JPH11201559A - Hot water supply apparatus utilizing solar heat - Google Patents

Hot water supply apparatus utilizing solar heat

Info

Publication number
JPH11201559A
JPH11201559A JP10006563A JP656398A JPH11201559A JP H11201559 A JPH11201559 A JP H11201559A JP 10006563 A JP10006563 A JP 10006563A JP 656398 A JP656398 A JP 656398A JP H11201559 A JPH11201559 A JP H11201559A
Authority
JP
Japan
Prior art keywords
hot water
heat
temperature
heat exchanger
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10006563A
Other languages
Japanese (ja)
Inventor
Hideki Kawakami
英樹 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiroki Corp
Original Assignee
Shiroki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiroki Corp filed Critical Shiroki Corp
Priority to JP10006563A priority Critical patent/JPH11201559A/en
Publication of JPH11201559A publication Critical patent/JPH11201559A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a hot water at a sufficiently high temperature even in a cloudy day by dividing a hot water storage tank vertically, providing a plurality of heat exchangers in a vertical direction in the hot water storage tank, and controlling distribution of heat carrier so that the upper area of the divided areas within the hot water storage tank can be heated preferentially. SOLUTION: Three heat exchangers 12 to 14 are arranged in a vertical direction in each space of a hot water storage tank 5 which are divided almost equally, and a heat carrier heated by a solar energy collector 1 is distributed to the respective heat exchangers 12 to 14 through three-way valves 18 and 19 provided on the inlet thereof, so that the water in the hot water storage tank 5 is heated. For example, in the case where the preset temperature of hot water in the hot water storage tank 5 is 70 deg.C, a controller 11 controls the changing over of the passages of the three-way valves 18 and 19 so that the heat carrier can enter only heat exchanger 12 when the measured value of a temperature sensor 15 is 70 deg.C or lower. On the other hand, when the measured value is 70 deg.C or higher, the heat carrier is controlled as to enter only heat exchanger 13, and the heat exchanger 14 is activated when a temperature sensor 16 detects a temperature of 70 deg.C or higher.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は太陽熱利用給湯装置
に関し、詳しくは、太陽熱集熱器と貯湯槽内に配置され
た熱交換器との間で熱媒を循環させ、貯湯槽内の水を加
熱するように構成した密閉循環型の太陽熱利用給湯装置
における太陽熱の利用効率の改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar hot water supply system, and more particularly, to circulating a heat medium between a solar heat collector and a heat exchanger disposed in a hot water storage tank, and for disposing water in the hot water storage tank. The present invention relates to an improvement in solar heat utilization efficiency in a closed circulation type solar water heating water supply apparatus configured to heat.

【0002】[0002]

【従来の技術】太陽熱利用給湯装置は、直接的には燃料
の消費を伴わず地球温暖化の要因とされる二酸化炭素を
発生しない地球環境に優しいエネルギー変換手段の一つ
であって、従来から各種の装置が提案され実用化されて
いる。
2. Description of the Related Art A solar hot water supply system is one of environmentally friendly energy conversion means which does not directly consume fuel and does not generate carbon dioxide which is a factor of global warming. Various devices have been proposed and put into practical use.

【0003】一般に、太陽熱利用給湯装置は、太陽熱を
集める集熱器と、この集熱器が集めた熱で水を暖めてお
湯に変換して蓄える貯湯槽と、これら集熱器と貯湯槽間
で熱媒を循環させる集熱系統とで構成されている。そし
て、熱媒を循環させる集熱系統の方式に従って、熱媒が
大気に触れないように集熱系統を密閉した密閉循環型
と、集熱系統の一部である熱媒タンクを大気に開放した
開放循環型とに分類されている。なお熱媒としては、集
熱系統の凍結を防止するために、不凍液を用いることが
多い。
[0003] Generally, a solar water heater uses a heat collector that collects solar heat, a hot water tank that heats water with the heat collected by the heat collector, converts it into hot water, and stores the hot water. And a heat collection system that circulates the heat medium. Then, according to the method of the heat collection system that circulates the heat medium, a closed circulation type in which the heat collection system is sealed so that the heat medium does not come into contact with the atmosphere, and a heat medium tank that is a part of the heat collection system is opened to the atmosphere. It is classified as open circulation type. An antifreeze is often used as a heat medium in order to prevent freezing of the heat collection system.

【0004】ここで、密閉循環型は、熱媒の温度変化に
よる体積変化に応じて集熱系統内部の圧力が大きく変化
するものの、熱媒が大気と接触しないことから熱媒の劣
化を防止でき、配管の腐食も発生しにくいという利点が
ある。これに対し開放循環型は、集熱系統の一部を大気
に開放しているので集熱系統内部の圧力変動を小さく抑
えることができるものの、熱媒の酸化による劣化や蒸発
による熱媒の減少など保守面に少なからず問題がある。
Here, in the closed circulation type, although the pressure inside the heat collecting system greatly changes according to the volume change due to the temperature change of the heat medium, the deterioration of the heat medium can be prevented because the heat medium does not come into contact with the atmosphere. In addition, there is an advantage that the corrosion of the piping hardly occurs. On the other hand, in the open circulation type, a part of the heat collection system is open to the atmosphere, so that pressure fluctuation inside the heat collection system can be suppressed to a small extent. There are not a few problems on the maintenance side.

【0005】図3は、このような密閉循環型の太陽熱利
用給湯装置の従来の一例を示す構成説明図である。図に
おいて、集熱器1は太陽熱を集めるものであり、その流
入口にはポンプ2の吐出口が接続されていて、一定流量
の熱媒が循環供給される。ポンプ2の吸入口には熱媒の
温度変化による体積変化分を吸収する膨張槽3の出口が
接続されている。膨張槽3の入口には熱交換器4の出口
が接続されている。該熱交換器4は貯湯槽5の内部の下
方に配置されている。熱交換器4の入口は集熱器1の流
出口に接続されている。集熱器1の流出口近傍には、熱
媒の温度を測定するための第1温度センサー6が設けら
れている。貯湯槽5の底部には貯湯槽5に給水するため
の給水管7が接続され、貯湯槽5の熱交換器4の出口の
近傍には内部のお湯の温度を測定するための第2温度セ
ンサー8が設けられている。貯湯槽5の頂部には加熱さ
れたお湯を外部に給湯するための給湯管9が接続されて
いて、該給湯管9の端部には開閉バルブ10が接続され
ている。制御器11には第1,第2温度センサー6,8
の出力信号が入力されている。そして制御器11はこれ
ら第1,第2温度センサー6,8の出力信号の差に応じ
てポンプ2の作動・停止(オン・オフ)を制御する。
FIG. 3 is a structural explanatory view showing a conventional example of such a closed-circulation type solar water heater utilizing hot water. In the figure, a heat collector 1 collects solar heat, and an outlet of the heat collector 1 is connected to a discharge port of the pump 2 so that a constant flow of a heat medium is circulated and supplied. The inlet of the pump 2 is connected to the outlet of the expansion tank 3 that absorbs the volume change due to the temperature change of the heat medium. The outlet of the heat exchanger 4 is connected to the inlet of the expansion tank 3. The heat exchanger 4 is disposed below the inside of the hot water tank 5. The inlet of the heat exchanger 4 is connected to the outlet of the heat collector 1. Near the outlet of the heat collector 1, a first temperature sensor 6 for measuring the temperature of the heat medium is provided. A water supply pipe 7 for supplying water to the hot water storage tank 5 is connected to the bottom of the hot water storage tank 5, and a second temperature sensor for measuring the temperature of hot water inside the hot water storage tank 5 near the outlet of the heat exchanger 4. 8 are provided. A hot water supply pipe 9 for supplying heated hot water to the outside is connected to the top of the hot water storage tank 5, and an open / close valve 10 is connected to an end of the hot water supply pipe 9. The controller 11 includes first and second temperature sensors 6 and 8
Output signal is input. The controller 11 controls the operation / stop (on / off) of the pump 2 according to the difference between the output signals of the first and second temperature sensors 6 and 8.

【0006】このように構成された従来装置の動作を説
明する。貯湯槽5は常に給水管7からの給水圧がかけら
れた密閉状態となっていて、給湯管9の開閉バルブ10
を開いて給湯すると給湯した分量だけ自動的に給水管7
から給水される。熱媒としては、集熱系統の凍結を防止
するために、プロピレングリコールを主成分とした不凍
液を用いている。該熱媒は、ポンプ2をオンにすること
により集熱系統を循環する。すなわち、制御器11は、
例えば第1温度センサー6の測定温度と第2温度センサ
ー8の測定温度の差Tdが7℃以上(7℃≦Td)のと
きにポンプ2をオンにして熱媒の循環を開始させ、測定
温度の差Tdが4℃以下(4℃≧Td)のときにポンプ
2をオフにして熱媒の循環を停止させる。
[0006] The operation of the conventional apparatus thus configured will be described. The hot water storage tank 5 is always in a sealed state in which the water supply pressure from the water supply pipe 7 is applied.
When the hot water is opened and the hot water is supplied, the water supply pipe 7
Water is supplied from As a heat medium, an antifreeze containing propylene glycol as a main component is used to prevent freezing of a heat collecting system. The heat medium circulates through the heat collecting system by turning on the pump 2. That is, the controller 11
For example, when the difference Td between the measurement temperature of the first temperature sensor 6 and the measurement temperature of the second temperature sensor 8 is 7 ° C. or more (7 ° C. ≦ Td), the pump 2 is turned on to start circulation of the heat medium, and When the difference Td is 4 ° C. or less (4 ° C. ≧ Td), the pump 2 is turned off to stop the circulation of the heat medium.

【0007】測定温度の差Tdが7℃以上になってポン
プ2をオンにすることにより熱媒は集熱器1に流れ込ん
で集熱する。集熱器1で加熱された熱媒は貯湯槽5の熱
交換器4に流れ込む。そして貯湯槽5内の水との間で熱
交換を行い水を加熱する。この加熱を継続することによ
りお湯の温度は上昇し、測定温度の差Tdは小さくな
る。測定温度の差Tdが4℃以下になるとポンプ2をオ
フさせて熱媒の循環を停止させ水の加熱を止める。
When the difference Td in the measured temperature becomes 7 ° C. or more and the pump 2 is turned on, the heat medium flows into the heat collector 1 and collects heat. The heat medium heated by the heat collector 1 flows into the heat exchanger 4 of the hot water storage tank 5. Then, heat exchange is performed between the water in the hot water storage tank 5 and the water is heated. By continuing this heating, the temperature of the hot water rises, and the difference Td between the measured temperatures decreases. When the difference Td in the measured temperature becomes 4 ° C. or less, the pump 2 is turned off to stop the circulation of the heat medium and stop the heating of the water.

【0008】[0008]

【発明が解決しようとする課題】しかしこのような構成
の装置によれば、熱交換器4が貯湯槽5内の下部に設け
られているために、貯湯槽5の内部に充填されている水
全体を加熱昇温することになり、冬季や曇りの日など日
射の弱い日には、ぬるいお湯しか得られず、ボイラーな
どによる補助的な加熱昇温が必要になる。
However, according to the apparatus having such a configuration, since the heat exchanger 4 is provided at the lower part in the hot water tank 5, the water filled in the hot water tank 5 is not filled. The entire system is heated and heated, so that only lukewarm water can be obtained on days with low solar radiation such as winter and cloudy days, and auxiliary heating and heating by a boiler or the like is required.

【0009】また、お湯の使用量が少ない場合には、エ
ネルギーを有効に利用できないという問題もある。これ
ら従来装置の問題点を計算例で示すと以下のようにな
る。
Also, when the amount of hot water used is small, there is a problem that energy cannot be used effectively. The problems of these conventional devices are shown below by calculation examples.

【0010】まず天候は曇り、日射量は2000kcal/
2 、集熱器は1.82m2×3枚=5.46m2 、集
熱効率50%、貯湯槽容積300リットル、給水温度1
5℃とする。この場合の貯湯槽5内の水の到達温度T
は、 T=15+(2000×5.46×0.5÷300) =15+18.2=33.2℃ となり、温度が低いため、ボイラーなどによる加熱が必
要になる。
First, the weather is cloudy, and the amount of solar radiation is 2000 kcal /
m 2, the heat collector is 1.82 m 2 × 3 sheets = 5.46m 2, the heat collection efficiency of 50% hot water tank volume 300 l, feed water temperature 1
5 ° C. Attained temperature T of water in hot water storage tank 5 in this case
T = 15 + (2000 × 5.46 × 0.5 ÷ 300) = 15 + 18.2 = 33.2 ° C. Since the temperature is low, heating by a boiler or the like is required.

【0011】そして、この状況で100リットルのみ使
用した場合を想定すると、残りの200リットルは翌日
まで持ち越されるが、結局は放熱してしまうことから有
効利用には至らず、集熱したエネルギーを2/3を捨て
たことになるとともに、ボイラーによる無駄な加熱を行
ったことにもなる。
Assuming that only 100 liters are used in this situation, the remaining 200 liters are carried over until the next day. However, since the heat is eventually released, it cannot be used effectively. This means that / 3 was discarded, and unnecessary heating by the boiler was performed.

【0012】本発明はこのような観点に着目してなされ
たものであり、曇りの日でも十分な温度のお湯が得ら
れ、お湯の使用量が少なくてもエネルギーを無駄なく利
用できる太陽熱利用給湯装置を提供することを目的とす
る。
The present invention has been made in view of such a point of view, and it is possible to obtain hot water having a sufficient temperature even on a cloudy day, and to use energy without waste even if the amount of hot water used is small. It is intended to provide a device.

【0013】[0013]

【課題を解決するための手段】上述の目的を達成する本
発明のうち請求項1記載の発明は、太陽熱集熱器と貯湯
槽内に配置された熱交換器との間で熱媒を循環させ、貯
湯槽内の水を加熱するように構成した密閉循環型の太陽
熱利用給湯装置において、前記貯湯槽の内部を上下方向
に分割して加熱できるように、前記貯湯槽内に複数の熱
交換器を上下方向に並べて設けるとともに、前記貯湯槽
内の分割領域のうちの上部領域を優先して加熱するよう
に、前記熱交換器の少なくとも一つを選択しその熱交換
器に熱媒を供給することを特徴とするものである。
Means for Solving the Problems According to the first aspect of the present invention which achieves the above object, a heat medium is circulated between a solar heat collector and a heat exchanger disposed in a hot water storage tank. In a closed-circulation solar hot water supply device configured to heat water in the hot water tank, a plurality of heat exchanges are provided in the hot water tank so that the inside of the hot water tank can be divided and heated in the vertical direction. In order to heat the upper region of the divided regions in the hot water tank preferentially while supplying the heat medium to the heat exchanger, at least one of the heat exchangers is selected and the heat medium is supplied to the heat exchanger. It is characterized by doing.

【0014】このような構成において、貯湯槽内の高温
の範囲は、内部の湯温の上昇に伴って上部領域から下部
領域へと段階的に広がる。これにより、曇りの日は貯湯
槽内の上部だけを加熱することになり、曇りの日でも全
体を加熱していた従来構成と比較して十分な温度のお湯
を得ることができる。
In such a configuration, the range of the high temperature in the hot water tank gradually increases from the upper region to the lower region as the temperature of the hot water inside rises. As a result, only the upper part in the hot water tank is heated on a cloudy day, and hot water with a sufficient temperature can be obtained as compared with the conventional configuration in which the entire structure is heated even on a cloudy day.

【0015】上述の目的を達成する本発明のうち請求項
2記載の発明は、太陽熱集熱器と貯湯槽内に配置された
熱交換器との間で熱媒を循環させ、貯湯槽内の水を加熱
するように構成した密閉循環型の太陽熱利用給湯装置に
おいて、太陽熱集熱器と貯湯槽内に配置された熱交換器
との間で熱媒を循環させポンプと、前記貯湯槽内に、内
部を上下方向に分割して加熱するように、上下方向に並
べて設けられた複数の熱交換器と、これら各熱交換器へ
の熱媒の供給を選択的に制御するバルブと、前記太陽熱
集熱器の出口側の熱媒の温度を測定する第1温度センサ
ーと、前記各熱交換器近傍の水温を測定する複数の第2
温度センサーと、前記第1温度センサーの出力信号に基
づき熱媒の循環を開始させるとともに、前記貯湯槽内の
分割領域のうちの上部領域を優先して加熱するように、
前記第2温度センサーの出力信号に基づいて、前記各バ
ルブを開閉制御する制御器と、を設けたことを特徴とす
るものである。
According to a second aspect of the present invention which achieves the above object, a heat medium is circulated between a solar heat collector and a heat exchanger disposed in a hot water tank, and In a closed-circulation solar hot water supply device configured to heat water, a pump that circulates a heat medium between a solar heat collector and a heat exchanger disposed in a hot water storage tank, and a pump in the hot water storage tank A plurality of heat exchangers arranged in the vertical direction so as to heat the interior by dividing the inside in the vertical direction, a valve for selectively controlling the supply of the heat medium to each of the heat exchangers, A first temperature sensor that measures the temperature of the heat medium at the outlet side of the heat collector, and a plurality of second temperature sensors that measure the water temperature near each of the heat exchangers.
A temperature sensor, and to start circulation of the heat medium based on the output signal of the first temperature sensor, so as to preferentially heat the upper region of the divided regions in the hot water tank,
A controller that controls the opening and closing of each of the valves based on an output signal of the second temperature sensor.

【0016】このような構成において、制御器は、第
1,第2温度センサーの出力信号に基づいて、貯湯槽内
の上部に配置された熱交換器から下部に配置された熱交
換器へと、熱交換器を切り替えて熱媒を流すように各バ
ルブを開閉制御する。
In such a configuration, the controller changes the heat exchanger disposed in the upper part of the hot water storage tank to the heat exchanger disposed in the lower part based on the output signals of the first and second temperature sensors. Each valve is opened and closed so that the heat exchanger is switched so that the heat medium flows.

【0017】これにより、貯湯槽内の上部に配置された
熱交換器に熱媒が流れ、最初は貯湯槽内の上部領域だけ
が加熱されることになる。貯湯槽内の上部領域の加熱が
終わるとこれに続いて下部に配置された熱交換器に熱媒
が流れることになり、最終的には、貯湯槽内全体が加熱
されることになる。
As a result, the heat medium flows through the heat exchanger disposed in the upper portion of the hot water tank, and only the upper region in the hot water tank is heated at first. When the heating of the upper region in the hot water storage tank is completed, the heat medium subsequently flows to the heat exchanger disposed at the lower portion, and finally the entire inside of the hot water storage tank is heated.

【0018】ここで、バルブとして三方バルブを用いれ
ば、複数のバルブを組み合わせて流路の切り換えを行う
構成に比べて切換制御が容易になり、システム構成を簡
略化できる。
Here, if a three-way valve is used as a valve, switching control becomes easier and a system configuration can be simplified as compared with a configuration in which a plurality of valves are combined to switch a flow path.

【0019】上述の目的を達成する本発明のうち請求項
3記載の発明は、請求項2記載の太陽熱利用給湯装置に
おいて、複数の熱交換器を並列に接続し、バルブの開閉
により任意の熱交換器を選択して、熱媒を供給すること
を特徴とするものである。
According to a third aspect of the present invention which achieves the above object, in the solar water heating apparatus according to the second aspect, a plurality of heat exchangers are connected in parallel, and an arbitrary heat is opened and closed by opening and closing a valve. The heat exchanger is supplied by selecting an exchanger.

【0020】これにより、貯湯槽内に配置された上部お
よび下部の熱交換器に個別に熱媒を流すことができ、貯
湯槽内の温度制御を個別に行える。上述の目的を達成す
る本発明のうち請求項4記載の発明は、請求項2記載の
太陽熱利用給湯装置において、複数の熱交換器を直列に
接続するとともに、少なくとも一つの熱交換器にはこれ
と並列の熱媒のバイパスを設け、バルブの開閉により任
意の熱交換器を選択して、熱媒を供給することを特徴と
するものである。
Thus, the heat medium can be individually flowed through the upper and lower heat exchangers disposed in the hot water tank, and the temperature in the hot water tank can be individually controlled. According to a fourth aspect of the present invention, which achieves the above object, in the solar water heating apparatus according to the second aspect, a plurality of heat exchangers are connected in series, and at least one heat exchanger is connected to the heat exchanger. A heat medium bypass is provided in parallel with the above, and an arbitrary heat exchanger is selected by opening and closing a valve to supply the heat medium.

【0021】これにより、貯湯槽内に配置された上部の
熱交換器を通った後の熱媒を、下部の熱交換器に流すこ
と等が可能になり、貯湯槽内を効率的に加熱することも
可能になる。
This makes it possible to flow the heat medium after passing through the upper heat exchanger disposed in the hot water tank to the lower heat exchanger, etc., thereby efficiently heating the hot water tank. It becomes possible.

【0022】上述の目的を達成する本発明のうち請求項
5記載の発明は、太陽熱集熱器と貯湯槽内に配置された
熱交換器との間で熱媒を循環させ、貯湯槽内の水を加熱
するように構成した密閉循環型の太陽熱利用給湯装置に
おいて、太陽熱集熱器と貯湯槽内に配置された熱交換器
との間で熱媒を循環させポンプと、前記貯湯槽内に設け
られた熱交換器と、前記太陽熱集熱器の出口側の熱媒の
温度を測定する第1温度センサーと、前記熱交換器近傍
の水温を測定する第2温度センサーと、前記第1温度セ
ンサーによる測定温度と前記第2温度センサーによる測
定温度の差温が一定になるように前記ポンプによるの熱
媒の循環速度を制御する制御器と、を設けたことを特徴
とするものである。
According to a fifth aspect of the present invention, which achieves the above object, the heat medium is circulated between a solar heat collector and a heat exchanger disposed in a hot water storage tank. In a closed-circulation solar hot water supply device configured to heat water, a pump that circulates a heat medium between a solar heat collector and a heat exchanger disposed in a hot water storage tank, and a pump in the hot water storage tank A heat exchanger provided, a first temperature sensor for measuring a temperature of a heat medium on an outlet side of the solar heat collector, a second temperature sensor for measuring a water temperature near the heat exchanger, and the first temperature. A controller for controlling a circulation speed of the heat medium by the pump so that a difference between a temperature measured by the sensor and a temperature measured by the second temperature sensor becomes constant.

【0023】これにより、貯湯槽内の水と熱媒の温度差
を大きくとることができ、より高い熱交換性能を維持で
きる。
Thus, the temperature difference between the water in the hot water storage tank and the heat medium can be increased, and higher heat exchange performance can be maintained.

【0024】[0024]

【発明の実施の形態】以下図面を用いて本発明の実施の
形態例を説明する。図1は本発明に基づく太陽熱利用給
湯装置の実施の形態例を示す構成説明図であり、図3と
共通する部分には同一の符号を付けてそれらの再説明は
省略する。図において、貯湯槽5内には内部を上下方向
にほぼ等分割して加熱できるように3個の熱交換器1
2,13,14が設けられている。これら各熱交換器1
2,13,14の近傍にはお湯の温度を測定するための
第2温度センサー15,16,17が設けられている。
これら第2温度センサー15,16,17の測定信号は
制御器11に入力されている。各熱交換器12,13,
14の出口は膨張槽3の入口に共通に接続されている。
熱交換器12の入口は三方バルブ18の一方の出口に接
続され、熱交換器13の入口は三方バルブ18の他方の
出口に接続されている。三方バルブ18の入口には三方
バルブ19の一方の出口が接続され、熱交換器14の入
口は三方バルブ19の他方の出口に接続されている。こ
れら三方バルブ18,19の流路は、第1,第2温度セ
ンサー6,15,16,17の出力信号に基づいて制御
器11により切換制御される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory diagram showing a configuration of an embodiment of a solar hot water supply apparatus according to the present invention. In FIG. 1, portions common to FIG. In the figure, three heat exchangers 1 are provided in a hot water storage tank 5 so that the inside of the hot water storage tank 5 can be heated substantially equally in the vertical direction.
2, 13, and 14 are provided. Each of these heat exchangers 1
In the vicinity of 2, 13, and 14, second temperature sensors 15, 16, and 17 for measuring the temperature of hot water are provided.
The measurement signals of the second temperature sensors 15, 16, 17 are input to the controller 11. Each heat exchanger 12, 13,
The outlet 14 is commonly connected to the inlet of the expansion tank 3.
The inlet of the heat exchanger 12 is connected to one outlet of the three-way valve 18, and the inlet of the heat exchanger 13 is connected to the other outlet of the three-way valve 18. One inlet of a three-way valve 19 is connected to the inlet of the three-way valve 18, and the inlet of the heat exchanger 14 is connected to the other outlet of the three-way valve 19. The flow paths of these three-way valves 18 and 19 are controlled by the controller 11 based on the output signals of the first and second temperature sensors 6, 15, 16 and 17.

【0025】すなわち、例えば貯湯槽5内のお湯の設定
温度を70℃とすると、第2温度センサー15の測定温
度が70℃以下の場合には熱交換器12のみに熱媒が流
れるように制御器11は三方バルブ18,19の流路を
切換制御する。これにより、熱交換器12は貯湯槽5内
の上部1/3を加熱昇温することになる。
That is, for example, assuming that the set temperature of the hot water in the hot water storage tank 5 is 70 ° C., when the temperature measured by the second temperature sensor 15 is 70 ° C. or less, control is performed such that the heat medium flows only into the heat exchanger 12. The switch 11 controls switching of the flow paths of the three-way valves 18 and 19. As a result, the heat exchanger 12 heats and heats the upper third of the inside of the hot water storage tank 5.

【0026】第2温度センサー15の測定温度が70℃
以上になると、熱交換器13のみに熱媒が流れるように
制御器11は三方バルブ18,19の流路を切換制御す
る。これにより、熱交換器13は貯湯槽5内の上部2/
3を加熱昇温することになる。
The temperature measured by the second temperature sensor 15 is 70 ° C.
As described above, the controller 11 switches and controls the flow paths of the three-way valves 18 and 19 so that the heat medium flows only through the heat exchanger 13. As a result, the heat exchanger 13 is placed in the upper 2 /
3 will be heated and heated.

【0027】第2温度センサー16の測定温度が70℃
以上になると、熱交換器14のみに熱媒が流れるように
制御器11は三方バルブ18,19の流路を切換制御す
る。これにより、熱交換器14は貯湯槽5内部全体を加
熱昇温することになる。
The temperature measured by the second temperature sensor 16 is 70 ° C.
As described above, the controller 11 switches and controls the flow paths of the three-way valves 18 and 19 so that the heat medium flows only through the heat exchanger 14. Thus, the heat exchanger 14 heats and raises the temperature of the entire inside of the hot water storage tank 5.

【0028】制御器11は第1温度センサー6の測定温
度と第2温度センサー15,16,17との測定温度の
差Tdに基づいてポンプ2のオン・オフ制御も行う。例
えば熱交換器12のみに熱媒が流れる状態において、第
1温度センサー6の測定温度と第2温度センサー15の
測定温度との差が例えば7℃以上(7℃≦Td)のとき
にポンプ2をオンにし、測定温度の差Tdが例えば4℃
以下(4℃≧Td)のときにポンプ2をオフにする。以
下同様に、熱交換器13のみに熱媒が流れる状態では第
1温度センサー6の測定温度と第2温度センサー16の
測定温度との差に基づいてポンプ2のオン・オフ制御を
行い、熱交換器14のみに熱媒が流れる状態では第1温
度センサー6の測定温度と第2温度センサー17の測定
温度との差に基づいてポンプ2のオン・オフ制御を行
う。
The controller 11 also performs on / off control of the pump 2 based on the difference Td between the temperature measured by the first temperature sensor 6 and the temperature measured by the second temperature sensors 15, 16 and 17. For example, in a state where the heat medium flows only through the heat exchanger 12, when the difference between the measured temperature of the first temperature sensor 6 and the measured temperature of the second temperature sensor 15 is, for example, 7 ° C. or more (7 ° C. ≦ Td), the pump 2 Is turned on, and the difference Td in the measured temperature
The pump 2 is turned off when (4 ° C. ≧ Td). Similarly, in a state where the heat medium flows only in the heat exchanger 13, the on / off control of the pump 2 is performed based on the difference between the measured temperature of the first temperature sensor 6 and the measured temperature of the second temperature sensor 16, and In a state where the heat medium flows only in the exchanger 14, the on / off control of the pump 2 is performed based on the difference between the measured temperature of the first temperature sensor 6 and the measured temperature of the second temperature sensor 17.

【0029】このように構成される本発明装置の到達水
温を計算例で示すと以下のようになる。なお従来と同様
に天候は曇り、日射量は2000kcal/m2 、集熱器は
1.82m2×3枚=5.46m2 、集熱効率50%、
貯湯槽容積300リットル、給水温度15℃とする。た
だし、本発明装置では貯湯槽5内の上部1/3を加熱昇
温させるものとする。この場合の到達温度Tは、次式の
ように計算される。
A calculation example of the attained water temperature of the apparatus of the present invention thus configured is as follows. Note similarly to the conventional weather cloudy, solar radiation 2000 kcal / m 2, heat collector is 1.82 m 2 × 3 sheets = 5.46m 2, the heat collection efficiency of 50%
The capacity of the hot water tank is 300 liters and the water supply temperature is 15 ° C. However, in the apparatus of the present invention, the upper third of the hot water tank 5 is heated and heated. The attained temperature T in this case is calculated as in the following equation.

【0030】 T=15+(2000×5.46×0.5÷100) =15+54.6=69.6℃ よって、ボイラーなどによる加熱が不要な温度に到達す
ることになる。そして、この状況で100リットルのみ
使用した場合を想定すると、加熱昇温させた分だけを使
用することから、エネルギーを有効利用できることにな
る。
T = 15 + (2000 × 5.46 × 0.5 ÷ 100) = 15 + 54.6 = 69.6 ° C. Therefore, a temperature at which heating by a boiler or the like is unnecessary is reached. In this situation, assuming that only 100 liters are used, since only the heated and heated portion is used, energy can be effectively used.

【0031】図2は本発明に基づく太陽熱利用給湯装置
の他の実施の形態例を示す構成説明図であり、図1と共
通する部分には同一の符号を付けてそれらの再説明は省
略する。図2の形態例では、熱交換器12,13,14
は直列接続されている。すなわち熱交換器12の出口は
膨張槽3に接続され、熱交換器12の入口は三方バルブ
18の一方の出口に接続されるとともに熱交換器13の
出口に接続され、熱交換器13の入口は三方バルブ19
の一方の出口に接続されるとともに熱交換器14の出口
に接続され、熱交換器14の入口は三方バルブ19の他
方の出口に接続されている。三方バルブ18の入口は集
熱器1の出口に接続され、三方バルブ18の他方の出口
は三方バルブ19の入口に接続されている。これら三方
バルブ18,19の流路は、第1,第2温度センサー
6,15,16,17の出力信号に基づいて制御器11
により切換制御される。
FIG. 2 is an explanatory view showing the configuration of another embodiment of the solar hot water supply apparatus according to the present invention. In FIG. 2, parts common to those in FIG. . In the embodiment of FIG. 2, the heat exchangers 12, 13, 14
Are connected in series. That is, the outlet of the heat exchanger 12 is connected to the expansion tank 3, the inlet of the heat exchanger 12 is connected to one outlet of the three-way valve 18, and the outlet of the heat exchanger 13. Is a three-way valve 19
Is connected to the outlet of the heat exchanger 14, and the inlet of the heat exchanger 14 is connected to the other outlet of the three-way valve 19. The inlet of the three-way valve 18 is connected to the outlet of the heat collector 1, and the other outlet of the three-way valve 18 is connected to the inlet of the three-way valve 19. The flow paths of these three-way valves 18, 19 are controlled by the controller 11 based on the output signals of the first and second temperature sensors 6, 15, 16, 17.
The switching is controlled by.

【0032】すなわち、例えば貯湯槽5内のお湯の設定
温度を70℃とすると、第2温度センサー15の測定温
度が70℃以下の場合には熱交換器12のみに熱媒が流
れるように制御器11は三方バルブ18の流路を切換制
御する。これにより、熱交換器12は貯湯槽5内の上部
1/3を加熱昇温することになる。
That is, for example, when the set temperature of the hot water in the hot water storage tank 5 is 70 ° C., when the temperature measured by the second temperature sensor 15 is 70 ° C. or less, control is performed such that the heat medium flows only into the heat exchanger 12. The switch 11 controls switching of the flow path of the three-way valve 18. As a result, the heat exchanger 12 heats and heats the upper third of the inside of the hot water storage tank 5.

【0033】第2温度センサー15の測定温度が70℃
以上になると、熱交換器12,13に熱媒が流れるよう
に制御器11は三方バルブ18,19の流路を切換制御
する。これにより、熱交換器12,13は貯湯槽5内の
上部2/3を加熱昇温することになる。
The temperature measured by the second temperature sensor 15 is 70 ° C.
As described above, the controller 11 switches and controls the flow paths of the three-way valves 18 and 19 so that the heat medium flows through the heat exchangers 12 and 13. Thus, the heat exchangers 12 and 13 heat and heat the upper 2/3 of the hot water storage tank 5.

【0034】温度センサー16の測定温度が70℃以上
になると、すべての熱交換器12,13,14に熱媒が
流れるように制御器11は三方バルブ18,19の流路
を切換制御する。これにより、熱交換器12,13,1
4は貯湯槽5内部全体を加熱昇温することになる。
When the temperature measured by the temperature sensor 16 becomes 70 ° C. or more, the controller 11 controls the flow paths of the three-way valves 18 and 19 so that the heat medium flows through all the heat exchangers 12, 13 and 14. Thereby, the heat exchangers 12, 13, 1
Reference numeral 4 indicates that the entire inside of the hot water storage tank 5 is heated and heated.

【0035】制御器11は第1温度センサー6の測定温
度と第2温度センサー15,16,17との測定温度の
差Tdに基づいてポンプ2のオン・オフ制御も行う。例
えば熱交換器12のみに熱媒が流れる状態において、第
1温度センサー6の測定温度と第2温度センサー15の
測定温度との差が例えば7℃以上(7℃≦Td)のとき
にポンプ2をオンにし、測定温度の差Tdが例えば4℃
以下(4℃≧Td)のときにポンプ2をオフにする。以
下同様に、熱交換器12,13に熱媒が流れる状態では
第1温度センサー6の測定温度と第2温度センサー16
の測定温度との差に基づいてポンプ2のオン・オフ制御
を行い、熱交換器12,13,14に熱媒が流れる状態
では第1温度センサー6の測定温度と第2温度センサー
17の測定温度との差に基づいてポンプ2のオン・オフ
制御を行う。そして第2温度センサー15,16,17
は常に温度を感知していて、15→16→17の順で優
先的に上方で熱交換させる。例えば熱交換器14に熱媒
を流しているときに第2温度センサー15の測定温度が
70℃以下になったら熱交換器12に熱媒を流すように
する。
The controller 11 also performs on / off control of the pump 2 based on the difference Td between the temperature measured by the first temperature sensor 6 and the temperature measured by the second temperature sensors 15, 16 and 17. For example, in a state where the heat medium flows only through the heat exchanger 12, when the difference between the measured temperature of the first temperature sensor 6 and the measured temperature of the second temperature sensor 15 is, for example, 7 ° C. or more (7 ° C. ≦ Td), the pump 2 Is turned on, and the difference Td in the measured temperature
The pump 2 is turned off when (4 ° C. ≧ Td). Similarly, when the heat medium flows through the heat exchangers 12 and 13, the measured temperature of the first temperature sensor 6 and the second temperature sensor 16
The on / off control of the pump 2 is performed based on the difference between the measured temperature and the measured temperature of the first temperature sensor 6 and the measured temperature of the second temperature sensor 17 when the heat medium flows through the heat exchangers 12, 13, and 14. On / off control of the pump 2 is performed based on the difference from the temperature. And the second temperature sensors 15, 16, 17
Always senses the temperature and preferentially exchanges heat upward in the order of 15 → 16 → 17. For example, when the temperature measured by the second temperature sensor 15 becomes 70 ° C. or less while the heat medium is flowing through the heat exchanger 14, the heat medium is caused to flow through the heat exchanger 12.

【0036】なお上記各形態例ではポンプ2をオン・オ
フ制御するものとして説明したが、差温が小さいと貯湯
槽5内でお湯と熱媒の温度差が小さくなるために熱交換
性能が低下してしまうという問題がある。このような問
題の対策としては、一定差温以上を保持するようにポン
プ2の回転数を制御器11で制御すればよい。例えば差
温設定を7℃以上8℃以下の値に選び、差温5℃のとき
はポンプ2の回転数を下げて熱媒の温度を上昇させ、差
温が設定値に近づくように制御する。
In the above embodiments, the pump 2 is controlled to be turned on and off. However, if the temperature difference is small, the temperature difference between the hot water and the heat medium in the hot water tank 5 becomes small, so that the heat exchange performance deteriorates. There is a problem of doing it. As a countermeasure against such a problem, the controller 11 may control the rotation speed of the pump 2 so as to maintain a temperature difference equal to or higher than a certain value. For example, the differential temperature setting is selected to a value of 7 ° C. or more and 8 ° C. or less, and when the differential temperature is 5 ° C., the rotation speed of the pump 2 is decreased to increase the temperature of the heating medium, and control is performed so that the differential temperature approaches the set value. .

【0037】これにより、貯湯槽5内のお湯と熱媒の温
度差を一定以上大きくとれるため、高い熱交換性能を維
持できることになる。また、上記各形態例では貯湯槽5
内に3個の熱交換器を設ける例を説明したが、3個に限
るものではなく、2個でもよいし4個以上でもよい。
As a result, the temperature difference between the hot water in the hot water storage tank 5 and the heat medium can be made larger than a certain value, so that high heat exchange performance can be maintained. In each of the above embodiments, the hot water tank 5
Although an example in which three heat exchangers are provided is described, the number is not limited to three, and may be two or four or more.

【0038】また貯湯槽5内の容積は300リットルに
限るものではなく、用途に応じてこれよりも大きくても
よいし小さくてもよい。熱媒は凍結の恐れがなければ水
を用いてもよい。
The volume in the hot water storage tank 5 is not limited to 300 liters, but may be larger or smaller depending on the application. Water may be used as the heat medium if there is no fear of freezing.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
曇りの日でも十分な温度のお湯が得られ、お湯の使用量
が少なくてもエネルギーを無駄なく利用できる太陽熱利
用給湯装置を提供することができる。
As described above, according to the present invention,
Hot water at a sufficient temperature can be obtained even on a cloudy day, and a solar hot water supply device that can use energy without waste even when the amount of hot water used is small can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に基づく太陽熱利用給湯装置の実施の形
態例を示す構成説明図である。
FIG. 1 is a configuration explanatory view showing an embodiment of a solar hot water supply apparatus according to the present invention.

【図2】本発明に基づく太陽熱利用給湯装置の他の実施
の形態例を示す構成説明図である。
FIG. 2 is a configuration explanatory view showing another embodiment of a solar water heating water heater according to the present invention.

【図3】密閉循環型の太陽熱利用給湯装置の従来の一例
を示す構成説明図である。
FIG. 3 is a configuration explanatory view showing a conventional example of a closed-circulation type solar hot water supply apparatus.

【符号の説明】[Explanation of symbols]

1 集熱器 2 ポンプ 3 膨張槽 5 貯湯槽 7 給水管 9 給湯管 11 制御器 12,13,14 熱交換器 6,15,16,17 温度センサー 18,19 三方バルブ DESCRIPTION OF SYMBOLS 1 Heat collector 2 Pump 3 Expansion tank 5 Hot water storage tank 7 Water supply pipe 9 Hot water supply pipe 11 Controller 12,13,14 Heat exchanger 6,15,16,17 Temperature sensor 18,19 Three-way valve

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 太陽熱集熱器と貯湯槽内に配置された熱
交換器との間で熱媒を循環させ、貯湯槽内の水を加熱す
るように構成した密閉循環型の太陽熱利用給湯装置にお
いて、 前記貯湯槽の内部を上下方向に分割して加熱できるよう
に、前記貯湯槽内に複数の熱交換器を上下方向に並べて
設けるとともに、前記貯湯槽内の分割領域のうちの上部
領域を優先して加熱するように、前記熱交換器の少なく
とも一つを選択しその熱交換器に熱媒を供給することを
特徴とする太陽熱利用給湯装置。
1. A closed-circulation solar hot water supply device configured to circulate a heat medium between a solar heat collector and a heat exchanger disposed in a hot water tank to heat water in the hot water tank. In the hot water tank, a plurality of heat exchangers are vertically arranged in the hot water tank so that the inside of the hot water tank can be divided and heated in the vertical direction. A solar hot water supply apparatus characterized in that at least one of the heat exchangers is selected and a heat medium is supplied to the heat exchanger so that the heat exchanger is preferentially heated.
【請求項2】 太陽熱集熱器と貯湯槽内に配置された熱
交換器との間で熱媒を循環させ、貯湯槽内の水を加熱す
るように構成した密閉循環型の太陽熱利用給湯装置にお
いて、 太陽熱集熱器と貯湯槽内に配置された熱交換器との間で
熱媒を循環させポンプと、 前記貯湯槽内に、内部を上下方向に分割して加熱するよ
うに、上下方向に並べて設けられた複数の熱交換器と、 これら各熱交換器への熱媒の供給を選択的に制御するバ
ルブと、 前記太陽熱集熱器の出口側の熱媒の温度を測定する第1
温度センサーと、 前記各熱交換器近傍の水温を測定する複数の第2温度セ
ンサーと、 前記第1温度センサーの出力信号に基づき熱媒の循環を
開始させるとともに、前記貯湯槽内の分割領域のうちの
上部領域を優先して加熱するように、前記第2温度セン
サーの出力信号に基づいて、前記各バルブを開閉制御す
る制御器と、を設けたことを特徴とする太陽熱利用給湯
装置。
2. A closed-circulation solar hot water supply device configured to circulate a heat medium between a solar heat collector and a heat exchanger disposed in a hot water tank to heat water in the hot water tank. In the pump, a heat medium is circulated between a solar heat collector and a heat exchanger disposed in the hot water storage tank, and the inside of the hot water storage tank is heated by dividing the inside in the vertical direction. A plurality of heat exchangers arranged side by side, a valve for selectively controlling the supply of the heat medium to each of these heat exchangers, and a first for measuring the temperature of the heat medium on the outlet side of the solar heat collector
A temperature sensor, a plurality of second temperature sensors for measuring the water temperature near each of the heat exchangers, and a circulation of a heat medium based on an output signal of the first temperature sensor is started, and a divided region in the hot water storage tank is formed. A controller for controlling the opening and closing of each of the valves based on an output signal of the second temperature sensor so as to preferentially heat the upper area of the hot water supply apparatus.
【請求項3】 前記複数の熱交換器を並列に接続し、前
記バルブの開閉により任意の熱交換器を選択して、熱媒
を供給することを特徴とする請求項2記載の太陽熱利用
給湯装置。
3. The solar hot water supply according to claim 2, wherein the plurality of heat exchangers are connected in parallel, and an arbitrary heat exchanger is selected by opening and closing the valve to supply a heat medium. apparatus.
【請求項4】 前記複数の熱交換器を直列に接続すると
ともに、少なくとも一つの熱交換器にはこれと並列の熱
媒のバイパスを設け、前記バルブの開閉により任意の熱
交換器を選択して、熱媒を供給することを特徴とする請
求項2記載の太陽熱利用給湯装置。
4. A plurality of heat exchangers are connected in series, and at least one heat exchanger is provided with a bypass of a heat medium in parallel with the plurality of heat exchangers, and an arbitrary heat exchanger is selected by opening and closing the valve. 3. The hot water supply system utilizing solar heat according to claim 2, wherein the heating medium is supplied.
【請求項5】 太陽熱集熱器と貯湯槽内に配置された熱
交換器との間で熱媒を循環させ、貯湯槽内の水を加熱す
るように構成した密閉循環型の太陽熱利用給湯装置にお
いて、 太陽熱集熱器と貯湯槽内に配置された熱交換器との間で
熱媒を循環させポンプと、 前記貯湯槽内に設けられた熱交換器と、 前記太陽熱集熱器の出口側の熱媒の温度を測定する第1
温度センサーと、 前記熱交換器近傍の水温を測定する第2温度センサー
と、 前記第1温度センサーによる測定温度と前記第2温度セ
ンサーによる測定温度の差温が一定になるように前記ポ
ンプによるの熱媒の循環速度を制御する制御器と、を設
けたことを特徴とする太陽熱利用給湯装置。
5. A closed-circulation solar hot water supply device configured to circulate a heat medium between a solar heat collector and a heat exchanger disposed in a hot water tank to heat water in the hot water tank. In the pump, a heat medium is circulated between a solar heat collector and a heat exchanger arranged in a hot water tank, a pump, a heat exchanger provided in the hot water tank, and an outlet side of the solar heat collector. Measuring the temperature of the heating medium
A temperature sensor; a second temperature sensor for measuring a water temperature in the vicinity of the heat exchanger; and the pump so that a temperature difference between the temperature measured by the first temperature sensor and the temperature measured by the second temperature sensor is constant. A controller for controlling the circulation speed of the heat medium, comprising: a controller for controlling the circulation speed of the heat medium.
JP10006563A 1998-01-16 1998-01-16 Hot water supply apparatus utilizing solar heat Pending JPH11201559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10006563A JPH11201559A (en) 1998-01-16 1998-01-16 Hot water supply apparatus utilizing solar heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10006563A JPH11201559A (en) 1998-01-16 1998-01-16 Hot water supply apparatus utilizing solar heat

Publications (1)

Publication Number Publication Date
JPH11201559A true JPH11201559A (en) 1999-07-30

Family

ID=11641812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10006563A Pending JPH11201559A (en) 1998-01-16 1998-01-16 Hot water supply apparatus utilizing solar heat

Country Status (1)

Country Link
JP (1) JPH11201559A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110048404A1 (en) * 2008-01-31 2011-03-03 Faith Louise Limited Heating system
US8037931B2 (en) * 2008-08-07 2011-10-18 Krassimire Mihaylov Penev Hybrid water heating system
KR101105561B1 (en) 2010-05-13 2012-01-17 주식회사 경동나비엔 Solar heat system
CN109028987A (en) * 2018-08-30 2018-12-18 中冶长天国际工程有限责任公司 Sintering machine and its heat dissipation recycling component and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110048404A1 (en) * 2008-01-31 2011-03-03 Faith Louise Limited Heating system
US8037931B2 (en) * 2008-08-07 2011-10-18 Krassimire Mihaylov Penev Hybrid water heating system
KR101105561B1 (en) 2010-05-13 2012-01-17 주식회사 경동나비엔 Solar heat system
WO2011142531A3 (en) * 2010-05-13 2012-01-19 주식회사 경동나비엔 Solar thermal system
CN102985763A (en) * 2010-05-13 2013-03-20 (株)庆东Navien公司 Solar thermal system
US9400122B2 (en) 2010-05-13 2016-07-26 Kyungdong Navien Co., Ltd. Solar thermal system
CN109028987A (en) * 2018-08-30 2018-12-18 中冶长天国际工程有限责任公司 Sintering machine and its heat dissipation recycling component and method

Similar Documents

Publication Publication Date Title
KR101836360B1 (en) A hybrid heat exchanger system using geothermal and solar thermal and Control method for this
CN109244505A (en) A kind of vehicle fuel battery heat management system and its control method
CN101793421B (en) Liquid circulation heating system
US4294227A (en) Apparatus for heating water by solar heat
WO1996009501A1 (en) Solar thermal storage apparatus and hot water supply system including same
JP5464195B2 (en) Solar-powered heat pump hot water supply system
JP2005147494A (en) Multi-temperature heat storage tank and heat storage system using the same
KR100364662B1 (en) heating and hot water providing system by sun and discounted night electricity and gas boiler
KR101527391B1 (en) Variable flow rate control solar heat system with coil contained heat storage tank
JPH11201559A (en) Hot water supply apparatus utilizing solar heat
JP6570874B2 (en) Heat storage system
KR20090111421A (en) Hot-water supply system using solar heat
JP2019052799A (en) Solar heat collecting system
JPS59150257A (en) Solar-heat collecting apparatus
JPH08152193A (en) Hot water supplying device
JP2002277053A (en) Hot-water recovery control device for co-generation system
JP6280787B2 (en) Cogeneration system
JP4631238B2 (en) Solar water heater
CN106533358A (en) Photovoltaic-thermal comprehensive utilization device capable of automatically adjusting driving power of circulating pump and control method
JP2012180962A (en) Water heater system having hot water storage tank with auxiliary heat source
JPH1137570A (en) Hybrid solar energy utilization device
JPH07234020A (en) Hybrid type solar system
JPH1151499A (en) Solar heat utilizing hot water supply system
JP2006105546A (en) Hot water storage type hot water supply device using photovoltaic power generation panel
JP2001004230A (en) Solar heat utilizing thermal storage apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060328