を調整し、ガラス層(10)内
の分布濃度を変更することにより発光ダイオード装置
(20)の発光色の色調を調整することができる。ま
た、YAG蛍光物質(10a)の製造時に適当な添加物
を適量添加して結晶構造を一部変更して発光波長分布を
シフトすると、発光ダイオード装置(20)の発光色を
更に異なる色調に調整することができる。例えばGa
(ガリウム)又はLu(ルテチウム)を添加して短波長
側にシフトし、Gd(ガドリニウム)を添加して長波長
側にシフトすることができる。
Therefore, the light emitting diode chip (2) which emits blue light having an emission wavelength peak of about 440 nm to about 470 nm
And Y which is yellow-green light having an emission wavelength peak of about 540 nm having a wide wavelength distribution with a half width of about 130 nm.
The white light mixed with the light emitting component of the AG fluorescent material (10a) is emitted from the light emitting diode device (20) to the outside. In this case, the color tone of the light emitting diode device (20) is adjusted by adjusting the amount of the YAG fluorescent substance (10a) powder mixed with the coating type glass material and changing the distribution concentration in the glass layer (10). can do. In addition, when a suitable amount of an additive is added during the production of the YAG fluorescent substance (10a) and the crystal structure is partially changed to shift the emission wavelength distribution, the emission color of the light emitting diode device (20) is further adjusted to a different color tone. can do. For example, Ga
Addition of (gallium) or Lu (lutetium) can shift to a shorter wavelength side, and addition of Gd (gadolinium) can shift to a longer wavelength side.

【0025】本発明では更に光学的特性や作業性を向上
するため、例えば下記の改善も可能である。 [1] ガラス層(10)内に散乱剤を混入することで発
光ダイオードチップ(2)の光を散乱させることにより
蛍光物質(10a)に当たる発光ダイオードチップ
(2)の光量が増加し、波長変換効率を向上すると共
に、発光ダイオード装置(20)から外部に放出される
光の指向角を広げることができる。 [2] ガラス層(10)のクラックを防止する結合材を
配合する。 [3] 塗布型ガラス材料の粘度を高くする。 [4] 塗布型ガラス材料の使用量を減らす。
In the present invention, the following improvements can be made to further improve the optical characteristics and workability. [1] By mixing a scattering agent into the glass layer (10) to scatter the light of the light emitting diode chip (2), the light amount of the light emitting diode chip (2) hitting the fluorescent substance (10a) increases, and wavelength conversion is performed. Efficiency can be improved and the directional angle of light emitted from the light emitting diode device (20) to the outside can be widened. [2] A binder for preventing cracking of the glass layer (10) is blended. [3] Increase the viscosity of the coating type glass material. [4] Reduce the amount of coated glass material used.

【0026】このような場合は、図2に示すように、塗
布型ガラス材料に蛍光物質(10a)の粉末とともにシ
リカ、酸化チタン等のセラミック粉末(10b)を目的
に応じて適量混合すればよい。
In such a case, as shown in FIG. 2, a powder of the fluorescent substance (10a) and a ceramic powder (10b) of silica, titanium oxide or the like may be mixed with the coating type glass material in an appropriate amount according to the purpose. .

【0027】図2に示す本発明の第2の実施の形態で
は、混合するセラミック粉末の種類及び量によって得ら
れる効果が異なる。例えばセラミック粉末がシリカの場
合は本来ガラス層(10)と同じ物質なので[1]の効果
は少なく[2][3]の効果が大きい。しかしセラミック粉
末が酸化チタンの場合は[1]〜[3]の効果とも大きい。
従って混合するセラミック粉末は目的によって単一でも
複数の種類を組み合わせても良い。
In the second embodiment of the present invention shown in FIG. 2, the effect obtained depends on the type and amount of the ceramic powder to be mixed. For example, when the ceramic powder is silica, the effect of [1] is small and the effects of [2] and [3] are large because the material is essentially the same as the glass layer (10). However, when the ceramic powder is titanium oxide, the effects of [1] to [3] are also large.
Therefore, the ceramic powder to be mixed may be a single type or a combination of plural types depending on the purpose.

【0028】また、本発明では紫外線で劣化しないガラ
スを用いるので、半導体発光素子に紫外線発光ダイオー
ドチップ(2)も用いることができる。従って、従来の
発光ダイオード装置よりも明るく且つ変化に富む色調の
発光ダイオード装置(20)を実現することができる。
In the present invention, since glass which does not deteriorate by ultraviolet rays is used, an ultraviolet light emitting diode chip (2) can be used for the semiconductor light emitting element. Therefore, it is possible to realize a light emitting diode device (20) that is brighter and more varied in color than the conventional light emitting diode device.

【0029】本発明による発光ダイオード装置(20)
の第3の実施の形態を図3に示す。
A light emitting diode device according to the present invention (20)
FIG. 3 shows a third embodiment of the present invention.

【0030】例えば、約360nm〜380nmの発光
ピーク波長を有する紫外線を発生するGaN系発光ダイ
オードチップ(2)と、励起ピーク波長約360nm、
発光ピーク波長約543nmのGa及びTb(テルビウ
ム)付活のY2SiO5の蛍光物質(10a)とを使用す
ると、半値幅約12nmの非常にシャープな発光分布を
持つ緑色発光ダイオード装置(20)が得られる。
For example, a GaN-based light emitting diode chip (2) that generates ultraviolet light having an emission peak wavelength of about 360 nm to 380 nm, an excitation peak wavelength of about 360 nm,
When a Ga and Tb (terbium) activated Y 2 SiO 5 phosphor (10a) having an emission peak wavelength of about 543 nm is used, a green light emitting diode device (20) having a very sharp emission distribution with a half width of about 12 nm is provided. Is obtained.

【0031】発光ダイオードチップと蛍光物質(10
a)の前記組合わせは例示に過ぎず、紫外線発光ダイオ
ードチップ(2)の発光波長に適合する励起波長分布を
持ち且つ波長変換効率が高ければ、いかなる蛍光物質
(10a)でも使用できる。例えばハロ燐酸カルシュウ
ム系、燐酸カルシュウム系、珪酸塩系、アルミン酸塩
系、タングステン酸塩系等の蛍光物質(10a)から所
望の特性を持つ蛍光物質(10a)を選択することがで
きる。
A light emitting diode chip and a fluorescent material (10
The combination of a) is only an example, and any fluorescent substance (10a) can be used as long as it has an excitation wavelength distribution suitable for the emission wavelength of the ultraviolet light emitting diode chip (2) and has high wavelength conversion efficiency. For example, a fluorescent substance (10a) having desired characteristics can be selected from fluorescent substances (10a) such as calcium halophosphate, calcium phosphate, silicate, aluminate, and tungstate.

【0032】また、第2の実施の形態と同様に、第3の
実施の形態の発光ダイオード装置(20)のガラス層
(10)にもセラミック粉末を混合することは可能であ
る。
Further, similarly to the second embodiment, it is possible to mix ceramic powder into the glass layer (10) of the light emitting diode device (20) according to the third embodiment.

【0033】前記の実施の形態では、カップ部(3a)
の上端部より上方に突出しないようにガラス層(10)
の充填量を調整すれば、隣接して他の発光ダイオード装
置(20)を設置しても偽灯を発生しない。
In the above embodiment, the cup portion (3a)
Glass layer (10) so as not to protrude above the upper end of the
By adjusting the filling amount, false light does not occur even if another light emitting diode device (20) is installed adjacently.

【0034】図4は、チップ形発光ダイオード装置(2
0)に適用した本発明の他の実施の形態を示す。チップ
形発光ダイオード装置(20)では、絶縁性基板(1
1)の一方の主面にカップ部(3a)と、相互に離間し
た配線導体(3、4)とが形成され、配線導体(3、
4)の一方の端部は、カップ部(3a)内に配置され
る。発光ダイオードチップ(2)はカップ部(3a)の
底部(3b)にて配線導体(3)に接着剤(12)を介
して固着される。配線導体(3、4)の他方の端部は、
絶縁性基板(11)の側面及び他方の主面に延びて配置
される。発光ダイオードチップ(2)のカソード電極
(2a)及びアノード電極(2b)はそれぞれボンディ
ングワイヤ(5、6)により配線導体(3、4)に接続
される。発光ダイオードチップ(2)、カップ部(3
a)、ボンディングワイヤ(5、6)、配線導体(3、
4)の一方の端部側はガラス層(10)により被覆さ
れ、絶縁性基板(11)の一方の主面に形成された台形
状断面の封止樹脂(8)によって更に被覆される。図4
の発光ダイオード装置(20)でも、発光ダイオードチ
ップ(2)から照射された光の一部がガラス層(10)
の蛍光物質(10a)によって発光波長が変換され、図
1の発光ダイオード装置と同様の作用効果が得られる。
尚、図4の発光ダイオードにおいても、ガラス層(1
0)にセラミック粉末を混入することができる。また、
図1〜図4の発光ダイオードでは、蛍光物質(10a)
をガラス層(10)内に均一に分散させているが、不均
一に分散させることもできる。例えば、LEDチップ
(3a)側で蛍光物質(10a)の混入濃度を増加して
もよい。
FIG. 4 shows a chip type light emitting diode device (2).
Another embodiment of the present invention applied to (0) is shown. In the chip type light emitting diode device (20), the insulating substrate (1
A cup portion (3a) and wiring conductors (3, 4) separated from each other are formed on one main surface of 1), and the wiring conductors (3, 4) are formed.
One end of 4) is arranged in the cup part (3a). The light emitting diode chip (2) is fixed to the wiring conductor (3) via an adhesive (12) at the bottom (3b) of the cup (3a). The other ends of the wiring conductors (3, 4)
The insulating substrate (11) is disposed so as to extend on the side surface and the other main surface. The cathode electrode (2a) and the anode electrode (2b) of the light emitting diode chip (2) are connected to the wiring conductors (3, 4) by bonding wires (5, 6), respectively. LED chip (2), cup (3
a), bonding wires (5, 6), wiring conductors (3,
One end side of 4) is covered with a glass layer (10), and further covered with a sealing resin (8) having a trapezoidal cross section formed on one main surface of the insulating substrate (11). FIG.
In the light emitting diode device (20), a part of the light emitted from the light emitting diode chip (2) is
The emission wavelength is converted by the fluorescent substance (10a), and the same operation and effect as those of the light emitting diode device of FIG. 1 can be obtained.
In addition, also in the light emitting diode of FIG.
Ceramic powder can be mixed in 0). Also,
In the light emitting diode of FIGS. 1 to 4, the fluorescent substance (10a)
Is uniformly dispersed in the glass layer (10), but may be unevenly dispersed. For example, the mixed concentration of the fluorescent substance (10a) may be increased on the LED chip (3a) side.

【0035】[0035]

【発明の効果】前記のように、本発明では、有害物質の
浸透を防ぎ且つ紫外線耐性に優れるガラス層により半導
体発光素子を被覆するので、湿度、温度又は紫外線等に
よってガラス層や半導体発光素子に劣化を起こさず、耐
環境性が向上し、蛍光物質による発光波長変換機能を有
しつつも信頼性が高く安価な半導体発光装置を得ること
ができる。
As described above, in the present invention, since the semiconductor light emitting device is covered with the glass layer which prevents permeation of harmful substances and has excellent ultraviolet light resistance, the glass layer and the semiconductor light emitting device are exposed to humidity, temperature, ultraviolet light or the like. A highly reliable and inexpensive semiconductor light emitting device which does not deteriorate, has improved environmental resistance, and has an emission wavelength conversion function using a fluorescent substance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 発光ダイオード装置に適用した本発明による
半導体発光装置の断面図
FIG. 1 is a cross-sectional view of a semiconductor light emitting device according to the present invention applied to a light emitting diode device.

【図2】 本発明の第2の実施の形態を示す部分断面図FIG. 2 is a partial cross-sectional view showing a second embodiment of the present invention.

【図3】 本発明の第3の実施の形態を示す部分断面図FIG. 3 is a partial cross-sectional view showing a third embodiment of the present invention.

【図4】 チップ型発光ダイオード装置に適用した本発
明の実施の形態を示す断面図
FIG. 4 is a sectional view showing an embodiment of the present invention applied to a chip type light emitting diode device.

【図5】 従来の発光ダイオード装置の断面図FIG. 5 is a sectional view of a conventional light emitting diode device.

【符号の説明】[Explanation of symbols]

(2)・・半導体発光素子、 (2a、2b)・・電
極、 (3、4)・・配線導体、 (3a)・・カップ
部、 (3b)・・底部、 (3c)・・側壁、(3
d)・・上端部、 (5、6)・・ボンディングワイ
ヤ、 (8)・・封止樹脂、 (10)・・ガラス層、
(11)・・絶縁性基板、
(2) ·· Semiconductor light emitting element, (2a, 2b) ··· electrode, (3, 4) ··· wiring conductor, (3a) ··· cup part, (3b) ··· bottom part, (3c) ··· side wall, (3
d) top edge, (5, 6) bonding wire, (8) sealing resin, (10) glass layer,
(11) ..insulating substrate,

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成11年2月12日[Submission date] February 12, 1999

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】全文[Correction target item name] Full text

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【書類名】 明細書[Document Name] Statement

【発明の名称】 半導体発光装置及びその製法Patent application title: Semiconductor light emitting device and method of manufacturing the same

【特許請求の範囲】[Claims]

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、発光ダイオード装
置、特に半導体発光素子から照射される光を波長変換し
て外部に放出する半導体発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light emitting diode device, and more particularly, to a semiconductor light emitting device that converts the wavelength of light emitted from a semiconductor light emitting element and emits the light to the outside.

【0002】[0002]

【従来の技術】図5は、発光ダイオードチップから照射
される光の波長を蛍光体によって変換する従来の発光ダ
イオード装置の断面図を示す。図5に示す発光ダイオー
ド装置(1)では、カソード側のリードとしての配線導
体(3)のカップ部(3a)の底面(3b)に発光ダイ
オードチップ(2)が固着され、ボンディングワイヤ
(5)により発光ダイオードチップ(2)のカソード電
極はカソード側の配線導体(3)の上端部(9a)に接
続される。また、発光ダイオードチップ(2)のアノー
ド電極はボンディングワイヤ(6)によりアノード側の
リードとしての配線導体(4)の上端部(9b)に接続
される。カップ部(3a)に固着された発光ダイオード
チップ(2)は、カップ部(3a)内に充填され且つ蛍
光物質が混入された光透過性の保護樹脂(7)により被
覆される。発光ダイオードチップ(2)、カソード側の
配線導体(3)のカップ部(3a)及び上端部(9
a)、アノード側の配線導体(4)の上端部(9b)、
ボンディングワイヤ(5、6)は、更に光透過性の封止
樹脂(8)内に封入される。
2. Description of the Related Art FIG. 5 is a sectional view of a conventional light emitting diode device for converting the wavelength of light emitted from a light emitting diode chip by a phosphor. In the light emitting diode device (1) shown in FIG. 5, a light emitting diode chip (2) is fixed to a bottom surface (3b) of a cup portion (3a) of a wiring conductor (3) as a cathode-side lead, and a bonding wire (5) is provided. As a result, the cathode electrode of the light emitting diode chip (2) is connected to the upper end (9a) of the wiring conductor (3) on the cathode side. The anode electrode of the light emitting diode chip (2) is connected to the upper end (9b) of the wiring conductor (4) as a lead on the anode side by a bonding wire (6). The light emitting diode chip (2) fixed to the cup (3a) is covered with a light transmitting protective resin (7) filled in the cup (3a) and mixed with a fluorescent substance. The light emitting diode chip (2), the cup (3a) and the upper end (9) of the cathode side wiring conductor (3)
a), the upper end portion (9b) of the anode-side wiring conductor (4),
The bonding wires (5, 6) are further sealed in a light-transmitting sealing resin (8).

【0003】発光ダイオード装置(1)のカソード側の
配線導体(3)とアノード側の配線導体(4)との間に
電圧を印加し、発光ダイオードチップ(2)に通電する
と、発光ダイオードチップ(2)から照射される光は、
保護樹脂(7)内を通り配線導体(3)のカップ部(3
a)の側壁(3c)で反射した後に、透明な封止樹脂
(8)を通り発光ダイオード装置(1)の外部に放出さ
れる。また、発光ダイオードチップ(2)の上面から放
射されてカップ部(3a)の側壁(3c)で反射されず
に直接に保護樹脂(7)及び封止樹脂(8)を通って発
光ダイオード装置(1)の外部に放出される光もある。
封止樹脂(8)の先端にはレンズ部(8a)が形成さ
れ、封止樹脂(8)内を通過する光は、レンズ部(8
a)によって集光されて指向性が高められる。発光ダイ
オードチップ(2)の発光時に、発光ダイオードチップ
(2)から照射される光は保護樹脂(7)内に混入され
た蛍光物質によって異なる波長に変換されて放出され
る。この結果、発光ダイオードチップ(2)から照射さ
れた光とは異なる波長の光が発光ダイオード装置(1)
から放出される。
When a voltage is applied between the wiring conductor (3) on the cathode side and the wiring conductor (4) on the anode side of the light emitting diode device (1) and the light emitting diode chip (2) is energized, the light emitting diode chip (2) is turned on. The light emitted from 2) is
The inside of the protective resin (7) passes through the cup portion (3) of the wiring conductor (3).
After being reflected by the side wall (3c) of a), the light is emitted to the outside of the light emitting diode device (1) through the transparent sealing resin (8). Further, the light-emitting diode device is radiated from the upper surface of the light-emitting diode chip (2) and is not reflected by the side wall (3c) of the cup portion (3a) but directly passes through the protective resin (7) and the sealing resin (8). Some light is emitted to the outside of 1).
A lens portion (8a) is formed at the tip of the sealing resin (8), and light passing through the sealing resin (8) is transmitted through the lens portion (8).
The light is condensed by a) and the directivity is enhanced. When the light emitting diode chip (2) emits light, light emitted from the light emitting diode chip (2) is converted into a different wavelength by a fluorescent substance mixed in the protective resin (7) and emitted. As a result, light having a different wavelength from the light emitted from the light emitting diode chip (2) is emitted from the light emitting diode device (1).
Released from

【0004】複数の発光ダイオード装置(1)が互いに
隣接して配置されるとき、通電され且つ点灯された発光
ダイオード装置(1)からの放射光によって隣接する他
の発光ダイオード装置(1)の保護樹脂(7)中の蛍光
体が励起されて、非通電時でも、あたかも点灯している
ように見える不具合(偽灯)が生じるおそれがある。保
護樹脂(7)がカップ部(3a)の上端部(9a)より
上方に突出しないように保護樹脂(7)の充填量を調整
すると、保護樹脂(7)により光の波長変換を行いつつ
外部光による偽灯も防止できる。
When a plurality of light emitting diode devices (1) are arranged adjacent to each other, protection of another adjacent light emitting diode device (1) by radiation emitted from the light emitting diode device (1) that is energized and turned on. The fluorescent substance in the resin (7) is excited, and there is a possibility that a defect (false lamp) that appears as if the lamp is lit even when no current is supplied. When the filling amount of the protective resin (7) is adjusted so that the protective resin (7) does not protrude above the upper end (9a) of the cup portion (3a), the protective resin (7) converts the wavelength of light to the external False lighting by light can also be prevented.

【0005】[0005]

【発明が解決しようとする課題】蛍光体を含有する保護
樹脂(7)で発光ダイオードチップ(2)を包囲し、更
に全体を封止樹脂(8)で包囲する従来の発光ダイオー
ド装置(1)では、実用上種々の問題が生ずる。第1
に、保護樹脂(7)及び封止樹脂(8)の耐環境性が必
ずしも十分でないとき、保護樹脂(7)に配合できる蛍
光体が特定の種類に限定される。即ち、一般に樹脂は水
分を透過し、高湿度の雰囲気中に放置されると、時間の
経過と共に樹脂の内部に水分が浸透する。この場合、侵
入する水分によって分解又は変質して光波長変換機能が
低下し又は消失する耐湿性の悪い蛍光体もある。例え
ば、水分によって加水分解する公知の代表的な硫化カル
シウム系の蛍光体は従来の発光ダイオード装置(1)に
使用できない。
A conventional light emitting diode device (1) in which a light emitting diode chip (2) is surrounded by a protective resin (7) containing a phosphor and the whole is further surrounded by a sealing resin (8). Then, various problems arise practically. First
In addition, when the environmental resistance of the protective resin (7) and the sealing resin (8) is not always sufficient, the phosphor that can be blended in the protective resin (7) is limited to a specific type. That is, generally, the resin transmits moisture, and when left in an atmosphere of high humidity, the moisture permeates into the resin over time. In this case, there is a phosphor having poor moisture resistance, which is decomposed or deteriorated by the invading moisture to reduce or eliminate the light wavelength conversion function. For example, a known typical calcium sulfide-based phosphor that is hydrolyzed by moisture cannot be used in the conventional light emitting diode device (1).

【0006】また、水分のみならずナトリウム又は塩素
等の不純物イオンも樹脂を透過し、発光ダイオードチッ
プに有害な影響を与える。従って、清浄な環境で製造さ
れた発光ダイオード装置(1)でも、不純物イオンを含
む雰囲気中に放置すると、不純物イオンが樹脂の内部に
次第に浸透して発光ダイオードチップ(2)の電気的特
性が劣化する難点がある。特に、重大な問題は、有害不
純物イオンが遊離する化学的に不安定な有機蛍光体も少
なくない点である。従って、従来の発光ダイオード装置
(1)では、この種の有機蛍光体を使用することができ
ない。
In addition, not only moisture but also impurity ions such as sodium and chlorine permeate the resin and have a harmful effect on the light emitting diode chip. Therefore, even if the light emitting diode device (1) manufactured in a clean environment is left in an atmosphere containing impurity ions, the impurity ions gradually penetrate into the resin and the electrical characteristics of the light emitting diode chip (2) deteriorate. There are difficulties to do. In particular, a serious problem is that there are many chemically unstable organic phosphors from which harmful impurity ions are released. Therefore, this type of organic phosphor cannot be used in the conventional light emitting diode device (1).

【0007】次に、発光ダイオードチップ(2)から発
生する紫外線成分によって被覆樹脂及び蛍光体が劣化す
る問題がある。一般に、炭素、水素、酸素、窒素等の元
素が網目状に結合した有機高分子化合物によって構成さ
れる保護樹脂(7)及び封止樹脂(8)は、紫外線が照
射されると、有機高分子の繋ぎ目が切断され、各種の光
学的特性及び化学的特性が劣化することが知られてい
る。例えばGaN(窒化ガリウム)の青色発光ダイオー
ドチップは、可視光成分以外にも波長380nm以下の
紫外波長域に発光成分を持つため、被覆樹脂は光強度の
強い発光ダイオードチップの周囲から次第に黄変し、着
色現象が発生する。このため、発光ダイオードチップが
発した可視光は着色部で吸収され減衰する。更に、被覆
樹脂の劣化に伴って耐湿性が低下すると共にイオン透過
性が増大するため、発光ダイオードチップ自体も劣化
し、その結果、発光ダイオード装置(1)の発光強度は
相乗的に低減する。
Next, there is a problem that the coating resin and the phosphor are deteriorated by the ultraviolet component generated from the light emitting diode chip (2). Generally, the protective resin (7) and the encapsulating resin (8), which are composed of an organic polymer compound in which elements such as carbon, hydrogen, oxygen, and nitrogen are bonded in a mesh pattern, emit organic polymer when irradiated with ultraviolet rays. It is known that the seam of the is cut and various optical and chemical properties are degraded. For example, a blue light emitting diode chip of GaN (gallium nitride) has a light emitting component in an ultraviolet wavelength range of 380 nm or less in addition to a visible light component, so that the coating resin gradually turns yellow from around the light emitting diode chip having a high light intensity. , A coloring phenomenon occurs. Therefore, the visible light emitted from the light emitting diode chip is absorbed and attenuated by the colored portion. Furthermore, since the moisture resistance is reduced and the ion permeability is increased with the deterioration of the coating resin, the light emitting diode chip itself is also deteriorated, and as a result, the light emitting intensity of the light emitting diode device (1) is reduced synergistically.

【0008】また、被覆樹脂と同様に、紫外線によって
劣化する蛍光体もある。例えば、硫化亜鉛系の蛍光体は
放射線や紫外線によって光分解を起こし亜鉛が遊離する
いわゆる「黒化」現象を起こすことが知られている。被
覆樹脂中の蛍光体が光分解を生ずると、発光ダイオード
装置(1)の発光強度は著しく低下する。
Also, there are phosphors that are deteriorated by ultraviolet rays, like the coating resin. For example, it is known that a zinc sulfide-based phosphor undergoes photodecomposition by radiation or ultraviolet rays to cause a so-called "blackening" phenomenon in which zinc is released. When the phosphor in the coating resin undergoes photodecomposition, the light emission intensity of the light emitting diode device (1) is significantly reduced.

【0009】紫外線による被覆樹脂及び蛍光体の劣化を
防止するため、被覆樹脂中に紫外線吸収物質を混入する
方法も考えられるが、可視光成分自体を吸収せず、被覆
樹脂本来の特性に悪影響を与えない紫外線吸収物質を慎
重に選定しなければならない。また、紫外線吸収物質を
採用する際に、付加的に使用する材料及び作業工程が増
加するので、製品価格が上昇する難点がある。
In order to prevent the deterioration of the coating resin and the phosphor due to ultraviolet rays, a method of mixing an ultraviolet absorbing substance into the coating resin is conceivable. However, it does not absorb the visible light component itself and adversely affects the intrinsic properties of the coating resin. Care must be taken to select UV absorbers that will not be given. In addition, when an ultraviolet absorbing material is used, the number of additional materials and the number of working processes are increased, so that there is a problem that the product price increases.

【0010】更に、紫外線を発する紫外線発光ダイオー
ドチップを使用できないため、蛍光体の材料選択と発光
ダイオード装置の発光特性が大きな制限を受けることが
第三の問題である。蛍光ランプ又は水銀ランプに使用す
る紫外線で励起される紫外線用の蛍光体は、古くから開
発・改良が行われた結果、現在では様々な発光波長分布
を持つ安価で光変換効率の高い数多くの蛍光体が実用化
されている。紫外線発光ダイオードチップと紫外線用の
蛍光体を組み合わせると、一層明るく且つ変化に富む色
調の発光ダイオード装置が得られると予想される。しか
しながら、紫外線により樹脂が劣化する従来の発光ダイ
オード装置では、紫外線発光ダイオードチップを使用で
きず、優れた蛍光体を利用できない。
A third problem is that since an ultraviolet light emitting diode chip that emits ultraviolet light cannot be used, the selection of a phosphor material and the light emitting characteristics of the light emitting diode device are greatly restricted. Ultraviolet phosphors excited by ultraviolet light used in fluorescent lamps or mercury lamps have been developed and improved for a long time. The body is in practical use. It is expected that a combination of an ultraviolet light emitting diode chip and a phosphor for ultraviolet light will provide a light emitting diode device with a brighter and more varied color tone. However, in a conventional light emitting diode device in which the resin is deteriorated by ultraviolet light, an ultraviolet light emitting diode chip cannot be used, and an excellent phosphor cannot be used.

【0011】第四の問題は、耐熱性が低い被覆樹脂が黄
変・着色するため、発光ダイオードチップから照射され
た光が被覆樹脂を通過する際に減衰する点にある。例え
ば順方向電圧が高いGaN(窒化ガリウム)の青色発光
ダイオードチップは、比較的低い順方向電流でも電力損
失が大きく、作動時にチップ温度はかなり上昇する。一
般に、樹脂は高温に加熱されると次第に劣化して黄変・
着色を起こすことが知られている。従ってGaNの発光
ダイオードチップを従来の発光ダイオード装置に用いる
と、高温の発光ダイオードチップと接する部分から樹脂
が次第に黄変・着色するため、発光ダイオード装置
(1)の外観品質と発光強度は次第に低下する。このよ
うに、従来の発光ダイオード装置では、蛍光体を樹脂中
に配合すると前記問題が生じ、このため選択する材料種
類の減少、信頼性の低下、光変換機能の不完全性、製品
価格の上昇を招来する原因となる。
A fourth problem is that since the coating resin having low heat resistance is yellowed and colored, the light emitted from the light emitting diode chip is attenuated when passing through the coating resin. For example, a GaN (gallium nitride) blue light emitting diode chip having a high forward voltage has a large power loss even at a relatively low forward current, and the chip temperature rises considerably during operation. Generally, the resin gradually deteriorates when heated to a high temperature,
It is known to cause coloring. Therefore, when a GaN light emitting diode chip is used in a conventional light emitting diode device, the resin gradually turns yellow and is colored from the portion in contact with the high-temperature light emitting diode chip, so that the appearance quality and light emission intensity of the light emitting diode device (1) gradually decrease. I do. As described above, in the conventional light emitting diode device, when the phosphor is mixed in the resin, the above-described problem occurs. Therefore, the selection of the material type is reduced, the reliability is reduced, the light conversion function is incomplete, and the product price is increased. May cause inconvenience.

【0012】本発明は、耐環境性及び耐紫外線性を有す
る半導体発光装置を提供することを目的とする。
An object of the present invention is to provide a semiconductor light emitting device having environmental resistance and ultraviolet light resistance.

【0013】[0013]

【課題を解決するための手段】本発明による半導体発光
装置は、一対の配線導体(3、4)と、一対の配線導体
(3、4)の一方の端部に固着された半導体発光素子
(2)と、半導体発光素子(2)を被覆する光透過性の
ガラス層(10)とを備えている。ガラス層(10)
は、半導体発光素子(2)から照射される光に対して光
透過性を有し且つ半導体発光素子(2)から照射される
光を吸収して他の発光波長に変換する蛍光物質(10
a)を含み且つ金属アルコキシド(例えば、テトラメト
キシシラン、テトラエトキシシラン等)又はセラミック
前駆体ポリマー(例えば、ペルヒドロポリシラザン等)
から成るガラス材料を焼成して形成されると共に、半導
体発光素子(2)及び配線導体(3、4)と強固に密着
する。半導体発光素子(2)の発光をガラス層(10)
中の蛍光物質(10a)によって所望の発光波長に変換
し、半導体発光素子(2)を包囲するガラス層(10)
を通して外部に放出させる。
A semiconductor light emitting device according to the present invention comprises a pair of wiring conductors (3, 4) and a semiconductor light emitting element (3) fixed to one end of the pair of wiring conductors (3, 4). 2) and a light transmissive glass layer (10) covering the semiconductor light emitting element (2). Glass layer (10)
Is a fluorescent substance (10) having a light-transmitting property with respect to light emitted from the semiconductor light emitting element (2) and absorbing light emitted from the semiconductor light emitting element (2) and converting the light to another emission wavelength.
a) and containing a metal alkoxide (eg, tetramethoxysilane, tetraethoxysilane, etc.) or a ceramic precursor polymer (eg, perhydropolysilazane, etc.)
It is formed by firing a glass material made of, and firmly adheres to the semiconductor light emitting element (2) and the wiring conductors (3, 4). The light emission of the semiconductor light emitting element (2) is controlled by the glass layer (10).
A glass layer (10) that converts the light into a desired emission wavelength by the fluorescent substance (10a) therein and surrounds the semiconductor light emitting device (2)
To the outside through

【0014】金属アルコキシドから成る塗布型ガラス材
料又はセラミック前駆体ポリマーから成る塗布型ガラス
材料は、半導体発光素子(2)の融点よりも低い温度で
ある150℃前後で焼成可能であり、低温領域でのガラ
ス層の形成が可能である。これらの塗布型ガラス材料は
通常は液状であるが、空気中又は酸素雰囲気中で加熱す
ると、成分の分解又は酸素の吸収によりSiO2(酸化
珪素)のシロキサン(siloxane)結合を主体とした透明
な固形ガラス層を生成する。これらのガラス材料に蛍光
物質(10a)粉末を混合して半導体発光素子(2)の
周囲に塗布すれば、光変換作用を発揮する蛍光物質(1
0a)含有ガラス層(10)を形成することができる。
The coating type glass material composed of a metal alkoxide or the coating type glass material composed of a ceramic precursor polymer can be fired at about 150 ° C., which is lower than the melting point of the semiconductor light emitting device (2), and can be fired in a low temperature region. Can be formed. These coating-type glass materials are usually liquid, but when heated in air or an oxygen atmosphere, a transparent siloxane (siloxane) bond mainly composed of SiO 2 (silicon oxide) due to decomposition of components or absorption of oxygen. Produce a solid glass layer. If a fluorescent substance (10a) powder is mixed with these glass materials and applied around the semiconductor light emitting element (2), the fluorescent substance (1
0a) The containing glass layer (10) can be formed.

【0015】形成されたガラス層(10)は、光変換作
用のみならず、下記の優れた特性を備えている。 [1] 耐湿性に優れ、内部に水分を浸透させず、半導体
発光素子(2)及び蛍光物質(10a)を劣化させな
い。 [2] 有害イオンの浸透を防ぐイオンバリア効果が高い
ため、半導体発光装置の外部や蛍光物質(10a)から
の有害イオンで半導体発光素子(2)を劣化させない。 [3] 紫外線耐性に優れ、高温環境下又は紫外線発光下
でも黄変・着色を起こさず、半導体発光素子(2)の発
光を減衰させない。 [4] ガラス中の珪素原子が金属又はセラミックの表面
酸化物層の酸素原子と強固に結合するので、半導体発光
素子(2)、配線導体(3、4)又は酸化物系無機蛍光
物質(10a)との密着性がよい。 [5] 配線導体(3、4)のカップ部(3a)内全体に
塗布した塗布型ガラス材料が固化する時、添加した蛍光
物質(10a)粉末が核となるので、厚塗りをしてもク
ラックが生じにくい。 このように、ガラス層(10)を使用することにより従
来の半導体発光装置の種々の弱点を克服でき、安価で信
頼性の高い、蛍光物質(10a)による波長変換機能を
有する半導体発光装置を得ることができる。
The formed glass layer (10) has not only a light conversion effect but also the following excellent characteristics. [1] It has excellent moisture resistance, does not penetrate moisture into the inside, and does not deteriorate the semiconductor light emitting element (2) and the fluorescent substance (10a). [2] Since the ion barrier effect for preventing harmful ions from penetrating is high, the semiconductor light emitting element (2) is not deteriorated by harmful ions from outside the semiconductor light emitting device or from the fluorescent substance (10a). [3] It has excellent resistance to ultraviolet light, does not cause yellowing or coloring even in a high-temperature environment or under ultraviolet light emission, and does not attenuate the light emission of the semiconductor light emitting element (2). [4] Since the silicon atoms in the glass are strongly bonded to the oxygen atoms in the surface oxide layer of the metal or ceramic, the semiconductor light-emitting element (2), the wiring conductor (3, 4) or the oxide-based inorganic fluorescent material (10a ) And good adhesion. [5] When the coating type glass material applied to the entire inside of the cup portion (3a) of the wiring conductor (3, 4) solidifies, the added fluorescent substance (10a) powder becomes a nucleus. Cracks are less likely to occur. As described above, by using the glass layer (10), various weaknesses of the conventional semiconductor light emitting device can be overcome, and a semiconductor light emitting device having a wavelength conversion function using the fluorescent material (10a) which is inexpensive and highly reliable is obtained. be able to.

【0016】本発明の実施の形態では、半導体発光素子
(2)の上面に形成された電極(2a、2b)と一対の
配線導体(3、4)とはボンディングワイヤ(5、6)
により電気的に接続され、半導体発光素子(2)、電極
(2a、2b)及び電極(2a、2b)に接続されたボ
ンディングワイヤ(5、6)の端部をガラス層(10)
により被覆する。一対の配線導体(3、4)の一方の端
部にカップ部(3a)が形成され、半導体発光素子
(2)はカップ部(3a)の底部(3b)に固着され
る。絶縁性基板(11)を備えた半導体発光装置の場
合、絶縁性基板(11)の一方の主面にカップ部(3
a)を形成し、絶縁性基板(11)の一方の主面に沿っ
て互いに反対方向に延びる一対の配線導体(3、4)を
形成し、カップ部(3a)の底部(3b)にて一対の配
線導体(3、4)の一方に半導体発光素子(2)を固着
する。この場合、配線導体(3、4)は絶縁性基板(1
1)の一方の主面から側面に沿って他方の主面に延び
る。
In the embodiment of the present invention, the electrodes (2a, 2b) formed on the upper surface of the semiconductor light emitting element (2) and the pair of wiring conductors (3, 4) are connected to bonding wires (5, 6).
And the ends of the bonding wires (5, 6) connected to the semiconductor light emitting device (2), the electrodes (2a, 2b) and the electrodes (2a, 2b) are connected to the glass layer (10).
To cover. A cup (3a) is formed at one end of the pair of wiring conductors (3, 4), and the semiconductor light emitting element (2) is fixed to the bottom (3b) of the cup (3a). In the case of a semiconductor light emitting device having an insulating substrate (11), a cup (3) is provided on one main surface of the insulating substrate (11).
a), a pair of wiring conductors (3, 4) extending in opposite directions along one main surface of the insulating substrate (11) is formed, and the pair of wiring conductors (3, 4) is formed at the bottom (3b) of the cup (3a). The semiconductor light emitting element (2) is fixed to one of the pair of wiring conductors (3, 4). In this case, the wiring conductors (3, 4) are provided on the insulating substrate (1).
1) extends from one main surface along the side surface to the other main surface.

【0017】ガラス層(10)はカップ部(3a)の上
端部(3d)から突出しない。ガラス層(10)は更に
封止樹脂(8)により封止され、半導体発光素子(2)
から照射される光は、ガラス層(10)内を通過した
後、封止樹脂(8)の外部に放出される。半導体発光素
子(2)から放射された光成分の一部がガラス層(1
0)に達してガラス層(10)内で異なる波長に波長変
換された光と、波長変換されない半導体発光素子(2)
からの光成分とが混合して封止樹脂(8)を通して外部
に放出される。特定の発光波長を吸収する光吸収物質、
半導体発光素子(2)の発光を散乱する光散乱物質又は
ガラス層(10)のクラックを防止する結合材をガラス
層(10)内に配合してもよい。
The glass layer (10) does not protrude from the upper end (3d) of the cup (3a). The glass layer (10) is further sealed with a sealing resin (8), and the semiconductor light emitting device (2)
Is emitted from the sealing resin (8) after passing through the glass layer (10). A part of the light component emitted from the semiconductor light emitting device (2) is a glass layer (1).
0), the light of which wavelength is converted to a different wavelength in the glass layer (10) and the semiconductor light emitting element (2) of which the wavelength is not converted.
And the light component from the mixture is emitted to the outside through the sealing resin (8). A light-absorbing substance that absorbs a specific emission wavelength,
A light scattering substance that scatters light emitted from the semiconductor light emitting element (2) or a binder that prevents cracking of the glass layer (10) may be blended in the glass layer (10).

【0018】本発明による半導体発光装置の製法は、一
対の配線導体(3、4)の一方の端部にカップ部(3
a)を形成する工程と、カップ部(3a)の底部(3
b)に半導体発光素子(2)を固着する工程と、半導体
発光素子(2)の上面に形成された電極(2a、2b)
と一対の配線導体(3、4)とをボンディングワイヤ
(5、6)により電気的に接続する工程と、半導体発光
素子(2)から照射される光に対して光透過性を有し且
つ半導体発光素子(2)から照射される光を吸収して他
の発光波長に変換する蛍光物質(10a)を含み且つ金
属アルコキシド又はセラミック前駆体ポリマーから成る
ガラス材料をカップ部(3a)内に注入して、半導体発
光素子(2)、電極(2a、2b)及び電極(2a、2
b)に接続されたボンディングワイヤ(5、6)の端部
を被覆する工程と、ガラス材料を焼成してガラス層(1
0)を形成する工程と、ガラス層(10)を更に封止樹
脂(8)により封止する工程とを含む。ガラス層(1
0)は、半導体発光素子(2)及び配線導体(3、4)
と強固に密着する。絶縁性基板(11)を備えた半導体
発光装置を製造する場合は、絶縁性基板(11)の一方
の主面にカップ部(3a)を形成する工程と、絶縁性基
板(11)の一方の主面に沿って互いに反対方向に延び
る一対の配線導体(3、4)を形成する工程と、カップ
部(3a)の底部(3b)にて一対の配線導体(3、
4)の一方に半導体発光素子(2)を固着する工程とを
含む。
According to the method of manufacturing a semiconductor light emitting device of the present invention, a cup (3) is provided at one end of a pair of wiring conductors (3, 4).
a) forming a bottom portion (3) of the cup portion (3a);
b) fixing the semiconductor light emitting element (2) to the semiconductor light emitting element (2); and forming electrodes (2a, 2b) on the upper surface of the semiconductor light emitting element (2).
Electrically connecting the semiconductor light emitting element and a pair of wiring conductors (3, 4) with bonding wires (5, 6); A glass material containing a fluorescent material (10a) for absorbing light emitted from the light emitting element (2) and converting the light to another emission wavelength and comprising a metal alkoxide or a ceramic precursor polymer is injected into the cup portion (3a). The semiconductor light emitting element (2), the electrodes (2a, 2b) and the electrodes (2a, 2a).
b) covering the ends of the bonding wires (5, 6) connected to the glass layer (1);
0) and a step of further sealing the glass layer (10) with a sealing resin (8). Glass layer (1
0) is a semiconductor light emitting element (2) and a wiring conductor (3, 4)
And firmly adhere. When manufacturing a semiconductor light emitting device provided with an insulating substrate (11), a step of forming a cup (3a) on one main surface of the insulating substrate (11) and a step of forming one of the insulating substrate (11) are performed. Forming a pair of wiring conductors (3, 4) extending in opposite directions along the main surface; and forming a pair of wiring conductors (3, 4) at the bottom (3b) of the cup (3a).
And 4) fixing the semiconductor light emitting element (2) to one side.

【0019】[0019]

【発明の実施の形態】以下、発光ダイオード装置に適用
した本発明による半導体発光装置の実施の形態を図1〜
図4について説明する。図1〜図4に示す実施の形態で
は、図5に示す箇所と同一の部分には同一の符号を付
し、説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a semiconductor light emitting device according to the present invention applied to a light emitting diode device is shown in FIGS.
Referring to FIG. In the embodiment shown in FIGS. 1 to 4, the same parts as those shown in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted.

【0020】図1は、本発明による発光ダイオード装置
(20)の第1の実施の形態を示す断面図である。発光
ダイオード装置(20)ではカップ部(3a)に固着さ
れた発光ダイオードチップ(2)は、絶縁物封止体とし
て蛍光物質(10a)を含有するガラス層(10)によ
り被覆され、更に封止樹脂(8)により被覆される。製
造の際に、発光ダイオードチップ(2)の上部より蛍光
物質(10a)を含む塗布型ガラス材料をカップ部(3
a)内に注入して、約150℃の温度で焼成し、蛍光物
質(10a)を含有するガラス層(10)を固化形成し
た後に、配線導体(3、4)の端部全体を透明な封止樹
脂(8)で封止する。ガラス層(10)の焼成温度は発
光ダイオードチップ(2)の融点よりも十分に低い。
FIG. 1 is a sectional view showing a first embodiment of a light emitting diode device (20) according to the present invention. In the light emitting diode device (20), the light emitting diode chip (2) fixed to the cup portion (3a) is covered with a glass layer (10) containing a fluorescent substance (10a) as an insulator sealing body, and further sealed. Coated with resin (8). At the time of manufacture, a coating-type glass material containing a fluorescent substance (10a) is applied from above the light emitting diode chip (2) to the cup part (3
a) and fired at a temperature of about 150 ° C. to solidify and form a glass layer (10) containing a fluorescent substance (10a), and then the entire end of the wiring conductor (3, 4) is made transparent. Seal with a sealing resin (8). The firing temperature of the glass layer (10) is sufficiently lower than the melting point of the light emitting diode chip (2).

【0021】発光ダイオード装置(20)の配線導体
(3、4)間に電圧を印加して発光ダイオードチップ
(2)に通電して発光ダイオードチップ(2)を発光さ
せると、ガラス層(10)内の蛍光物質(10a)によ
ってその一部又は全部がその発光波長と異なる他の波長
に変換された後、封止樹脂(8)の先端部に形成された
レンズ部(8a)によって集光されて発光ダイオード装
置(20)の外部に放出される。例えば、半導体発光素
子には発光波長のピークが約440nmから約470n
mのGaN系の青色の発光ダイオードチップ(2)を用
い、蛍光物質(10a)には付活剤としてCe(セリウ
ム)を約6mol%添加したYAG(イットリウム・アル
ミニウム・ガーネット、化学式Y3Al512、励起波長
のピーク約450nm、発光波長のピーク約540nm
の黄緑色光)を用いる。
When a voltage is applied between the wiring conductors (3, 4) of the light emitting diode device (20) to energize the light emitting diode chip (2) and cause the light emitting diode chip (2) to emit light, the glass layer (10) After a part or the whole thereof is converted into another wavelength different from the emission wavelength by the fluorescent substance (10a) in the inside, the light is condensed by the lens part (8a) formed at the tip of the sealing resin (8). And emitted to the outside of the light emitting diode device (20). For example, a semiconductor light emitting device has a peak emission wavelength of about 440 nm to about 470 n.
m, a GaN-based blue light emitting diode chip (2), and YAG (yttrium aluminum garnet, chemical formula Y 3 Al 5 ) to which about 6 mol% of Ce (cerium) is added as an activator to the fluorescent substance (10a) O 12 , excitation wavelength peak about 450 nm, emission wavelength peak about 540 nm
Yellow-green light).

【0022】ガラス層(10)は、YAG蛍光物質(1
0a)の粉末状微細結晶粒を塗布型ガラス材料に適量混
合して成るガラス混合物を作成し、これをカップ部(3
a)内にカップ部(3a)の上端部(3d)から突出し
ない量で注入した後に焼成して得られる。
The glass layer (10) is made of a YAG fluorescent material (1).
0a) to prepare a glass mixture by mixing an appropriate amount of the powdery fine crystal grains with a coating type glass material,
It is obtained by injecting into a) an amount that does not protrude from the upper end portion (3d) of the cup portion (3a), followed by firing.

【0023】一方、封止樹脂(8)は、液状で透明なエ
ポキシ樹脂を成形型に注入した後に発光ダイオードチッ
プ(2)、ボンディングワイヤ(5、6)、ガラス層
(10)を固着した配線導体(3、4)の端部をこのエ
ポキシ樹脂中に浸漬し且つ位置決め治具によりエポキシ
樹脂中の所定の位置に固定し、エポキシ樹脂を加熱し硬
化して得られる。発光ダイオード装置(20)から外部
に放出される光の指向角を広げるため、必要に応じて粉
末シリカ等の散乱剤を封止樹脂(8)に混合させてもよ
い。本実施の形態では、YAG蛍光物質(10a)の波
長変換効率の最大値が比較的高く、発光ダイオードチッ
プ(2)の発光波長とYAG蛍光物質(10a)の励起
波長とが約450nmのピークでほぼ一致するため、実
効波長変換効率の高い明るい発光ダイオード装置(2
0)が得られる。また、YAG蛍光物質(10a)の結
晶粒がガラス層(10)中に分散しているので、発光ダ
イオード装置(20)から外部に放出される光は、蛍光
物質(10a)で波長変換された光成分以外に蛍光物質
(10a)の結晶粒を透過せず波長変換されない本来の
発光成分即ち発光ダイオードチップ(2)から照射され
た光成分も含まれる。
On the other hand, the sealing resin (8) is formed by injecting a liquid and transparent epoxy resin into a molding die and then fixing the light emitting diode chip (2), the bonding wires (5, 6) and the glass layer (10). The ends of the conductors (3, 4) are immersed in the epoxy resin and fixed at predetermined positions in the epoxy resin by a positioning jig, and the epoxy resin is heated and cured. If necessary, a scattering agent such as powdered silica may be mixed with the sealing resin (8) in order to increase the directional angle of light emitted from the light emitting diode device (20) to the outside. In the present embodiment, the maximum value of the wavelength conversion efficiency of the YAG fluorescent substance (10a) is relatively high, and the emission wavelength of the light-emitting diode chip (2) and the excitation wavelength of the YAG fluorescent substance (10a) have a peak at about 450 nm. Since they almost match, a bright light emitting diode device (2
0) is obtained. Further, since the crystal grains of the YAG fluorescent substance (10a) are dispersed in the glass layer (10), the light emitted from the light emitting diode device (20) to the outside is wavelength-converted by the fluorescent substance (10a). In addition to the light component, an original light-emitting component that does not transmit the crystal grains of the fluorescent substance (10a) and is not wavelength-converted, that is, a light component emitted from the light-emitting diode chip (2) is also included.

【0024】従って、発光波長ピーク約440nm〜約
470nmの青色光である発光ダイオードチップ(2)
の発光成分と、半値幅約130nmの幅広い波長分布を
持った発光波長ピーク約540nmの黄緑色光であるY
AG蛍光物質(10a)の発光成分とが混合された白色
光が発光ダイオード装置(20)から外部に放出され
る。この場合、塗布型ガラス材料に混合するYAG蛍光
物質(10a)粉末の量を調整し、ガラス層(10)内
の分布濃度を変更することにより発光ダイオード装置
(20)の発光色の色調を調整することができる。ま
た、YAG蛍光物質(10a)の製造時に適当な添加物
を適量添加して結晶構造を一部変更して発光波長分布を
シフトすると、発光ダイオード装置(20)の発光色を
更に異なる色調に調整することができる。例えばGa
(ガリウム)又はLu(ルテチウム)を添加して短波長
側にシフトし、Gd(ガドリニウム)を添加して長波長
側にシフトすることができる。
Therefore, the light emitting diode chip (2) which emits blue light having an emission wavelength peak of about 440 nm to about 470 nm
And Y which is yellow-green light having an emission wavelength peak of about 540 nm having a wide wavelength distribution with a half width of about 130 nm.
The white light mixed with the light emitting component of the AG fluorescent material (10a) is emitted from the light emitting diode device (20) to the outside. In this case, the color tone of the light emitting diode device (20) is adjusted by adjusting the amount of the YAG fluorescent substance (10a) powder mixed with the coating type glass material and changing the distribution concentration in the glass layer (10). can do. In addition, when a suitable amount of an additive is added during the production of the YAG fluorescent substance (10a) and the crystal structure is partially changed to shift the emission wavelength distribution, the emission color of the light emitting diode device (20) is further adjusted to a different color tone. can do. For example, Ga
Addition of (gallium) or Lu (lutetium) can shift to a shorter wavelength side, and addition of Gd (gadolinium) can shift to a longer wavelength side.

【0025】本発明では更に光学的特性や作業性を向上
するため、例えば下記の改善も可能である。 [1] ガラス層(10)内に散乱剤を混入することで発
光ダイオードチップ(2)の光を散乱させることにより
蛍光物質(10a)に当たる発光ダイオードチップ
(2)の光量が増加し、波長変換効率を向上すると共
に、発光ダイオード装置(20)から外部に放出される
光の指向角を広げることができる。 [2] ガラス層(10)のクラックを防止する結合材を
配合する。 [3] 塗布型ガラス材料の粘度を高くする。 [4] 塗布型ガラス材料の使用量を減らす。
In the present invention, the following improvements can be made to further improve the optical characteristics and workability. [1] By mixing a scattering agent into the glass layer (10) to scatter the light of the light emitting diode chip (2), the light amount of the light emitting diode chip (2) hitting the fluorescent substance (10a) increases, and wavelength conversion is performed. Efficiency can be improved and the directional angle of light emitted from the light emitting diode device (20) to the outside can be widened. [2] A binder for preventing cracking of the glass layer (10) is blended. [3] Increase the viscosity of the coating type glass material. [4] Reduce the amount of coated glass material used.

【0026】このような場合は、図2に示すように、塗
布型ガラス材料に蛍光物質(10a)の粉末と共にシリ
カ、酸化チタン等のセラミック粉末(10b)を目的に
応じて適量混合すればよい。
In such a case, as shown in FIG. 2, a powder of the fluorescent substance (10a) and a ceramic powder (10b) of silica, titanium oxide or the like may be mixed with the coating type glass material in an appropriate amount according to the purpose. .

【0027】図2に示す本発明の第2の実施の形態で
は、混合するセラミック粉末の種類及び量によって得ら
れる効果が異なる。例えばセラミック粉末がシリカの場
合は本来ガラス層(10)と同じ物質なので[1]の効果
は少なく[2][3]の効果が大きい。しかし、セラミック
粉末が酸化チタンの場合は[1]〜[3]の効果とも大き
い。従って、混合するセラミック粉末は目的によって単
一でも複数の種類を組み合わせても良い。
In the second embodiment of the present invention shown in FIG. 2, the effect obtained depends on the type and amount of the ceramic powder to be mixed. For example, when the ceramic powder is silica, the effect of [1] is small and the effects of [2] and [3] are large because the material is essentially the same as the glass layer (10). However, when the ceramic powder is titanium oxide, the effects of [1] to [3] are also large. Therefore, the ceramic powder to be mixed may be a single type or a combination of plural types depending on the purpose.

【0028】また、本発明では紫外線で劣化しないガラ
スを用いるので、半導体発光素子に紫外線発光ダイオー
ドチップ(2)も用いることができる。従って、従来の
発光ダイオード装置よりも明るく且つ変化に富む色調の
発光ダイオード装置(20)を実現することができる。
In the present invention, since glass which does not deteriorate by ultraviolet rays is used, an ultraviolet light emitting diode chip (2) can be used for the semiconductor light emitting element. Therefore, it is possible to realize a light emitting diode device (20) that is brighter and more varied in color than the conventional light emitting diode device.

【0029】本発明による発光ダイオード装置(20)
の第3の実施の形態を図3に示す。例えば、約360n
m〜380nmの発光ピーク波長を有する紫外線を発生
するGaN系発光ダイオードチップ(2)と、励起ピー
ク波長約360nm、発光ピーク波長約543nmのG
a及びTb(テルビウム)付活のY2SiO5の蛍光物質
(10a)とを使用すると、半値幅約12nmの非常に
シャープな発光分布を持つ緑色発光ダイオード装置(2
0)が得られる。
A light emitting diode device according to the present invention (20)
FIG. 3 shows a third embodiment of the present invention. For example, about 360n
a GaN-based light-emitting diode chip (2) for generating ultraviolet light having an emission peak wavelength of m to 380 nm, and a G having an excitation peak wavelength of about 360 nm and an emission peak wavelength of about 543 nm.
a and Tb (terbium) activated Y 2 SiO 5 phosphor (10a), a green light emitting diode device (2) having a very sharp emission distribution with a half width of about 12 nm.
0) is obtained.

【0030】発光ダイオードチップと蛍光物質(10
a)の前記組合わせは例示に過ぎず、紫外線発光ダイオ
ードチップ(2)の発光波長に適合する励起波長分布を
持ち且つ波長変換効率が高ければ、いかなる蛍光物質
(10a)でも使用できる。例えばハロ燐酸カルシウム
系、燐酸カルシウム系、珪酸塩系、アルミン酸塩系、タ
ングステン酸塩系等の蛍光物質(10a)から所望の特
性を持つ蛍光物質(10a)を選択することができる。
The light emitting diode chip and the fluorescent material (10
The combination of a) is only an example, and any fluorescent substance (10a) can be used as long as it has an excitation wavelength distribution suitable for the emission wavelength of the ultraviolet light emitting diode chip (2) and has high wavelength conversion efficiency. For example, a fluorescent material (10a) having desired characteristics can be selected from fluorescent materials (10a) such as calcium halophosphate, calcium phosphate, silicate, aluminate, and tungstate.

【0031】また、第2の実施の形態と同様に、第3の
実施の形態の発光ダイオード装置(20)のガラス層
(10)にもセラミック粉末を混合することは可能であ
る。前記の実施の形態では、カップ部(3a)の上端部
より上方に突出しないようにガラス層(10)の充填量
を調整すれば、隣接して他の発光ダイオード装置(2
0)を設置しても偽灯を発生しない。
Further, similarly to the second embodiment, it is possible to mix ceramic powder into the glass layer (10) of the light emitting diode device (20) according to the third embodiment. In the above embodiment, if the filling amount of the glass layer (10) is adjusted so as not to protrude above the upper end portion of the cup portion (3a), another light emitting diode device (2
No false light is generated even if 0) is installed.

【0032】図4は、チップ形発光ダイオード装置(2
0)に適用した本発明の他の実施の形態を示す。チップ
形発光ダイオード装置(20)では、絶縁性基板(1
1)の一方の主面にカップ部(3a)と、相互に離間し
た配線導体(3、4)とが形成され、配線導体(3、
4)の一方の端部は、カップ部(3a)内に配置され
る。発光ダイオードチップ(2)はカップ部(3a)の
底部(3b)にて配線導体(3)に接着剤(12)を介
して固着される。配線導体(3、4)の他方の端部は、
絶縁性基板(11)の側面及び他方の主面に延びて配置
される。発光ダイオードチップ(2)のカソード電極
(2a)及びアノード電極(2b)はそれぞれボンディ
ングワイヤ(5、6)により配線導体(3、4)に接続
される。発光ダイオードチップ(2)、カップ部(3
a)、ボンディングワイヤ(5、6)、配線導体(3、
4)の一方の端部側はガラス層(10)により被覆さ
れ、絶縁性基板(11)の一方の主面に形成された台形
状断面の封止樹脂(8)によって更に被覆される。図4
の発光ダイオード装置(20)でも、発光ダイオードチ
ップ(2)から照射された光の一部がガラス層(10)
の蛍光物質(10a)によって発光波長が変換され、図
1の発光ダイオード装置と同様の作用効果が得られる。
尚、図4の発光ダイオードにおいても、ガラス層(1
0)にセラミック粉末を混入することができる。また、
図1〜図4の発光ダイオードでは、蛍光物質(10a)
をガラス層(10)内に均一に分散させているが、不均
一に分散させることもできる。例えば、発光ダイオード
チップ(2)側で蛍光物質(10a)の混入濃度を増加
してもよい。
FIG. 4 shows a chip type light emitting diode device (2).
Another embodiment of the present invention applied to (0) is shown. In the chip type light emitting diode device (20), the insulating substrate (1
A cup portion (3a) and wiring conductors (3, 4) separated from each other are formed on one main surface of 1), and the wiring conductors (3, 4) are formed.
One end of 4) is arranged in the cup part (3a). The light emitting diode chip (2) is fixed to the wiring conductor (3) via an adhesive (12) at the bottom (3b) of the cup (3a). The other ends of the wiring conductors (3, 4)
The insulating substrate (11) is disposed so as to extend on the side surface and the other main surface. The cathode electrode (2a) and the anode electrode (2b) of the light emitting diode chip (2) are connected to the wiring conductors (3, 4) by bonding wires (5, 6), respectively. LED chip (2), cup (3
a), bonding wires (5, 6), wiring conductors (3,
One end side of 4) is covered with a glass layer (10), and further covered with a sealing resin (8) having a trapezoidal cross section formed on one main surface of the insulating substrate (11). FIG.
In the light emitting diode device (20), a part of the light emitted from the light emitting diode chip (2) is
The emission wavelength is converted by the fluorescent substance (10a), and the same operation and effect as those of the light emitting diode device of FIG. 1 can be obtained.
In addition, also in the light emitting diode of FIG.
Ceramic powder can be mixed in 0). Also,
In the light emitting diode of FIGS. 1 to 4, the fluorescent substance (10a)
Is uniformly dispersed in the glass layer (10), but may be unevenly dispersed. For example, the mixed concentration of the fluorescent substance (10a) may be increased on the light emitting diode chip (2) side.

【0033】[0033]

【発明の効果】前記のように、本発明では、有害物質の
浸透を防ぎ且つ紫外線耐性に優れるガラス層により半導
体発光素子を被覆するので、湿度、温度又は紫外線等に
よってガラス層や半導体発光素子に劣化を起こさず、耐
環境性が向上し、蛍光物質による発光波長変換機能を有
しつつも信頼性が高く安価な半導体発光装置を得ること
ができる。
As described above, in the present invention, since the semiconductor light emitting device is covered with the glass layer which prevents permeation of harmful substances and has excellent ultraviolet light resistance, the glass layer and the semiconductor light emitting device are exposed to humidity, temperature, ultraviolet light or the like. A highly reliable and inexpensive semiconductor light emitting device which does not deteriorate, has improved environmental resistance, and has an emission wavelength conversion function using a fluorescent substance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 発光ダイオード装置に適用した本発明による
半導体発光装置の断面図
FIG. 1 is a cross-sectional view of a semiconductor light emitting device according to the present invention applied to a light emitting diode device.

【図2】 本発明の第2の実施の形態を示す部分断面図FIG. 2 is a partial cross-sectional view showing a second embodiment of the present invention.

【図3】 本発明の第3の実施の形態を示す部分断面図FIG. 3 is a partial cross-sectional view showing a third embodiment of the present invention.

【図4】 チップ型発光ダイオード装置に適用した本発
明の実施の形態を示す断面図
FIG. 4 is a sectional view showing an embodiment of the present invention applied to a chip type light emitting diode device.

【図5】 従来の発光ダイオード装置の断面図FIG. 5 is a sectional view of a conventional light emitting diode device.

【符号の説明】 (2)・・半導体発光素子、 (2a、2b)・・電
極、 (3、4)・・配線導体、 (3a)・・カップ
部、 (3b)・・底部、 (3c)・・側壁、(3
d)・・上端部、 (5、6)・・ボンディングワイ
ヤ、 (8)・・封止樹脂、 (10)・・ガラス層、
(11)・・絶縁性基板、
[Description of Signs] (2) ··· semiconductor light emitting element, (2a, 2b) ··· electrode, (3, 4) ··· wiring conductor, (3a) ··· cup part, (3b) ··· bottom part, (3c) ) ... side wall, (3
d) top edge, (5, 6) bonding wire, (8) sealing resin, (10) glass layer,
(11) ..insulating substrate,

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 一対の配線導体(3、4)と、該一対の
配線導体(3、4)の一方の端部に固着された半導体発
光素子(2)と、前記半導体発光素子(2)を被覆する
光透過性の絶縁物封止体とを備えた半導体発光装置にお
いて、 前記絶縁物封止体は、ガラス層(10)により構成さ
れ、 該ガラス層(10)は前記半導体発光素子(2)から照
射される光に対して光透過性を有し且つ前記半導体発光
素子(2)から照射される光を吸収して他の発光波長に
変換する蛍光物質(10a)が混入されていることを特
徴とする半導体発光装置。
1. A pair of wiring conductors (3, 4), a semiconductor light emitting element (2) fixed to one end of the pair of wiring conductors (3, 4), and the semiconductor light emitting element (2) In a semiconductor light emitting device comprising: a light-transmitting insulator sealing member that covers the semiconductor light-emitting device; wherein the insulator sealing member includes a glass layer (10), and the glass layer (10) includes the semiconductor light-emitting element ( A fluorescent substance (10a) which has a light transmitting property with respect to the light irradiated from 2) and absorbs the light irradiated from the semiconductor light emitting element (2) and converts the light to another emission wavelength is mixed. A semiconductor light emitting device characterized by the above-mentioned.
【請求項2】 前記ガラス層(10)はガラス材料を前
記半導体発光素子(2)の融点よりも低い温度で焼成し
て形成された請求項1に記載の半導体発光装置。
2. The semiconductor light emitting device according to claim 1, wherein the glass layer is formed by firing a glass material at a temperature lower than a melting point of the semiconductor light emitting element.
【請求項3】 前記ガラス層(10)は、金属アルコキ
シドを出発原料とするガラス材料又はセラミック前駆体
ポリマーから成るガラス材料を焼成して形成された請求
項1又は請求項2に記載の半導体発光装置。
3. The semiconductor light emitting device according to claim 1, wherein the glass layer is formed by firing a glass material made of a metal alkoxide or a glass material made of a ceramic precursor polymer. apparatus.
【請求項4】 前記ガラス層(10)は、シロキサン
(siloxane)結合を主体とする透明な固形ガラス層であ
る請求項1〜請求項3のいずれか1項に記載の半導体発
光装置。
4. The semiconductor light emitting device according to claim 1, wherein the glass layer (10) is a transparent solid glass layer mainly composed of siloxane bonds.
【請求項5】 前記半導体発光素子(2)の上面に形成
された電極(2a、2b)と前記一対の配線導体(3、
4)とをボンディングワイヤ(5、6)により電気的に
接続し、前記ガラス層(10)は前記半導体発光素子
(2)、電極(2a、2b)及び該電極(2a、2b)
に接続された前記ボンディングワイヤ(5、6)の端部
を被覆する請求項1〜請求項4のいずれか1項に記載の
半導体発光装置。
5. An electrode (2a, 2b) formed on an upper surface of the semiconductor light emitting element (2) and the pair of wiring conductors (3, 2).
4) are electrically connected by bonding wires (5, 6), and the glass layer (10) is composed of the semiconductor light emitting element (2), the electrodes (2a, 2b) and the electrodes (2a, 2b).
The semiconductor light emitting device according to any one of claims 1 to 4, which covers an end of the bonding wire (5, 6) connected to the semiconductor light emitting device.
【請求項6】 前記一対の配線導体(3、4)の一方の
端部にカップ部(3a)を形成し、前記半導体発光素子
(2)を前記カップ部(3a)の底部(3b)に固着し
た請求項1〜請求項5のいずれか1項に記載の半導体発
光装置。
6. A cup (3a) is formed at one end of the pair of wiring conductors (3, 4), and the semiconductor light emitting element (2) is mounted on a bottom (3b) of the cup (3a). The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device is fixed.
【請求項7】 絶縁性基板(11)の一方の主面にカッ
プ部(3a)と、前記絶縁性基板(11)の一方の主面
に沿って互いに反対方向に延びる前記一対の配線導体
(3、4)とを形成し、前記カップ部(3a)の底部
(3b)にて前記一対の配線導体(3、4)の一方に前
記半導体発光素子(2)を固着した請求項1〜請求項6
のいずれか1項に記載の半導体発光装置。
7. A cup portion (3a) on one main surface of an insulating substrate (11), and the pair of wiring conductors extending in opposite directions along one main surface of the insulating substrate (11). 3. The semiconductor light-emitting device (2) is fixed to one of the pair of wiring conductors (3, 4) at the bottom (3b) of the cup portion (3a). Item 6
The semiconductor light emitting device according to claim 1.
【請求項8】 前記ガラス層(10)は前記カップ部
(3a)の上端部(3d)から突出しない請求項2〜請
求項7の何れか1項に記載の半導体発光装置。
8. The semiconductor light emitting device according to claim 2, wherein the glass layer (10) does not protrude from an upper end (3d) of the cup portion (3a).
【請求項9】 前記配線導体(3、4)は前記絶縁性基
板(11)の一方の主面から側面に沿って他方の主面に
延びる請求項7に記載の半導体発光装置。
9. The semiconductor light emitting device according to claim 7, wherein the wiring conductors extend from one main surface of the insulating substrate to the other main surface along a side surface.
【請求項10】 前記ガラス層(10)は更に封止樹脂
(8)により封止され、前記半導体発光素子(2)から
照射される光は、前記ガラス層(10)内を通過した
後、前記封止樹脂(8)の外部に放出される請求項1〜
請求項9に記載の半導体発光装置。
10. The glass layer (10) is further sealed with a sealing resin (8), and light emitted from the semiconductor light emitting element (2) passes through the glass layer (10), The resin is discharged to the outside of the sealing resin (8).
A semiconductor light emitting device according to claim 9.
【請求項11】 前記半導体発光素子(2)から放射さ
れた光成分の一部が前記ガラス層(10)に達して前記
ガラス層(10)内で異なる波長に波長変換された光
と、波長変換されない前記半導体発光素子(2)からの
光成分とが混合して前記封止樹脂(8)を通して外部に
放出される請求項10に記載の半導体発光装置。
11. Light whose part of the light component emitted from the semiconductor light emitting element (2) reaches the glass layer (10) and is wavelength-converted to a different wavelength in the glass layer (10); The semiconductor light emitting device according to claim 10, wherein a light component from the semiconductor light emitting element that is not converted is mixed and emitted outside through the sealing resin.
【請求項12】 特定の発光波長を吸収する光吸収物
質、前記半導体発光素子(2)の発光を散乱する光散乱
物質又はガラス層(10)のクラックを防止する結合材
を前記ガラス層(10)内に配合した請求項1〜請求項
11に記載の半導体発光装置。
12. A light-absorbing substance that absorbs a specific emission wavelength, a light-scattering substance that scatters light emitted from the semiconductor light-emitting element (2), or a binder that prevents cracks in the glass layer (10). The semiconductor light-emitting device according to claim 1, wherein the light-emitting device is included in (1).
JP10006423A 1998-01-16 1998-01-16 Semiconductor light emitting device and method of manufacturing the same Expired - Fee Related JP2924961B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10006423A JP2924961B1 (en) 1998-01-16 1998-01-16 Semiconductor light emitting device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10006423A JP2924961B1 (en) 1998-01-16 1998-01-16 Semiconductor light emitting device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2924961B1 JP2924961B1 (en) 1999-07-26
JPH11204838A true JPH11204838A (en) 1999-07-30

Family

ID=11637978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10006423A Expired - Fee Related JP2924961B1 (en) 1998-01-16 1998-01-16 Semiconductor light emitting device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2924961B1 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085747A (en) * 1999-09-13 2001-03-30 Sanken Electric Co Ltd Semiconductor light-emitting device
JP2002141559A (en) * 2000-10-31 2002-05-17 Sanken Electric Co Ltd Light emitting semiconductor chip assembly and light emitting semiconductor lead frame
US6642618B2 (en) 2000-12-21 2003-11-04 Lumileds Lighting U.S., Llc Light-emitting device and production thereof
JP2004088004A (en) * 2002-08-29 2004-03-18 Okaya Electric Ind Co Ltd Light emitting diode
JP2004146835A (en) * 2002-10-22 2004-05-20 Osram Opto Semiconductors Gmbh Light source having led and emitter converter, and method for manufacturing the emitter converter
JP2006032500A (en) * 2004-07-13 2006-02-02 Fujikura Ltd Light emitting diode lamp and method of manufacturing same
JP2006135300A (en) * 2004-10-04 2006-05-25 Stanley Electric Co Ltd Manufacturing method of semiconductor light emitting device
US7259396B2 (en) 2000-12-28 2007-08-21 Toyoda Gosei Co., Ltd. Light source with a light-emitting element
US7317181B2 (en) 2001-12-07 2008-01-08 Hitachi Cable, Ltd. Light-emitting unit and method for producing same as well as lead frame used for producing light-emitting unit
US7391153B2 (en) 2003-07-17 2008-06-24 Toyoda Gosei Co., Ltd. Light emitting device provided with a submount assembly for improved thermal dissipation
US7491981B2 (en) 2004-09-07 2009-02-17 Toyoda Gosei Co., Ltd. Light-emitting device and glass seal member therefor
US7497597B2 (en) 2004-01-19 2009-03-03 Toyoda Gosei Co., Ltd. Light emitting apparatus
US7498734B2 (en) 2003-06-18 2009-03-03 Toyoda Gosei Co., Ltd. Light emitting device with wavelength converted by phosphor
JP2009111245A (en) * 2007-10-31 2009-05-21 Nichia Corp Light-emitting device and its manufacturing method
US7824937B2 (en) 2003-03-10 2010-11-02 Toyoda Gosei Co., Ltd. Solid element device and method for manufacturing the same
JP2011171476A (en) * 2010-02-18 2011-09-01 Konica Minolta Opto Inc Method for manufacturing light emitting diode unit
JP2012004474A (en) * 2010-06-21 2012-01-05 Konica Minolta Opto Inc Substrate with suppressed warpage, light-emitting device using the same and their manufacturing method
JP2012510153A (en) * 2008-11-25 2012-04-26 エルジー イノテック カンパニー リミテッド Light emitting device package
US8624280B2 (en) 2007-08-27 2014-01-07 Lg Innotek Co., Ltd. Light emitting device package and method for fabricating the same
JP2014013941A (en) * 2000-09-12 2014-01-23 Philips Lumileds Lightng Co Llc Light emitting diodes with improved light extraction efficiency

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076445A (en) * 2000-09-01 2002-03-15 Sanken Electric Co Ltd Semiconductor light emitting device
JP5163073B2 (en) * 2007-11-22 2013-03-13 旭硝子株式会社 Manufacturing method of glass-coated light emitting device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085747A (en) * 1999-09-13 2001-03-30 Sanken Electric Co Ltd Semiconductor light-emitting device
US10312422B2 (en) 2000-09-12 2019-06-04 Lumileds Llc Light emitting devices with optical elements and bonding layers
US9583683B2 (en) 2000-09-12 2017-02-28 Lumileds Llc Light emitting devices with optical elements and bonding layers
JP2014013941A (en) * 2000-09-12 2014-01-23 Philips Lumileds Lightng Co Llc Light emitting diodes with improved light extraction efficiency
JP2002141559A (en) * 2000-10-31 2002-05-17 Sanken Electric Co Ltd Light emitting semiconductor chip assembly and light emitting semiconductor lead frame
US6642618B2 (en) 2000-12-21 2003-11-04 Lumileds Lighting U.S., Llc Light-emitting device and production thereof
US7679101B2 (en) 2000-12-28 2010-03-16 Toyoda Gosei Co., Ltd. Light emitting device
US7259396B2 (en) 2000-12-28 2007-08-21 Toyoda Gosei Co., Ltd. Light source with a light-emitting element
US7317181B2 (en) 2001-12-07 2008-01-08 Hitachi Cable, Ltd. Light-emitting unit and method for producing same as well as lead frame used for producing light-emitting unit
JP2004088004A (en) * 2002-08-29 2004-03-18 Okaya Electric Ind Co Ltd Light emitting diode
JP4621421B2 (en) * 2002-10-22 2011-01-26 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light source having LED and luminescence converter, and method of manufacturing luminescence converter
JP2004146835A (en) * 2002-10-22 2004-05-20 Osram Opto Semiconductors Gmbh Light source having led and emitter converter, and method for manufacturing the emitter converter
US7824937B2 (en) 2003-03-10 2010-11-02 Toyoda Gosei Co., Ltd. Solid element device and method for manufacturing the same
US8685766B2 (en) 2003-03-10 2014-04-01 Toyoda Gosei Co., Ltd. Solid element device and method for manufacturing the same
US8154047B2 (en) 2003-03-10 2012-04-10 Toyoda Gosei Co., Ltd. Solid element device and method for manufacturing the same
US7498734B2 (en) 2003-06-18 2009-03-03 Toyoda Gosei Co., Ltd. Light emitting device with wavelength converted by phosphor
US7391153B2 (en) 2003-07-17 2008-06-24 Toyoda Gosei Co., Ltd. Light emitting device provided with a submount assembly for improved thermal dissipation
US7497597B2 (en) 2004-01-19 2009-03-03 Toyoda Gosei Co., Ltd. Light emitting apparatus
JP2006032500A (en) * 2004-07-13 2006-02-02 Fujikura Ltd Light emitting diode lamp and method of manufacturing same
JP4583826B2 (en) * 2004-07-13 2010-11-17 株式会社フジクラ Light emitting diode lamp and light emitting diode lamp manufacturing method
US7491981B2 (en) 2004-09-07 2009-02-17 Toyoda Gosei Co., Ltd. Light-emitting device and glass seal member therefor
JP2006135300A (en) * 2004-10-04 2006-05-25 Stanley Electric Co Ltd Manufacturing method of semiconductor light emitting device
US8624280B2 (en) 2007-08-27 2014-01-07 Lg Innotek Co., Ltd. Light emitting device package and method for fabricating the same
JP2009111245A (en) * 2007-10-31 2009-05-21 Nichia Corp Light-emitting device and its manufacturing method
US8436385B2 (en) 2008-11-25 2013-05-07 Lg Innotek Co., Ltd. Light emitting device package
JP2012510153A (en) * 2008-11-25 2012-04-26 エルジー イノテック カンパニー リミテッド Light emitting device package
US8928008B2 (en) 2008-11-25 2015-01-06 Lg Innotek Co., Ltd. Light emitting device package comprising a lead electrode exposed to a recessed bottom portion of the package body
US9425360B2 (en) 2008-11-25 2016-08-23 Lg Innotek Co., Ltd. Light emitting device package
US10134953B2 (en) 2008-11-25 2018-11-20 Lg Innotek Co., Ltd. Light-emitting device package including lead frame and using lead terminal as a reflective cavity
US10847680B2 (en) 2008-11-25 2020-11-24 Lg Innotek Co., Ltd. Light emitting device package
JP2011171476A (en) * 2010-02-18 2011-09-01 Konica Minolta Opto Inc Method for manufacturing light emitting diode unit
JP2012004474A (en) * 2010-06-21 2012-01-05 Konica Minolta Opto Inc Substrate with suppressed warpage, light-emitting device using the same and their manufacturing method

Also Published As

Publication number Publication date
JP2924961B1 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
JP3307316B2 (en) Semiconductor light emitting device
JP2924961B1 (en) Semiconductor light emitting device and method of manufacturing the same
JP3503131B2 (en) Semiconductor light emitting device
JP3412152B2 (en) Semiconductor light emitting device
JP3337000B2 (en) Semiconductor light emitting device
US10361347B2 (en) Light emitting device
KR100609830B1 (en) White Semiconductor Light Emitted Device using Green-emitting and Red emitting Phosphor
US9196800B2 (en) Light-radiating semiconductor component with a luminescence conversion element
KR100645403B1 (en) White light emitting device
US7753553B2 (en) Illumination system comprising color deficiency compensating luminescent material
EP1605028A1 (en) Light emitting film, luminescent device, method for manufacturing light emitting film and method for manufacturing luminescent device
JP2008244357A (en) Semiconductor light-emitting device
JP2008115223A (en) Phosphor-containing glass sheet, method for producing the same and light-emitting device
JP2003286480A (en) Improved coated fluorescent filler and method for forming the same
JP4266234B2 (en) Manufacturing method of semiconductor light emitting device
JP4661032B2 (en) Light emitting device and manufacturing method thereof
JPH1168166A (en) Light-emitting diode
KR20060000313A (en) White led comprising photo-luminescent powder with large mean particle size and manufacturing method thereof and transparent resin composition used therein
JP2002076445A (en) Semiconductor light emitting device
US8115223B2 (en) Radiation emitting device
JP2004327518A (en) White light emitting device
JP2003179270A (en) Semiconductor light emitting device
JP2001085747A (en) Semiconductor light-emitting device
JP2002134790A (en) Semiconductor light-emitting device and manufacturing method therefor
JP2005019662A (en) Light emitting device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100507

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110507

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110507

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120507

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120507

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130507

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140507

Year of fee payment: 15

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees