JPH11203958A - Superconductive cable and its manufacture - Google Patents

Superconductive cable and its manufacture

Info

Publication number
JPH11203958A
JPH11203958A JP10008063A JP806398A JPH11203958A JP H11203958 A JPH11203958 A JP H11203958A JP 10008063 A JP10008063 A JP 10008063A JP 806398 A JP806398 A JP 806398A JP H11203958 A JPH11203958 A JP H11203958A
Authority
JP
Japan
Prior art keywords
superconducting
tape
shaped
wire
dislocation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10008063A
Other languages
Japanese (ja)
Other versions
JP3568766B2 (en
Inventor
Atsushi Kume
篤 久米
Naohiro Futaki
直洋 二木
Nobuyuki Sadakata
伸行 定方
Takashi Saito
隆 斉藤
Shigeo Nagaya
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Chubu Electric Power Co Inc
Original Assignee
Fujikura Ltd
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, Chubu Electric Power Co Inc filed Critical Fujikura Ltd
Priority to JP00806398A priority Critical patent/JP3568766B2/en
Publication of JPH11203958A publication Critical patent/JPH11203958A/en
Application granted granted Critical
Publication of JP3568766B2 publication Critical patent/JP3568766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superconductive cable capable of reducing a.c. loss in carrying alternating current and preventing channeling. SOLUTION: This superconductive cable 10 is composed of, a dislocated superconductive tape unit 15 formed by intertwining and dislocating multiple tape-like superconductive conductors 18 by winding around a tube body 17. On each of the superconductive conductors 18, increased-resistance film is formed by performing a sulfurization process on the surface of a tape-like superconductive strand which is formed by flattening a superconductive strand, which equips a core part made of a superconductor or a core part having a material that can be made into a superconductor by heat treatment inside a base made of a sheath material. The increased-resistance film has an electric resistivity higher than that of the sheath material forming the base.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、超電導ケーブルお
よびその製造方法に係わり、詳しくは交流通電時の交流
損失を低減でき、しかも偏流を防止できる超電導ケーブ
ル及びその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting cable and a method of manufacturing the same, and more particularly, to a superconducting cable and a method of manufacturing the same which can reduce AC loss when AC is applied and prevent drift.

【0002】[0002]

【従来の技術】従来の超電導ケーブルの例としては、図
7に示すように、ステンレス鋼などからなるパイプ状の
フォーマ2の周囲にテープ状の超電導導体3が螺旋状に
巻回されて超電導導体層4が複数層積層され、これら超
電導導体層4,4間に層間絶縁層5が介在されてなる超
電導ケーブル1が知られている。上記超電導導体3は、
図8に示すように、超電導体からなるコア部6の複数が
銀などからなるシース材7により覆われて形成されたも
のである。各超電導体導体層4の超電導導体3の巻回方
向は、交互反対方向となっており、図7に示した例で
は、フォーマ2側から第一層目の超電導体導体層4の巻
回方向がS巻(右巻)、第二層目の超電導導体層4の巻
回方向がZ巻(左巻)、第三層目の超電導導体層4の巻
回方向がS巻(右巻)、第四層目の超電導導体層4の巻
回方向がZ巻(左巻)となっている。
2. Description of the Related Art As an example of a conventional superconducting cable, as shown in FIG. 7, a tape-shaped superconducting conductor 3 is spirally wound around a pipe-shaped former 2 made of stainless steel or the like. There is known a superconducting cable 1 in which a plurality of layers 4 are laminated, and an interlayer insulating layer 5 is interposed between the superconducting conductor layers 4 and 4. The superconducting conductor 3 is
As shown in FIG. 8, a plurality of core portions 6 made of a superconductor are covered with a sheath material 7 made of silver or the like. The winding direction of the superconducting conductor 3 of each superconducting conductor layer 4 is alternately opposite, and in the example shown in FIG. 7, the winding direction of the first superconducting conductor layer 4 from the former 2 side. Is S winding (right winding), the winding direction of the second superconducting conductor layer 4 is Z winding (left winding), the winding direction of the third superconducting conductor layer 4 is S winding (right winding), The winding direction of the fourth superconducting conductor layer 4 is Z winding (left winding).

【0003】上記コア部6をなす材料としては、Bi2
Sr2Ca1Cu2x(Bi系2212相),Bi2Sr2
Ca2Cu3y(Bi系2223相),Bi1.6Pb0.4
Sr2Ca2Cu3x,Tl2Ba2Ca2Cu3y 等の組
成を持つ酸化物超電導物質が用いられている。そのう
ち、Bi系、特に、Bi系2223相酸化物超電導物質
が、高い臨界温度を有し安定な物質としてコア部6に適
用されている。上記層間絶縁層5は、ポリイミドテープ
などの絶縁テープを巻回して構成されたものである。こ
のような構成の超電導ケーブル1の外周には、通常、保
護層(図示)などが形成されて用いられる。
The material constituting the core 6 is Bi 2
Sr 2 Ca 1 Cu 2 O x (Bi-based 2212 phase), Bi 2 Sr 2
Ca 2 Cu 3 O y (Bi 2223 phase), Bi 1.6 Pb 0.4
An oxide superconducting material having a composition such as Sr 2 Ca 2 Cu 3 O x , Tl 2 Ba 2 Ca 2 Cu 3 O y is used. Among them, Bi-based, in particular, Bi-based 2223 phase oxide superconducting material is applied to the core 6 as a stable material having a high critical temperature. The interlayer insulating layer 5 is formed by winding an insulating tape such as a polyimide tape. Usually, a protective layer (shown) and the like are formed on the outer periphery of the superconducting cable 1 having such a configuration.

【0004】上述のような従来の超電導ケーブル1を製
造するには、以下の工程による。 〔原料粉末処理工程〕Bi系の酸化物超電導物質の原料
粉末、例えばBi23などのBiの化合物粉末,PbO
などのPbの化合物粉末,SrCO3などのSrの化合
物粉末,CaCO3などのCaの化合物粉末,CuOな
どのCuの化合物粉末からなるものを混合する。 〔充填工程〕上記原料粉末処理工程において混合した粉
末を、Ag等のシース材の第一のパイプ内部に充填し、
シース材複合体(Agシース複合体)を形成する。 〔単心線の伸線(引き抜き)加工工程〕上記充填工程に
おいて形成したAgシース複合体を、所定の線径にまで
伸線加工し、超電導単心素線(単心線)を形成する。 〔多心化工程〕上記単心線の伸線加工において形成した
超電導単心素線をAg等のシース材の第二のパイプの内
部に複数集合して挿入した後、伸線加工して超電導多心
素線(多心線)を形成する。
The above-described conventional superconducting cable 1 is manufactured by the following steps. [Raw material processing step] Raw powder of Bi-based oxide superconducting material, for example, Bi compound powder such as Bi 2 O 3 , PbO
A mixture of Pb compound powder, such as SrCO 3 , Sr compound powder such as SrCO 3 , Ca compound powder such as CaCO 3, and Cu compound powder such as CuO is mixed. [Filling Step] The powder mixed in the raw material powder processing step is filled in a first pipe of a sheath material such as Ag,
A sheath material composite (Ag sheath composite) is formed. [Single Wire Drawing (Drawing) Processing Step] The Ag sheath composite formed in the filling step is drawn to a predetermined wire diameter to form a superconducting single core wire (single core wire). [Multi-core process] After a plurality of superconducting single-core wires formed in the above-described single-core wire drawing process are assembled and inserted into a second pipe made of a sheath material such as Ag, and then drawn, the superconducting process is performed. A multi-core element wire (multi-core wire) is formed.

【0005】〔圧延工程〕上記多心線をロール圧延加工
により、例えばテープ状の超電導素導体に成形する。 〔熱処理工程〕テープ状の超電導素導体に対して熱処理
を行う。その後、上記圧延工程の圧延加工(またはプレ
ス処理)と、上記熱処理とを複数回繰り返して、図8
(a)に示すような、所定寸法のテープ状の超電導導体
3を形成する。 〔巻回工程〕図7に示すように、テープ状の超電導導体
3をパイプ状のフォーマ2の周囲に螺旋状に巻回して超
電導導体層4を複数層積層するとともに超電導導体層
4,4間にポリイミドテープなどからなる層間絶縁層5
を介在させることにより、超電導ケーブル1が得られ
る。
[Rolling Step] The above multifilamentary wire is formed into, for example, a tape-shaped superconducting conductor by roll rolling. [Heat treatment step] Heat treatment is performed on the tape-shaped superconducting element conductor. Thereafter, the rolling (or pressing) in the rolling step and the heat treatment are repeated a plurality of times.
A tape-shaped superconducting conductor 3 having a predetermined size as shown in FIG. [Wounding Step] As shown in FIG. 7, a tape-shaped superconducting conductor 3 is spirally wound around a pipe-shaped former 2 so that a plurality of superconducting conductor layers 4 are laminated. Insulating layer 5 made of polyimide tape or the like
, The superconducting cable 1 is obtained.

【0006】[0006]

【発明が解決しようとする課題】しかしながら従来の超
電導ケーブル1においては、交流電流を通電した場合に
は、図8(b)に示すように、各々の超電導導体3にお
いて、これらに流れる交流電流による自己磁場の影響に
よって渦電流Fが発生する。このとき、シース材7が電
気抵抗率の低いAg(Agでは20℃において1.63
μΩcm)等からなるために、図8(c)に示すよう
に、渦電流F1が隣接する超電導導体3のシース材7に
導通してしまう。その結果、図9に示すように、超電導
導体層4の積層体に渦電流F2が横断して導通するため
に、超電導ケーブル1全体として渦電流F2が支配的と
なり、交流損失が大きくなるという問題があった。ま
た、上述のような構造の従来の超電導ケーブル1におい
ては、超電導導体層4,4間のインダクタンスの違いに
より、外側にある超電導導体層4ほど電流が多く流れ、
内側にある超電導導体層4には電流が流れにくくなる偏
流が起こるという問題があった。
However, in the conventional superconducting cable 1, when an alternating current is applied, as shown in FIG. An eddy current F is generated by the influence of the self magnetic field. At this time, the sheath material 7 is made of Ag having a low electric resistivity (for Ag, 1.63 at 20 ° C.).
8C), the eddy current F1 is conducted to the sheath material 7 of the adjacent superconducting conductor 3, as shown in FIG. 8C. As a result, as shown in FIG. 9, since the eddy current F2 conducts across the laminated body of the superconducting conductor layers 4, the eddy current F2 becomes dominant as a whole of the superconducting cable 1, and the AC loss increases. was there. Further, in the conventional superconducting cable 1 having the above-described structure, due to a difference in inductance between the superconducting conductor layers 4 and 4, more current flows in the outer superconducting conductor layer 4,
The superconducting conductor layer 4 on the inner side has a problem that a drift occurs in which current hardly flows.

【0007】本発明は、上記の事情に鑑みてなされたも
ので、交流通電時における交流損失を低減でき、しかも
偏流を防止できる超電導ケーブルを提供することにあ
る。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a superconducting cable which can reduce an AC loss when AC is applied and can prevent a drift.

【0008】[0008]

【課題を解決するための手段】本発明にあっては、テー
プ状の超電導素線の表面に硫化処理が施されて高抵抗化
膜が形成されたテープ状の超電導導体を複数本転位撚り
合わせた転位超電導テープユニットが管体の周囲に巻回
されてなり、前記テープ状の超電導素線は、超電導体か
らなるコア部または熱処理により超電導体となる材料を
有するコア部がシース材からなる基地の内部に備えられ
てなる超電導素線を平坦化してなるものであり、前記高
抵抗化膜は前記基地を形成するシース材よりも電気抵抗
率の高いものであることを特徴とする超電導ケーブルを
上記課題の解決手段とした。
According to the present invention, a plurality of tape-shaped superconducting conductors in which a surface of a tape-shaped superconducting element wire is subjected to a sulfidation treatment to form a high-resistance film are displaced and twisted. The displaced superconducting tape unit is wound around a tubular body, and the tape-shaped superconducting element wire has a core portion made of a superconductor or a core portion made of a material that becomes a superconductor by heat treatment and a base made of a sheath material. A superconducting cable characterized in that a superconducting wire provided inside is flattened, and the high-resistance film has a higher electrical resistivity than a sheath material forming the base. This is means for solving the above problems.

【0009】本発明においては、上記コア部をなす超電
導体またはコア部の熱処理により超電導体となる材料
が、Bi2Sr2Ca1Cu2x (Bi2212相),B
2Sr2Ca2Cu3y(Bi2223相),Bi1.6
0.4Sr2Ca2Cu3x,Tl2Ba2Ca2Cu3y
などで示される組成を持つものとされ、特に、Bi系2
223相またはBi系2212相のBi系酸化物超電導
材料が選択されることが好ましい。上記シース材が、A
g,Pt,Au等の貴金属とされることが好ましい。本
発明において、上記高抵抗化膜は、上記シース材の硫化
物からなるものであり、このなかでも硫化銀からなるこ
とが好ましい。本発明の超電導ケーブルにおいては、上
記テープ状の超電導導体の横断面形状が矩形状であるこ
とが好ましい。上記管体が、ステンレス鋼製とされるこ
とが好ましい。
In the present invention, the superconductor constituting the core or the material which becomes a superconductor by heat treatment of the core is Bi 2 Sr 2 Ca 1 Cu 2 O x (Bi 2212 phase), B
i 2 Sr 2 Ca 2 Cu 3 O y (Bi2223 phase), Bi 1.6 P
b 0.4 Sr 2 Ca 2 Cu 3 O x , Tl 2 Ba 2 Ca 2 Cu 3 O y ,
And the like. Particularly, Bi-based 2
Preferably, a Bi-based oxide superconducting material of 223 phase or Bi-based 2212 phase is selected. The sheath material is A
It is preferable to use a noble metal such as g, Pt, or Au. In the present invention, the resistance-enhancing film is made of the sulfide of the sheath material, and among these, it is preferable to be made of silver sulfide. In the superconducting cable of the present invention, the tape-shaped superconducting conductor preferably has a rectangular cross section. Preferably, the tube is made of stainless steel.

【0010】本発明にあっては、超電導体からなるコア
部または熱処理により超電導体となる材料を有するコア
部がシース材からなる基地の内部に備えられてなる超電
導素線を圧延加工および熱処理を行ってテープ状の超電
導素線を形成する圧延熱処理工程と、前記テープ状の超
電導素線の表面に硫化処理を施してテープ状の超電導導
体を形成する硫化工程と、前記テープ状の超電導導体の
複数本を転位撚り合せて転位超電導テープユニットを形
成する転位撚り合せ工程と、前記転位超電導テープユニ
ットを管体の周囲に巻回する巻回工程を少なくとも備え
ることを特徴とする超電導ケーブルの製造方法を前記課
題の解決手段とした。本発明の超電導ケーブルの製造方
法においては、上記硫化工程における硫化処理は、内部
に硫黄蒸気が満たされた反応容器内に前記テープ状の超
電導素線を通過させることにより行われるものであって
もよい。本発明の超電導ケーブルの製造方法において
は、上記転位撚り合せ工程における転位撚り合せが平角
転位撚り合せであることが好ましい。
According to the present invention, a superconducting wire in which a core portion made of a superconductor or a core portion having a material which becomes a superconductor by heat treatment is provided inside a base made of a sheath material is subjected to rolling and heat treatment. Rolling heat treatment step to form a tape-shaped superconducting element wire, and a sulfurizing step of performing a sulfurating treatment on the surface of the tape-shaped superconducting element wire to form a tape-shaped superconducting conductor; and A method of manufacturing a superconducting cable, comprising at least a dislocation twisting step of forming a dislocation superconducting tape unit by twisting a plurality of dislocation superconducting tape units, and a winding step of winding the dislocation superconducting tape unit around a tubular body. Is a means for solving the above problem. In the method for manufacturing a superconducting cable of the present invention, the sulfidation process in the sulfidation step may be performed by passing the tape-shaped superconducting element wire through a reaction vessel filled with sulfur vapor. Good. In the method for manufacturing a superconducting cable according to the present invention, it is preferable that the dislocation twisting in the dislocation twisting step is a rectangular dislocation twisting.

【0011】[0011]

【発明の実施の形態】以下、本発明に係る超電導ケーブ
ルおよびその製造方法の一実施形態を、図面に基づいて
説明する。図1は、本発明の超電導ケーブルの一実施形
態を示す斜視図である。この超電導ケーブル10は、転
位超電導テープユニット15がパイプ状のフォーマ(管
体)17の周囲に螺旋状に巻回されてなるものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a superconducting cable according to the present invention and a method for manufacturing the same will be described below with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of the superconducting cable of the present invention. The superconducting cable 10 has a dislocation superconducting tape unit 15 spirally wound around a pipe-shaped former (tube body) 17.

【0012】上記転位超電導テープユニット15は、図
2に示すようにテープ状の超電導導体(超電導テープ)
18を複数本(図面では5本)転位撚り合わせてなる長
尺の帯状のものである。この転位超電導テープユニット
15では、テープ状の超電導導体18の複数本を集合し
て撚り合わす際に、各テープ状の超電導導体18がその
長尺方向において、順次その位置を代えて変位するよう
に撚り合わされたものである。このような転位超電導テ
ープユニット15の巻回方向は、S巻(右巻)の方向ま
たはZ巻(左巻)の方向となっている。上記フォーマ1
7は、ステンレス鋼などからなるものである。このよう
なフォーマ17の表面は、該フォーマ17と転位超電導
テープユニット15間の通電を抑制するために絶縁処理
が施されている。このフォーマ17の内部は、液体窒素
等の冷却媒体の流路とされ、テープ状の超電導導体18
の冷却が行われる。
As shown in FIG. 2, the dislocation superconducting tape unit 15 is a tape-shaped superconducting conductor (superconducting tape).
18 is a long strip formed by twisting a plurality of (five in the drawing) dislocations. In this dislocation superconducting tape unit 15, when a plurality of tape-shaped superconducting conductors 18 are assembled and twisted, each tape-shaped superconducting conductor 18 is displaced in its longitudinal direction by sequentially changing its position. It is twisted. The winding direction of such a dislocation superconducting tape unit 15 is a direction of S winding (right winding) or a direction of Z winding (left winding). Former 1
Reference numeral 7 is made of stainless steel or the like. The surface of such a former 17 is subjected to an insulation treatment in order to suppress a current flow between the former 17 and the dislocation superconducting tape unit 15. The inside of the former 17 is used as a flow path for a cooling medium such as liquid nitrogen, and a tape-shaped superconducting conductor 18.
Is cooled.

【0013】上記テープ状の超電導導体18は、図2に
示すようにテープ状の超電導素線19の表面に硫化処理
が施されて高抵抗化膜20が形成されてなるものであ
る。この超電導導体18の横断面形状は、矩形状とする
ことが好ましい。この超電導導体18は、幅1.0mm
〜5.0mm程度、厚さ0.1mm〜1.0mm程度の
範囲のものとされる。上記高抵抗化膜20は、後述する
シース材7の硫化物からなるものであり、このなかでも
硫化銀からなることが好ましい。このような高抵抗化膜
20は、後述する基地29を形成するシース材よりも電
気抵抗率が高くなっている。
As shown in FIG. 2, the tape-shaped superconducting conductor 18 is obtained by subjecting the surface of a tape-shaped superconducting wire 19 to a sulfurating treatment to form a high-resistance film 20. The cross section of superconducting conductor 18 is preferably rectangular. The superconducting conductor 18 has a width of 1.0 mm
The thickness is in the range of about 5.0 mm to about 0.1 mm to 1.0 mm. The resistance increasing film 20 is made of a sulfide of the sheath material 7 described later, and among these, it is preferable to be made of silver sulfide. Such a high resistance film 20 has a higher electrical resistivity than a sheath material forming a base 29 described later.

【0014】上記テープ状の超電導素線19は、図3に
示すような超電導多心素線(超電導素線)25が平坦化
されてなるものである。このような超電導素線19の横
断面形状は、矩形状とすることが好ましい。この超電導
素線19は、幅1.0mm〜5.0mm程度、厚さ0.
1mm〜1.0mm程度の範囲のものとされる。上記超
電導多心素線25は、超電導フィラメントなどの超電導
体27からなるコア部28または熱処理により超電導体
となる材料27を有するコア部28がシース材からなる
基地29の内部に備えられてなるものである。
The tape-shaped superconducting wires 19 are obtained by flattening a superconducting multi-core wire (superconducting wire) 25 as shown in FIG. The cross-sectional shape of such superconducting element wire 19 is preferably rectangular. The superconducting element wire 19 has a width of about 1.0 mm to 5.0 mm and a thickness of about 0.1 mm.
It is in the range of about 1 mm to 1.0 mm. The superconducting multi-core element wire 25 has a core portion 28 made of a superconductor 27 such as a superconducting filament or a core portion 28 having a material 27 that becomes a superconductor by heat treatment provided inside a base 29 made of a sheath material. It is.

【0015】コア部28の超電導体27あるいは熱処理
により超電導体となる材料27としては、Bi2Sr2
1Cu2x (Bi2212相),Bi2Sr2Ca2
3y(Bi2223相),Bi1.6Pb0.4Sr2Ca2
Cu3x,Tl2Ba2Ca2Cu3y,などで示される
組成を持つものが用いられ、例えば、Bi系2223相
のBi系酸化物超電導材料が用いられる。シース材12
としては、Ag,Pt,Au等の貴金属あるいはそれら
の合金からなるものが用いられる。このような構成の超
電導ケーブル10の外側には、図示しない半導体層、絶
縁層、保護層、断熱層、防食層などが必要に応じて形成
されて使用される。
As the superconductor 27 of the core portion 28 or the material 27 which becomes a superconductor by heat treatment, Bi 2 Sr 2 C
a 1 Cu 2 O x (Bi 2212 phase), Bi 2 Sr 2 Ca 2 C
u 3 O y (Bi 2223 phase), Bi 1.6 Pb 0.4 Sr 2 Ca 2
A material having a composition represented by Cu 3 O x , Tl 2 Ba 2 Ca 2 Cu 3 O y , or the like is used. For example, a Bi-based 2223 phase Bi-based oxide superconducting material is used. Sheath material 12
For example, a material made of a noble metal such as Ag, Pt, or Au or an alloy thereof is used. Outside the superconducting cable 10 having such a configuration, a semiconductor layer, an insulating layer, a protective layer, a heat insulating layer, a corrosion protection layer, and the like (not shown) are formed and used as necessary.

【0016】次に、図1に示した実施形態の超電導ケー
ブル10の製造方法の一例を工程順に説明する。 〔原料粉末処理工程〕酸化物超電導物質の原料粉末、例
えばBi23,PbO,SrCO3 ,CaCO3 ,Cu
O、からなるものを、Bi:Pb:Sr:Ca:Cuの
混合比が1.8:0.4:2.2:3.0となるように
混合し、780℃〜820℃の範囲の温度条件において
おこなう熱処理(仮焼き)と該仮焼きした後における粉
砕とを複数回繰り返す。ここで、混合する原料粉末は、
上記の他にBi,Pb,Sr,Ca,Cuの各元素の酸
化物、炭酸塩のいずれでもよい。 〔充填工程〕上記粉砕した原料粉末をCIP(冷間静水
圧プレス)成形等により例えば円柱体とし、ついでこの
円柱体をAg等のシース材からなる第一のパイプ内部に
充填して封入し、シース材複合体(Agシース複合体)
を形成する。
Next, an example of a method for manufacturing the superconducting cable 10 of the embodiment shown in FIG. 1 will be described in the order of steps. [Raw material processing step] Raw material powder of an oxide superconducting material, for example, Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 , Cu
O, is mixed so that the mixing ratio of Bi: Pb: Sr: Ca: Cu is 1.8: 0.4: 2.2: 3.0, and the mixing ratio is in the range of 780 ° C. to 820 ° C. The heat treatment (calcination) performed under the temperature condition and the pulverization after the calcination are repeated a plurality of times. Here, the raw material powder to be mixed is
In addition to the above, any of oxides and carbonates of each element of Bi, Pb, Sr, Ca, and Cu may be used. [Filling Step] The above ground powder is formed into, for example, a cylindrical body by CIP (cold isostatic pressing) molding or the like, and then the cylindrical body is filled and sealed in a first pipe made of a sheath material such as Ag. Sheath material composite (Ag sheath composite)
To form

【0017】〔単心線の伸線(引き抜き)加工工程〕上
記シース材複合体(Agシース複合体)を、ダイス等に
よって所定の線径にまで伸線加工し、超電導単心素線
(単心線)を形成する。 〔多心化工程〕Ag等のシース材からなる第二のパイプ
の内部に上記単心線を所定数(例えば、19本)配置
し、封入を行った後、ダイス等により所定の線径にまで
伸線加工して、図3に示すような超電導多心素線(超電
導素線)25を形成する。
[Single Wire Drawing (Drawing) Processing Step] The above-described sheath material composite (Ag sheath composite) is drawn to a predetermined wire diameter with a die or the like, and the superconducting single core wire (single wire) is drawn. Core wire). [Multi-core process] A predetermined number (for example, 19) of the above-described single-core wires are arranged inside a second pipe made of a sheath material such as Ag, sealed, and then formed into a predetermined wire diameter with a die or the like. Then, a superconducting multifilamentary wire (superconducting wire) 25 as shown in FIG. 3 is formed.

【0018】〔圧延熱処理反復工程〕上記超電導多心素
線25をロール圧延等の圧延加工により、所定の厚さま
で圧延して平坦化する。ここでの圧延加工に用いる装置
としては、例えば、上下一対のロールを備えた2重圧延
機と、このロール間に超電導多心素線25を送り出す送
出ドラムと上記ロール間で圧延された超電導多心素線2
5を巻き取る巻取ドラムとからなる搬送機からなる圧延
装置(図示略)が好適に用いられる。このような圧延装
置を用いて超電導多心素線25を圧延するには、上記送
出ドラムから超電導多心素線25を上記ロール間に送り
出して圧延するとともに圧延された超電導多心素線25
を巻取ドラムで巻き取ることにより行われる。ついで、
この平坦化した超電導多心素線25を、例えば熱処理ド
ラムに巻回状態として電気炉等の内部に収容し、温度条
件を、820℃〜850℃の範囲とし、処理時間を、1
0時間〜200時間の範囲に設定して熱処理を行う。更
に、上記圧延加工(またはプレス処理)および熱処理を
複数回繰り返して、所定の厚みのテープ状の超電導素線
19を形成する。
[Rolling Heat Treatment Repeating Step] The superconducting multifilamentary wire 25 is rolled to a predetermined thickness by a rolling process such as roll rolling, and is flattened. As the apparatus used for the rolling process, for example, a double rolling mill having a pair of upper and lower rolls, a delivery drum for sending out superconducting multifilamentary wires 25 between the rolls, and a superconducting multi rolled between the rolls Core strand 2
A rolling device (not shown) including a transfer machine including a take-up drum for winding the roll 5 is preferably used. In order to roll the superconducting multifilamentary wire 25 using such a rolling device, the superconducting multifilamentary wire 25 is sent out from the delivery drum between the rolls and rolled, and the rolled superconducting multifilamentary wire 25 is rolled.
By a take-up drum. Then
The flattened superconducting multifilamentary wire 25 is housed inside an electric furnace or the like, for example, wound around a heat treatment drum, the temperature condition is in the range of 820 ° C. to 850 ° C., and the processing time is 1 hour.
The heat treatment is performed in the range of 0 to 200 hours. Further, the above-described rolling (or pressing) and heat treatment are repeated a plurality of times to form a tape-shaped superconducting element wire 19 having a predetermined thickness.

【0019】〔硫化工程〕上記テープ状の超電導素線1
9の表面に硫化処理を施して高抵抗化膜20を形成する
ことにより、図2に示すようなテープ状の超電導導体
(超電導テープ)18を形成する。ここでの硫化処理に
用いる装置としては、例えば、図4に示すように、真空
排気可能であり、内部に硫黄蒸気が満たされる反応容器
30と、該反応容器30内にテープ状の超電導素線19
を送り出す送出ドラム31と、上記反応容器30内で硫
化処理が施されたテープ状の超電導素線19を巻き取る
巻取ドラム32とからなる硫化処理装置が好適に用いら
れる。上記反応容器30には、テープ状の超電導素線1
9を内部に導入する導入孔30aと、導入されたテープ
状の超電導素線19を導出するための導出孔30bが形
成されており、導入孔30aと導出孔30bの周縁部に
は、図4では省略されているが、テープ状の超電導素線
19を通過させている状態で各孔の隙間を閉じて反応容
器30内を気密状態にする封止機構が設けられている。
このような反応容器30には、ヒータ(図示略)が備え
られており、反応容器30を加熱できるようになってい
る。
[Sulfurization step] The tape-shaped superconducting element wire 1
By performing a sulfurizing treatment on the surface of 9 to form a high-resistance film 20, a tape-shaped superconducting conductor (superconducting tape) 18 as shown in FIG. 2 is formed. For example, as shown in FIG. 4, the apparatus used for the sulfurization treatment is a reaction vessel 30 which can be evacuated and is filled with sulfur vapor, and a tape-shaped superconducting element wire inside the reaction vessel 30. 19
A sulfuration treatment device comprising a delivery drum 31 for sending out the superconducting wire 19 and a winding drum 32 for winding the tape-shaped superconducting wire 19 subjected to the sulfidation treatment in the reaction vessel 30 is preferably used. The reaction vessel 30 contains a tape-shaped superconducting wire 1.
9 is introduced thereinto, and a lead-out hole 30b for leading out the introduced tape-shaped superconducting element wire 19 is formed in the periphery of the introduction hole 30a and the lead-out hole 30b. Although not shown in the figure, a sealing mechanism is provided to close the gaps between the holes while the tape-shaped superconducting wires 19 are passed through to make the inside of the reaction vessel 30 airtight.
Such a reaction vessel 30 is provided with a heater (not shown) so that the reaction vessel 30 can be heated.

【0020】このような硫化処理装置を用いてテープ状
の超電導素線19の表面に硫化処理を施すには、反応容
器30の内部を真空排気した後、該反応容器30内に所
定温度範囲の硫黄蒸気を供給し、ついで、送出ドラム3
1からテープ状の超電導素線19を上記硫黄蒸気が満た
された反応容器30内に送り出すとともに硫化処理が施
されたテープ状の超電導素線19を巻取ドラム32で巻
き取ると、表面に高抵抗化膜20を有するテープ状の超
電導導体(超電導テープ)18が得られる。反応容器3
0内に供給される硫黄蒸気としては、二塩化硫黄、二塩
化二硫黄、二酸化硫黄などの蒸気を挙げることができ
る。上記反応容器30内に供給される硫黄蒸気の温度と
しては、50゜C〜170゜C程度の範囲内とされる。
上記反応容器30内の温度としては、供給された硫黄蒸
気が液化しないような温度である。硫化処理時間として
は、60〜30000秒程度である。ここでの硫化処理
時間は、反応容器30内に送り込むテープ状の超電導素
線19の線速等によって変更できる。
In order to perform the sulfurating treatment on the surface of the tape-shaped superconducting wire 19 using such a sulfurating treatment apparatus, the inside of the reaction vessel 30 is evacuated and then the reaction vessel 30 is evacuated to a predetermined temperature range. Sulfur vapor is supplied, and then the delivery drum 3
From 1, the tape-shaped superconducting element wire 19 is sent into the reaction vessel 30 filled with the sulfur vapor, and the tape-shaped superconducting element wire 19 subjected to the sulfidation treatment is wound up by the winding drum 32. A tape-shaped superconducting conductor (superconducting tape) 18 having the resistive film 20 is obtained. Reaction vessel 3
Examples of the sulfur vapor supplied within 0 include vapors such as sulfur dichloride, disulfur dichloride, and sulfur dioxide. The temperature of the sulfur vapor supplied into the reaction vessel 30 is in the range of about 50 ° C. to 170 ° C.
The temperature in the reaction vessel 30 is a temperature at which the supplied sulfur vapor does not liquefy. The sulfurizing treatment time is about 60 to 30,000 seconds. Here, the sulfurization treatment time can be changed depending on the linear speed of the tape-shaped superconducting element wire 19 fed into the reaction vessel 30 and the like.

【0021】〔転位撚り合せ工程〕転位撚り合せ機を用
いて上記テープ状の超電導導体18の複数本(図面では
5本)を所定の転位ピッチで転位撚り合わせて図2に示
すような転位超電導テープユニット15を形成する。こ
こでの転位ピッチとしては、20mm〜500mm程度
の範囲内とされる。 〔巻回工程〕上記転位超電導テープユニット15の複数
組(例えば、24組)を表面に絶縁処理が施されたフォ
ーマ17の周囲に所定のスパイラルピッチでZ巻あるい
はS巻で巻回することにより、図1に示すような超電導
ケーブル10が得られる。ここでのスパイラルピッチと
しては、100〜2000mm程度の範囲内とされる。
[Dislocation Twisting Step] A plurality of (five in the drawing) tape-shaped superconducting conductors 18 are twisted at a predetermined dislocation pitch using a dislocation twisting machine, and the dislocation superconducting conductor shown in FIG. The tape unit 15 is formed. The dislocation pitch here is in the range of about 20 mm to 500 mm. [Winding Step] By winding a plurality of sets (for example, 24 sets) of the dislocation superconducting tape unit 15 around a former 17 whose surface is insulated, at a predetermined spiral pitch in a Z or S winding. Thus, a superconducting cable 10 as shown in FIG. 1 is obtained. The spiral pitch here is in the range of about 100 to 2000 mm.

【0022】実施形態の超電導ケーブル10にあって
は、テープ状の超電導導体18を複数本転位撚り合わせ
た転位超電導テープユニット15を用いたことにより、
この転位超電導テープユニット15を構成する各テープ
状の超電導導体18がその長尺方向において順次その位
置を代えて変位しており、すなわち各テープ状の超電導
導体18が転位超電導テープユニット15の最内側(フ
ォーマ17側)位置から最外側位置まで繰り返して経由
しながら超電導ケーブル10の長さ方向に延在している
ので、各テープ状の超電導導体18を流れる電流の値と
自己磁場から受ける影響との均等化を図ることができ
る。従って、実施形態の超電導ケーブル10によれば、
各テープ状の超電導導体18において流れる電流と自己
磁場から受ける影響とが等しいため、交流通電時の偏流
を防止でき、内側に位置するテープ状の超電導導体18
にも外側に位置するテープ状の超電導導体18と略同量
の電流を流すことができ、よって臨界電流密度を増大で
き、超電導ケーブルの大容量化を図ることができる。
In the superconducting cable 10 of the embodiment, a dislocation superconducting tape unit 15 in which a plurality of tape-shaped superconducting conductors 18 are dislocation twisted is used.
The tape-shaped superconducting conductors 18 constituting the dislocation superconducting tape unit 15 are sequentially displaced in the longitudinal direction while changing their positions, that is, each tape-shaped superconducting conductor 18 is positioned on the innermost side of the dislocation superconducting tape unit 15. Since it extends in the longitudinal direction of the superconducting cable 10 while repeatedly passing from the (former 17 side) position to the outermost position, the value of the current flowing through each tape-shaped superconducting conductor 18 and the influence of the self-magnetic field Can be equalized. Therefore, according to the superconducting cable 10 of the embodiment,
Since the current flowing through each tape-shaped superconducting conductor 18 and the influence of the self-magnetic field are equal, it is possible to prevent the drift at the time of applying the AC current, and to prevent the tape-shaped superconducting conductor 18 located inside.
In addition, a current of substantially the same amount as that of the tape-shaped superconducting conductor 18 located on the outside can be passed, so that the critical current density can be increased and the capacity of the superconducting cable can be increased.

【0023】さらに、実施形態の超電導ケーブル10に
おいては、交流電流を通電した場合には、図5(a)に
示すように、各々のテープ状の超電導導体18におい
て、これらに流れる交流電流による自己磁場の影響によ
って渦電流Fが発生する。このとき、基地29が電気抵
抗率の低いAg(77Kにおいて電気抵抗率が0.3μ
Ωcm)等からなるが、該基地29の周囲の高抵抗化膜
20が電気抵抗率の高い硫化銀(77KにおいてAgの
電気抵抗率の約103倍以上の電気抵抗率を有する)な
どからなるためにテープ状の超電導導体18の表面が高
抵抗化して、図5(b)に示すように、渦電流F3が隣
接するテープ状の超電導導体18のシース材29に導通
することがなく、各々のテープ状の超電導導体18の内
部に渦電流が留まることになる。その結果、図6に示す
ように、超電導導体の積層体でもある転位超電導テープ
ユニット15においては、渦電流F3の通電が抑えられ
るために、超電導ケーブル10全体としては渦電流が支
配的にならず、交流損失の低減が可能となる。実施形態
の超電導ケーブルの製造方法にあっては、上述の構成と
したことにより、交流通電時における交流損失を低減で
き、しかも偏流を防止できる超電導ケーブル10を得る
ことができる。また、内部に50〜170゜Cの硫黄蒸
気が満たされた反応容器30内にテープ状の超電導素線
18を通過させることにより硫化処理を行うことによ
り、得られるテープ状の超電導導体18の超電導特性を
低下させることなく、テープ状の超電導素線19の表面
を高抵抗化できる。
Further, in the superconducting cable 10 of the embodiment, when an alternating current is applied, as shown in FIG. An eddy current F is generated by the influence of the magnetic field. At this time, the base 29 is made of Ag having a low electric resistivity (0.3 μm at 77K).
[Omega] cm) consists of such a high-resistance film 20 of the peripheral of the base 29 is made of a high silver sulfide electrical resistivity (having about 10 3 times or more of the electrical resistivity of the electrical resistivity of the Ag in 77K) As a result, the surface of the tape-shaped superconducting conductor 18 has a high resistance, and as shown in FIG. 5B, the eddy current F3 does not conduct to the sheath material 29 of the adjacent tape-shaped superconducting conductor 18, and The eddy current stays inside the tape-shaped superconducting conductor 18 of FIG. As a result, as shown in FIG. 6, in the dislocation superconducting tape unit 15, which is also a superconducting conductor laminate, the eddy current F3 is suppressed from flowing, so that the eddy current does not become dominant in the entire superconducting cable 10. Thus, the AC loss can be reduced. In the method for manufacturing a superconducting cable according to the embodiment, the above-described configuration can provide a superconducting cable 10 that can reduce AC loss when AC is applied and can prevent drift. In addition, the tape-shaped superconducting wire 18 is passed through the reaction vessel 30 filled with sulfur vapor at 50 to 170 ° C. to perform the sulfidation treatment, so that the superconductivity of the obtained tape-shaped superconducting conductor 18 is increased. The resistance of the surface of the tape-shaped superconducting element wire 19 can be increased without deteriorating the characteristics.

【0024】[0024]

【実施例】以下、本発明を、実施例および比較例によ
り、具体的に説明するが、本発明はこれらの実施例のみ
に限定されるものではない。 (実施例)Bi23,PbO,SrCO3,CaCO3
CuO、を、Bi:Pb:Sr:Ca:Cuの混合比が
1.8:0.4:2.2:3.0となるように混合し、
800℃の温度条件においておこなう熱処理(仮焼き)
と該仮焼きした後における粉砕とを複数回繰り返して、
原料粉末を得た。この原料粉末をCIP(冷間静水圧プ
レス)成形により円筒状として、外径15mm、内径1
0mmのAgパイプ(第一のパイプ)内部に充填して封
入し、Agシース複合体を得た。このAgシース複合体
をダイス等によって線径1.9mmにまで伸線加工して
単心線を形成した。ついで、外径15mm、内径10m
mのAgパイプ(第二のパイプ)の内部に上記単心線を
19本配置し、封入を行った後、ダイス等により線径
0.9mmにまで伸線加工して、超電導多心素線を形成
した。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to only these Examples. (Example) Bi 2 O 3 , PbO, SrCO 3 , CaCO 3 ,
CuO is mixed so that the mixing ratio of Bi: Pb: Sr: Ca: Cu is 1.8: 0.4: 2.2: 3.0,
Heat treatment at 800 ° C (calcination)
And the crushing after the calcining is repeated a plurality of times,
A raw material powder was obtained. This raw material powder is formed into a cylindrical shape by CIP (cold isostatic pressing) molding, and has an outer diameter of 15 mm and an inner diameter of 1 mm.
A 0 mm Ag pipe (first pipe) was filled and sealed to obtain an Ag sheath composite. The Ag sheath composite was drawn to a wire diameter of 1.9 mm with a die or the like to form a single core wire. Then, outer diameter 15mm, inner diameter 10m
The above-described 19 single-core wires are placed inside an Ag pipe (second pipe) having a length of m, and after encapsulation, the wire is drawn to a wire diameter of 0.9 mm with a die or the like, and the superconducting multi-core wire is obtained. Was formed.

【0025】この超電導多心素線を、上述の2重圧延機
と搬送機からなる圧延装置を用いて厚さ0.30mmま
で圧延加工を施し、平坦化した。さらにこの平坦化した
超電導素線を熱処理ドラムに巻回した状態で、上述の電
気炉の内部に収容し、温度条件が830℃、処理時間が
150時間として熱処理を行った。更に、上記圧延加工
(またはプレス処理)および熱処理を複数回繰り返し
て、幅2.0mm、厚さ0.20mmの横断面形状が矩
形状のテープ状の超電導素線を形成した。ついで、図4
に示した硫化処理装置を用い、反応容器の内部を真空排
気した後、該反応容器に約150゜Cの硫黄蒸気を供給
し、ついで、送出ドラムからテープ状の超電導素線を線
速20cm/時間で上記硫黄蒸気が満たされた反応容器
内に送り出すとともに硫化処理が施されたテープ状の超
電導素線を巻取ドラムで巻き取ると、表面に黒色の硫化
銀からなる高抵抗化膜を有するテープ状の超電導導体
(超電導テープ)が得られた。なお、ここでの反応容器
内の雰囲気圧力は、約1atmであった。
The superconducting multifilamentary wire was rolled to a thickness of 0.30 mm by using the above-described rolling device including a double rolling mill and a transporter, and was flattened. Further, the flattened superconducting wire was wound around a heat treatment drum and housed in the above-mentioned electric furnace, and heat treatment was performed at a temperature of 830 ° C. for a treatment time of 150 hours. Further, the rolling (or pressing) and the heat treatment were repeated a plurality of times to form a tape-shaped superconducting element wire having a width of 2.0 mm and a thickness of 0.20 mm and a rectangular cross section. Then, FIG.
After evacuating the inside of the reaction vessel using the sulfurization treatment apparatus shown in (1), sulfur vapor at about 150 ° C. was supplied to the reaction vessel, and then a tape-shaped superconducting element wire was fed from the delivery drum at a linear velocity of 20 cm / cm. When the tape-shaped superconducting wire that has been sent out into the reaction vessel filled with the sulfur vapor in a time and the sulfidation treatment is wound by a winding drum has a high resistance film made of black silver sulfide on the surface A tape-shaped superconducting conductor (superconducting tape) was obtained. Here, the atmospheric pressure in the reaction vessel was about 1 atm.

【0026】ついで、転位撚り合せ機を用いて上記テー
プ状の超電導導体の5本を転位ピッチ100mmで転位
撚り合わせて転位超電導テープユニットを得た。このよ
うにして得られた転位超電導テープユニットを、表面に
カプトンテープを貼ることにより絶縁を施した外径25
mm,長さ2mのステンレス鋼製のコルゲート管(管
体)に、50cmのピッチで24組スパイラル状に巻回
(4巻)し、酸化物超電導ケーブルを得た。
Then, using a dislocation twisting machine, the five tape-shaped superconducting conductors were twisted with dislocation at a dislocation pitch of 100 mm to obtain a dislocation superconducting tape unit. The dislocation superconducting tape unit obtained in this manner is insulated by attaching a Kapton tape to the surface, and has an outer diameter of 25 mm.
Twenty-four sets were spirally wound (four turns) at a pitch of 50 cm around a stainless steel corrugated pipe (tube body) having a length of 2 m and a length of 2 m to obtain an oxide superconducting cable.

【0027】(比較例)上記実施例と同様にして超電導
多心素線を形成し、この超電導多心素線を上記実施例と
同様にして圧延加工および熱処理を施して、幅4.0m
m、厚さ0.20mmのテープ状の超電導導体を作製し
た。なお、このテープ状の超電導導体の表面には高抵抗
化膜が形成されていないものであった。次いで、作製し
たテープ状の超電導導体を、表面にカプトンテープを貼
ることにより絶縁を施した外径25mm,長さ2mのス
テンレス鋼製のコルゲート管に、50cmのピッチで1
9本スパイラル状に巻回(4巻)して超電導導体層を5
層積層するとともに超電導導体層間にポリイミドテープ
などからなる層間絶縁層を介在させることにより、酸化
物超電導ケーブルを得た。
(Comparative Example) A superconducting multifilamentary wire was formed in the same manner as in the above embodiment, and this superconducting multifilamentary wire was subjected to rolling and heat treatment in the same manner as in the above embodiment, to a width of 4.0 m.
A tape-shaped superconducting conductor having a thickness of 0.20 mm was prepared. It should be noted that no high resistance film was formed on the surface of the tape-shaped superconducting conductor. Next, the prepared tape-shaped superconducting conductor was placed at a pitch of 50 cm on a stainless steel corrugated pipe having an outer diameter of 25 mm and a length of 2 m, which was insulated by attaching a Kapton tape to the surface.
The superconducting conductor layer is wound by winding 9 spirals (4 turns).
An oxide superconducting cable was obtained by laminating the layers and interposing an interlayer insulating layer made of a polyimide tape or the like between the superconducting conductor layers.

【0028】上記実施例で得られた酸化物超電導ケーブ
ルと、比較例で得られた酸化物超電導ケーブルにおい
て、以下の条件で測定実験を行った。 外部磁場:0T 温度:77K 交流周期:60Hz 交流電流値:1.0kA 実施例における酸化物超電導ケーブルの交流損失:0.
5W/m 比較例における酸化物超電導ケーブルの交流損失:2.
0W/m
Measurement experiments were performed on the oxide superconducting cable obtained in the above example and the oxide superconducting cable obtained in the comparative example under the following conditions. External magnetic field: 0 T Temperature: 77 K AC cycle: 60 Hz AC current value: 1.0 kA AC loss of the oxide superconducting cable in the embodiment: 0.
5 W / m AC loss of oxide superconducting cable in comparative example:
0W / m

【0029】この結果、テープ状の超電導素線に硫化処
理を施して高抵抗化膜を形成したテープ状の超電導導体
を用いた実施例の酸化物超電導ケーブルは、高抵抗化膜
を形成されていないテープ状の超電導導体を用いた比較
例の酸化物超電導ケーブルに比べて、酸化物超電導ケー
ブルの交流損失が75%程度低減されることが測定され
た。また、テープ状の超電導素線の外周に高抵抗膜が形
成されていないテープ状の超電導導体の複数本を転位撚
り合わすことなく管体の周囲に螺旋状に巻回した比較例
の酸化物超電導ケーブルは偏流が起こっていたが、テー
プ状の超電導素線の外周に高抵抗化膜を形成したテープ
状の超電導導体を複数本転位撚り合わせた転位超電導テ
ープユニットを管体の周囲に巻回した実施例の酸化物超
電導ケーブルは、偏流が生じていないことが分かった。
As a result, in the oxide superconducting cable of the embodiment using the tape-shaped superconducting conductor in which the tape-shaped superconducting wire is subjected to the sulfurizing treatment to form the high-resistance film, the high-resistance film is formed. It was measured that the AC loss of the oxide superconducting cable was reduced by about 75% as compared with the oxide superconducting cable of the comparative example using a tape-shaped superconducting conductor. Also, the oxide superconductor of the comparative example in which a plurality of tape-shaped superconducting conductors in which a high-resistance film is not formed on the outer periphery of the tape-shaped superconducting wire is spirally wound around the tube without dislocation twisting. Although the cable was drifted, a dislocation superconducting tape unit in which a plurality of tape-shaped superconducting conductors having a high resistance film formed on the outer periphery of the tape-shaped superconducting wire were dislocation twisted was wound around the tube. It was found that no drift occurred in the oxide superconducting cable of the example.

【0030】[0030]

【発明の効果】以上説明したように本発明の超電導ケー
ブルにあっては、特に、テープ状の超電導導体を複数本
転位撚り合わせた転位超電導テープユニットを用いたこ
とにより、この転位超電導テープユニットを構成する各
テープ状の超電導導体が該ユニットの最内側(管体側)
位置から最外側位置まで繰り返して経由しながら超電導
ケーブルの長さ方向に延在しているので、各テープ状の
超電導導体を流れる電流の値と自己磁場から受ける影響
との均等化を図ることができる。従って、本発明の超電
導ケーブルによれば、交流通電時の偏流を防止でき、内
側に位置するテープ状の超電導導体にも外側に位置する
テープ状の超電導導体と略同量の電流を流すことがで
き、よって臨界電流密度を増大でき、超電導ケーブルの
大容量化を図ることができる。
As described above, in the superconducting cable of the present invention, in particular, by using a dislocation superconducting tape unit in which a plurality of tape-shaped superconducting conductors are dislocation twisted, this dislocation superconducting tape unit is used. The tape-shaped superconducting conductors constituting the innermost part of the unit (tube side)
Since it extends in the length direction of the superconducting cable while repeatedly passing from the position to the outermost position, it is possible to equalize the value of the current flowing through each tape-shaped superconducting conductor and the effect of the self-magnetic field. it can. Therefore, according to the superconducting cable of the present invention, it is possible to prevent the drift when alternating current is applied, and it is possible to flow substantially the same amount of current as the tape-shaped superconducting conductor located on the inner side even in the tape-shaped superconducting conductor located on the inner side. Therefore, the critical current density can be increased, and the capacity of the superconducting cable can be increased.

【0031】さらに、本発明の超電導ケーブルにおいて
は、テープ状の超電導素線のシース材からなる基地の周
囲に該シース材より電気抵抗率の高い高抵抗化膜が形成
されているためにテープ状の超電導導体の表面が高抵抗
化しており、交流通電時における渦電流をテープ状の超
電導導体の内部に留めることができ、転位超電導テープ
ユニットにおけるテープ状の超電導導体間に生じようと
する渦電流をテープ状の超電導導体の高抵抗化膜により
抑制できるので、交流通電時の交流損失を少なくするこ
とができる。本発明の超電導ケーブルの製造方法にあっ
ては、上述の構成としたことにより、交流通電時におけ
る交流損失を低減でき、しかも偏流を防止できる超電導
ケーブルを得ることができる。また、本発明の超電導ケ
ーブルの製造方法の硫化処理工程において、内部に硫黄
蒸気が満たされた反応容器内にテープ状の超電導素線を
通過させることにより硫化処理を行うようにすると、得
られるテープ状の超電導導体の超電導特性を低下させる
ことなく、テープ状の超電導素線の表面を高抵抗化でき
る。
Further, in the superconducting cable of the present invention, a tape-shaped superconducting wire is formed around a base made of a sheath material, and a high-resistance film having higher electric resistivity than the sheath material is formed. The surface of the superconducting conductor has a high resistance, so that eddy currents during alternating current can be retained inside the tape-shaped superconducting conductor, and eddy currents are generated between the tape-shaped superconducting conductors in the dislocation superconducting tape unit. Can be suppressed by the high-resistance film of the tape-shaped superconducting conductor, so that the AC loss at the time of applying the AC can be reduced. In the method for manufacturing a superconducting cable according to the present invention, by adopting the above-described configuration, it is possible to obtain a superconducting cable that can reduce an AC loss when AC is applied and can prevent drift. Further, in the sulfidation treatment step of the method for producing a superconducting cable of the present invention, if the sulfidation treatment is performed by passing a tape-shaped superconducting wire into a reaction vessel filled with sulfur vapor, the resulting tape The resistance of the surface of the tape-shaped superconducting element wire can be increased without deteriorating the superconducting properties of the superconducting conductor in the shape of a tape.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の超電導ケーブルの一実施形態を示す
斜視図である。
FIG. 1 is a perspective view showing one embodiment of a superconducting cable of the present invention.

【図2】 本発明の超電導ケーブルおよびその製造方法
の一実施形態における転位超電導テープユニットを説明
するための図であり、(a)は斜視図、(b)は断面図
である。
FIGS. 2A and 2B are views for explaining a superconducting tape unit and a superconducting tape unit according to an embodiment of the present invention, wherein FIG. 2A is a perspective view and FIG.

【図3】 本発明の超電導ケーブルおよびその製造方法
の一実施形態における捻る前の超電導素線を示す斜視図
である。
FIG. 3 is a perspective view showing a superconducting wire before twisting in a superconducting cable and a method for manufacturing the same according to an embodiment of the present invention.

【図4】 本発明の超電導ケーブルの製造方法の硫化工
程において好適に用いられる硫化処理装置の例を示す概
略構成図である。
FIG. 4 is a schematic configuration diagram showing an example of a sulfurizing treatment apparatus suitably used in the sulfurizing step of the method for manufacturing a superconducting cable of the present invention.

【図5】 本発明の超電導ケーブルの一実施形態におけ
るテープ状の超電導導体の交流通電時等の状態を示す模
式断面図である。
FIG. 5 is a schematic cross-sectional view showing a tape-like superconducting conductor in an embodiment of the superconducting cable of the present invention when an AC current is applied.

【図6】 本発明の超電導ケーブルの一実施形態におけ
る転位超電導テープユニットの交流通電時等の状態を示
す模式断面図である。
FIG. 6 is a schematic cross-sectional view showing a state of the superconducting tape unit according to an embodiment of the present invention when an AC current is applied to the transposed superconducting tape unit.

【図7】 従来の超電導ケーブルの例を示す斜視図であ
る。
FIG. 7 is a perspective view showing an example of a conventional superconducting cable.

【図8】 従来の超電導ケーブルの超電導導体の交流通
電時等の状態を示す模式断面図である。
FIG. 8 is a schematic cross-sectional view showing a state in which a superconducting conductor of a conventional superconducting cable is energized with alternating current.

【図9】 従来の超電導ケーブルの超電導導体層を示す
断面図である。
FIG. 9 is a sectional view showing a superconducting conductor layer of a conventional superconducting cable.

【符号の説明】[Explanation of symbols]

10・・・超電導ケーブル,15・・・転位超電導テープユニ
ット、17・・・フォーマ(管体)、18・・・テープ状の超
電導導体(超電導テープ)、19・・・テープ状の超電導
素線、20・・・高抵抗化膜、25・・・超電導多心素線(超
電導素線)、27・・・超電導体または超電導体となる材
料、28・・・コア部、29・・・基地(シース材)、30・・
・反応容器。
DESCRIPTION OF SYMBOLS 10 ... Superconducting cable, 15 ... Dislocation superconducting tape unit, 17 ... Former (tube), 18 ... Tape superconducting conductor (superconducting tape), 19 ... Tape superconducting element wire , 20: High resistance film, 25: Superconducting multi-core wire (superconducting wire), 27: Superconductor or material to be superconductor, 28: Core part, 29: Base (Sheath material), 30
A reaction vessel.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 定方 伸行 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 斉藤 隆 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 (72)発明者 長屋 重夫 愛知県名古屋市緑区大高町字北関山20番地 の1 中部電力株式会社電力技術研究所内 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Nobuyuki Sadakata 1-5-1 Kiba, Koto-ku, Tokyo Inside Fujikura Corporation (72) Inventor Takashi Saito 1-1-5-1 Kiba, Koto-ku, Tokyo Stock Inside Fujikura (72) Inventor Shigeo Nagaya 20-1, Kitakanyama, Odaka-cho, Midori-ku, Nagoya-shi, Aichi Electric Power Research Laboratory, Chubu Electric Power Co., Inc.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 テープ状の超電導素線の表面に硫化処理
が施されて高抵抗化膜が形成されたテープ状の超電導導
体を複数本転位撚り合わせた転位超電導テープユニット
が管体の周囲に巻回されてなり、 前記テープ状の超電導素線は、超電導体からなるコア部
または熱処理により超電導体となる材料を有するコア部
がシース材からなる基地の内部に備えられてなる超電導
素線を平坦化してなるものであり、前記高抵抗化膜は前
記基地を形成するシース材よりも電気抵抗率の高いもの
であることを特徴とする超電導ケーブル。
1. A dislocation superconducting tape unit in which a plurality of dislocation superconducting tapes in which a plurality of tape-shaped superconducting conductors in which a surface of a tape-shaped superconducting element wire is subjected to a sulfidation treatment and a high-resistance film is formed is twisted around a tubular body. The tape-shaped superconducting wire is formed by winding a superconducting wire having a core portion made of a superconductor or a core portion having a material that becomes a superconductor by heat treatment provided inside a base made of a sheath material. A superconducting cable which is made flat and has a higher electrical resistivity than the sheath material forming the base.
【請求項2】 前記高抵抗化膜が硫化銀からなるもので
あることを特徴とする請求項1記載の超電導ケーブル。
2. The superconducting cable according to claim 1, wherein said high-resistance film is made of silver sulfide.
【請求項3】 超電導体からなるコア部または熱処理に
より超電導体となる材料を有するコア部がシース材から
なる基地の内部に備えられてなる超電導素線を圧延加工
および熱処理を行ってテープ状の超電導素線を形成する
圧延熱処理工程と、前記テープ状の超電導素線の表面に
硫化処理を施してテープ状の超電導導体を形成する硫化
工程と、前記テープ状の超電導導体の複数本を転位撚り
合せて転位超電導テープユニットを形成する転位撚り合
せ工程と、前記転位超電導テープユニットを管体の周囲
に巻回する巻回工程を少なくとも備えることを特徴とす
る超電導ケーブルの製造方法。
3. A superconducting wire in which a core portion made of a superconductor or a core portion having a material that becomes a superconductor by heat treatment is provided inside a base made of a sheath material is subjected to rolling and heat treatment to form a tape. A rolling heat treatment step for forming a superconducting element wire, a sulfurizing step for subjecting the surface of the tape-shaped superconducting element to a sulfurating treatment to form a tape-shaped superconducting conductor, and dislocation twisting a plurality of the tape-shaped superconducting conductors A method for manufacturing a superconducting cable, comprising at least a dislocation twisting step of forming a dislocation superconducting tape unit together and a winding step of winding the dislocation superconducting tape unit around a tube.
【請求項4】 前記硫化工程における硫化処理は、内部
に硫黄蒸気が満たされた反応容器内に前記テープ状の超
電導素線を通過させることにより行われることを特徴と
する請求項3記載の超電導ケーブルの製造方法。
4. The superconducting device according to claim 3, wherein the sulfurizing treatment in the sulfurizing step is performed by passing the tape-shaped superconducting element wire into a reaction vessel filled with sulfur vapor. Cable manufacturing method.
JP00806398A 1998-01-19 1998-01-19 Superconducting cable and method for manufacturing the same Expired - Fee Related JP3568766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00806398A JP3568766B2 (en) 1998-01-19 1998-01-19 Superconducting cable and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00806398A JP3568766B2 (en) 1998-01-19 1998-01-19 Superconducting cable and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JPH11203958A true JPH11203958A (en) 1999-07-30
JP3568766B2 JP3568766B2 (en) 2004-09-22

Family

ID=11682897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00806398A Expired - Fee Related JP3568766B2 (en) 1998-01-19 1998-01-19 Superconducting cable and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP3568766B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1313154A1 (en) * 2001-11-14 2003-05-21 Nexans Process for applying a resistive layer on an oxide superconducting element, oxide superconducting element having a resistive layer and use thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1313154A1 (en) * 2001-11-14 2003-05-21 Nexans Process for applying a resistive layer on an oxide superconducting element, oxide superconducting element having a resistive layer and use thereof
WO2003043098A3 (en) * 2001-11-14 2003-11-27 Nexans Process for applying a resistive layer on an superconducting element
US7330744B2 (en) 2001-11-14 2008-02-12 Nexans Metal salt resistive layer on an superconducting element

Also Published As

Publication number Publication date
JP3568766B2 (en) 2004-09-22

Similar Documents

Publication Publication Date Title
RU2099806C1 (en) Superconductive cable wire
JP3474602B2 (en) Superconducting conductor
US7162287B2 (en) Oxide high-temperature superconducting wire and method of producing the same
JP3568766B2 (en) Superconducting cable and method for manufacturing the same
WO2008065781A1 (en) Oxide superconducting wire rod, superconducting structure, method for manufacturing oxide superconducting wire rod, superconducting cable, superconducting magnet, and product comprising superconducting magnet
JP3568767B2 (en) Superconducting cable and manufacturing method thereof
JP3585719B2 (en) Oxide superconducting cable unit and oxide superconducting cable including the same
JP5122047B2 (en) Dislocation superconducting tape unit and superconducting application equipment using the same
JP3630968B2 (en) Oxide superconducting cable
JP3701606B2 (en) Dislocation superconducting tape unit and superconducting application equipment using the same
JP2003092034A (en) Transposition superconductive tape unit and superconductive application equipment using the same
JPH05334921A (en) Ceramic superconductor
JPH08298208A (en) High temperature superconductor winding
US6842634B2 (en) Integrated tape
JP4202173B2 (en) Dislocation segment, manufacturing method thereof, manufacturing apparatus thereof, and superconducting application equipment
JP2637427B2 (en) Superconducting wire manufacturing method
JPH1139963A (en) Oxide superconductive wire material, stranded wire, method for producing material and stranded wire thereof, and oxide superconductor
JPH11203957A (en) Oxidic superconductive wire and its manufacture
JP3078765B2 (en) Compound superconducting wire and method for producing compound superconducting wire
JPS63307615A (en) Superconductive cable of oxide type and its manufacture
JPH09115357A (en) Tape form oxide superconducting stranded wire and superconductor using the stranded wire
JP2005116233A (en) Dislocation segment conductor
JPH02250221A (en) Manufacture of multi-conductor oxide superconducting wire
JPH04292809A (en) Multicore superconductive wire
JPH0877844A (en) Oxide superconductive multi-layer wire material, and manufacture of its material

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040616

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080625

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090625

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100625

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110625

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120625

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees