JPH11200052A - Chemical vapor phase growth apparatus - Google Patents

Chemical vapor phase growth apparatus

Info

Publication number
JPH11200052A
JPH11200052A JP1776998A JP1776998A JPH11200052A JP H11200052 A JPH11200052 A JP H11200052A JP 1776998 A JP1776998 A JP 1776998A JP 1776998 A JP1776998 A JP 1776998A JP H11200052 A JPH11200052 A JP H11200052A
Authority
JP
Japan
Prior art keywords
substrate
raw material
gas
perforated plate
shielding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1776998A
Other languages
Japanese (ja)
Inventor
Toru Matsunami
徹 松浪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP1776998A priority Critical patent/JPH11200052A/en
Publication of JPH11200052A publication Critical patent/JPH11200052A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains

Abstract

PROBLEM TO BE SOLVED: To improve the utilization efficiency of raw material of a CVD apparatus which ejects the gaseous raw material from a perforated plate toward a substrate. SOLUTION: The circumference of the perforated plate 4 of a raw material introducing pipe 7 for injecting the raw material to the substrate 1 is provided with a cylindrical shielding plate 10 enclosing the same. The bottom end of the shielding plate exists in the position more proximate to the substrate than the perforated plate. A purge gas 5 is passed in the space between the perforated plate of the raw material introducing pipe and the shielding plate to push the gaseous raw material 3 to the center of the substrate and to prevent the contact thereof with the shielding plate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、Si半導体や化合
物半導体デバイス分野における薄膜形成のための化学的
気相成長装置の改良に関する。特に大面積の基板に薄膜
形成するための化学的気相成長装置において原料ガス消
費効率を高めるための工夫に関する。ここで基板と言う
のはガラス基板、Siウエハ、GaAsウエハ、InP
ウエハなど半導体基板を指している。大面積というのは
基板によって違うがSiウエハの場合は8インチ(20
cm)ウエハ以上のものを意味する。
The present invention relates to an improvement of a chemical vapor deposition apparatus for forming a thin film in the field of Si semiconductor and compound semiconductor devices. In particular, the present invention relates to a device for improving source gas consumption efficiency in a chemical vapor deposition apparatus for forming a thin film on a large-area substrate. Here, the substrate is a glass substrate, Si wafer, GaAs wafer, InP
Refers to a semiconductor substrate such as a wafer. The large area depends on the substrate, but in the case of a Si wafer, it is 8 inches (20 inches).
cm) means more than a wafer.

【0002】[0002]

【従来の技術】図2に化学的気相成長装置の概略を示
す。これは真空に引くことのできるCVD成長室の内部
構造だけを図示している。実際には外側に壁があるが省
略している。処理されるべき基板1が円盤状の支持台2
の上に戴置される。これは1枚のウエハだけを処理する
枚葉式の装置である。その他に複数の基板をひとつの支
持台の上に載せて一挙に処理する化学的気相成長装置も
ある。支持台2は回転軸6に固定され回転昇降できるよ
うになっている。支持台2の内部あるいは外部にヒ−タ
があって基板を加熱するようになっている。支持台内部
に加熱機構がある場合は内部加熱という。外部にある場
合は高周波加熱やランプ加熱になるがこれは外部加熱と
いう。ここでは加熱機構は図示していない。
2. Description of the Related Art FIG. 2 schematically shows a chemical vapor deposition apparatus. It shows only the internal structure of the CVD growth chamber which can be evacuated. Actually, there is a wall on the outside, but it is omitted. The substrate 1 to be processed is a disk-shaped support 2
Placed on top of This is a single-wafer apparatus that processes only one wafer. In addition, there is a chemical vapor deposition apparatus in which a plurality of substrates are placed on a single support and processed at once. The support base 2 is fixed to a rotating shaft 6 so that it can be rotated up and down. There is a heater inside or outside the support base 2 to heat the substrate. When there is a heating mechanism inside the support, it is called internal heating. If it is outside, it will be high-frequency heating or lamp heating, which is called external heating. Here, the heating mechanism is not shown.

【0003】支持台2のすぐ上にはこれに対向して原料
導入管7が設置される。原料導入管は下方が広がった円
形状になっており、ここに多数の原料排出口8を穿った
多孔板4が設けられる。原料排出口8の外側には外套管
9がある。
[0006] Immediately above the support 2, a raw material introduction pipe 7 is provided to face the support 2. The raw material introduction pipe has a circular shape with the lower part widened, and a perforated plate 4 having a large number of raw material discharge ports 8 is provided here. Outside the raw material discharge port 8 is a mantle tube 9.

【0004】基板の面積が狭い場合は原料導入口は一つ
である。基板面積が大きいと一つの原料排出口から基板
中心に向けて原料を吹き出させるようにした場合、原料
ガスの流速、圧力など基板と接触状態が基板上の位置に
よって相違して薄膜の膜厚、膜質にばらつきが生じる。
そこで多数の小孔を穿った多孔板から原料ガスを一様な
状態で基板に吹き付けるようにしているのである。多孔
板は基板より少し小さい直径を持っている。穴の配分は
基板に当たるガス量ができるだけ均一になるように決め
られる。
When the area of the substrate is small, there is only one raw material inlet. If the substrate area is large and the raw material is blown out from one raw material discharge port toward the center of the substrate, the contact state with the substrate such as the flow rate of the raw material gas, pressure, etc. differs depending on the position on the substrate, the thickness of the thin film, The film quality varies.
Therefore, the source gas is blown onto the substrate in a uniform state from a perforated plate having many small holes. The perforated plate has a slightly smaller diameter than the substrate. The distribution of holes is determined so that the amount of gas that strikes the substrate is as uniform as possible.

【0005】原料導入管7から原料となるガス3を多数
の原料排出口8を通して噴出する。原料ガス3は被処理
基板1に吹き付けられる。原料ガス3は加熱された基板
1上で分解され気相反応を起こし、生成物が薄膜として
基板上に堆積する。被処理基板1の面積が大きいほど処
理回数に対する半導体デバイスの収率が大きくなる。そ
のため被処理基板1の大面積化が進んでいる。Siウエ
ハの場合は通常20cm(8インチ)直径のものが使わ
れているが30cm径(12インチ)のSiウエハが検
討され一部実施されている。ガラス基板の場合はアモル
ファスSiなどの薄膜を生成するがその場合は1辺が5
0cm〜100cmの大きいガラス板を基板とする。G
aAsなどの化合物半導体の場合はSiより小さい直径
のものであるが、それでもウエハ(基板)が次第に大口
径化しつつある。
A gas 3 serving as a raw material is ejected from a raw material introduction pipe 7 through a number of raw material discharge ports 8. The source gas 3 is sprayed on the substrate 1 to be processed. The source gas 3 is decomposed on the heated substrate 1 to cause a gas phase reaction, and a product is deposited on the substrate as a thin film. The larger the area of the substrate 1 to be processed, the higher the yield of semiconductor devices with respect to the number of times of processing. Therefore, the area of the substrate to be processed 1 is increasing. In the case of Si wafers, those having a diameter of 20 cm (8 inches) are usually used, but Si wafers having a diameter of 30 cm (12 inches) have been studied and partially implemented. In the case of a glass substrate, a thin film of amorphous Si or the like is generated.
A large glass plate of 0 cm to 100 cm is used as a substrate. G
In the case of a compound semiconductor such as aAs, the diameter is smaller than that of Si, but the diameter of the wafer (substrate) is still increasing.

【0006】[0006]

【発明が解決しようとする課題】大面積の基板に対して
は、薄膜の面内の均一性を向上させるため、原料ガスは
通常多孔板を通して、基板に吹き付けるようにする事が
多い。多孔板より吹き出すようにすると薄膜の膜厚、膜
質など特性の均一性は向上する。しかし別の欠点があ
る。それは原料消費効率が低いという事である。
For a large-area substrate, the raw material gas is usually blown onto the substrate through a perforated plate in order to improve the in-plane uniformity of the thin film. When blown out from the perforated plate, the uniformity of characteristics such as the thickness and quality of the thin film is improved. But there are other disadvantages. That is, the raw material consumption efficiency is low.

【0007】多孔板端部より噴出する原料ガスBは中心
からの原料ガスCに押し出され、基板に到達する割合が
少なくなる。端部より出るガスBが無駄になり易い。た
めに原料の消費効率が低下する。例えばSiウエハの上
へのSi薄膜の成長には水素化物(SiH4 )と水素
(H2 )等が用いられる。水素はキャリヤガスである。
GaAs基板の上へのGaAs薄膜の成長にはアルシン
(AsH3 )とトリメチルガリウム(TMG:Ga(C
33 ))、水素(H2 )などが用いられる。何れも
高価な高純度のガスであるし危険物、毒物であるものも
ある。アルシンとTMGの場合はモル比にして後者が1
0倍〜50倍の量が必要である。基板の大面積化が進む
につれて原料ガスの使用量が多くなるから、消費効率を
向上させる事は大面積化学的気相成長にとって重要な課
題である。現在のところ原料消費効率は10%程度であ
る。つまりこの場合90%もの原料ガスが無駄になって
いる。高価な原料ガスの浪費を抑えることが緊喫の課題
であることがわかるであろう。
[0007] The source gas B ejected from the end of the perforated plate is pushed out from the center by the source gas C, and the ratio of reaching the substrate is reduced. The gas B emitted from the end tends to be wasted. As a result, the raw material consumption efficiency is reduced. For example, hydride (SiH 4 ) and hydrogen (H 2 ) are used for growing a Si thin film on a Si wafer. Hydrogen is the carrier gas.
For growing a GaAs thin film on a GaAs substrate, arsine (AsH 3 ) and trimethylgallium (TMG: Ga (C
H 3) 3)), hydrogen (H 2) are used. All are expensive high-purity gases, and some are dangerous or poisonous. In the case of arsine and TMG, the latter is 1 in molar ratio.
A volume of 0 to 50 times is required. Since the amount of source gas used increases as the area of the substrate increases, improving the consumption efficiency is an important issue for large-area chemical vapor deposition. At present, raw material consumption efficiency is about 10%. That is, in this case, as much as 90% of the source gas is wasted. It can be seen that reducing waste of expensive source gases is an urgent task.

【0008】[0008]

【課題を解決するための手段】本発明の化学的気相成長
装置は、真空に引く事のできる処理室の内部に原料ガス
を導き多数の原料排出口を穿孔した多孔板から原料ガス
を加熱された基板に向けて噴出し原料ガスが気相反応を
起こして基板の上に薄膜を生成するようにした化学的気
相成長装置において、原料排出口を有する多孔板の外側
に筒状(四角筒、円筒、六角筒など)の遮蔽板をその下
端が多孔板より基板に接近した位置に設け、多孔板と遮
蔽板との間の流路にパージ用のガスを流すようにしてい
る。
According to the chemical vapor deposition apparatus of the present invention, a source gas is introduced into a processing chamber which can be evacuated, and the source gas is heated from a perforated plate having a large number of source outlets. In a chemical vapor deposition apparatus in which a source gas is ejected toward a substrate subjected to a gas phase reaction to form a thin film on the substrate, a cylindrical (square) is formed outside a perforated plate having a source outlet. A shielding plate such as a cylinder, a cylinder, or a hexagonal cylinder is provided at a position where the lower end is closer to the substrate than the perforated plate, and a gas for purging flows through a flow path between the perforated plate and the shielding plate.

【0009】本発明の装置は、それゆえ、真空に引く事
のできるCVD処理室と、処理室の内部に設けられた基
板を戴置できる支持台と、基板を加熱する加熱機構と、
原料ガスを導入するため多数の原料排出口を穿設した多
孔板を含む原料導入機構と、多孔板の外側にこれを囲み
下端が多孔板より基板に接近しているように設けられる
筒状(四角筒、円筒、六角筒など)の遮蔽板と、遮蔽板
と多孔板の間の空間からパージガスを基板に向けて吹き
付ける機構よりなる。
The apparatus of the present invention therefore comprises a CVD processing chamber that can be evacuated, a support stand provided inside the processing chamber for mounting a substrate, a heating mechanism for heating the substrate,
A raw material introduction mechanism including a perforated plate having a plurality of raw material outlets for introducing a raw material gas, and a cylindrical shape provided outside the perforated plate so as to surround the perforated plate and have a lower end closer to the substrate than the perforated plate ( (A square tube, a cylinder, a hexagonal tube, etc.) and a mechanism for blowing a purge gas toward the substrate from a space between the shield plate and the perforated plate.

【0010】[0010]

【発明の実施の形態】支持台2は基板1の大きさに対応
した大きさを持つ。基板はSiの場合は20cm径ある
いは30cm径の大きいものである。基板に対向する原
料導入管の下端に設けられる多孔板は基板のサイズより
少し小さい。多孔板には多数の原料排出口が穿孔され
る。これは例えば2mm〜4mm程度の小さい直径の穴
である。多孔板を囲む遮蔽板は、その下端が多孔板より
下方に延びている。支持台は回転軸によって支持され
る。これは内部に加熱機構と持つ場合もあるし、外部加
熱される事もある。回転軸は回転し昇降できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The support 2 has a size corresponding to the size of the substrate 1. The substrate has a large diameter of 20 cm or 30 cm in the case of Si. The perforated plate provided at the lower end of the raw material introduction pipe facing the substrate is slightly smaller than the size of the substrate. A number of raw material outlets are perforated in the perforated plate. This is a hole having a small diameter of, for example, about 2 mm to 4 mm. The lower end of the shielding plate surrounding the perforated plate extends below the perforated plate. The support is supported by a rotating shaft. This may have a heating mechanism inside, or it may be externally heated. The rotating shaft can rotate and move up and down.

【0011】原料ガスは上方から反応室内の原料導入管
に入り、多孔板の原料排出口から噴出する。小さい穴で
あって圧力が掛かっているので原料ガスは下向きに出る
が中央部に噴出した原料ガスCが基板に当たって周辺部
に向けて進路を曲げる。それで周辺部に吹き出された原
料ガスBはより周辺に向けて押し出される。しかし遮蔽
板があり、これは多孔板より基板方向に突出している。
多孔板端部より排出された原料ガスBを押し止め、基板
方向に向かわせる。周辺部の原料排出口から出た原料ガ
スが基板側に戻り気相反応して薄膜になる可能性があ
る。だから原料の利用効率が高まる。
The raw material gas enters the raw material introduction pipe in the reaction chamber from above, and blows out from the raw material discharge port of the perforated plate. Since the pressure is applied to the small hole, the source gas flows downward, but the source gas C ejected to the center hits the substrate and bends toward the periphery. As a result, the raw material gas B blown out to the peripheral portion is pushed further toward the periphery. However, there is a shielding plate, which protrudes from the perforated plate toward the substrate.
The raw material gas B discharged from the end of the perforated plate is pressed down and directed toward the substrate. There is a possibility that the source gas discharged from the source outlet at the peripheral portion returns to the substrate side and undergoes a gas phase reaction to form a thin film. Therefore, the utilization efficiency of the raw materials increases.

【0012】しかし遮蔽板が加熱した基板に接近した位
置にあるため遮蔽板が加熱される。このままだと遮蔽板
にも膜堆積が行われる。これは無駄な事であるし堆積し
た膜が時に剥落し基板に落ちると欠陥を作ることにもな
ってしまう。これを防ぐ為に遮蔽板と多孔板との間にパ
ージ用ガスを流している。パージガスは周辺部を降下す
る原料ガスBが遮蔽板に接触するのを妨げる。ために遮
蔽板には膜が堆積しない。原料ガスを浪費せず基板上の
薄膜に欠陥が入るのを防ぐことができる。パージガスは
気相反応を起こさない不活性なガスであればよい。窒素
ガスや、希ガスなどを用いると良い。パージガスの流速
Pは、原料ガスの流速Gより速いと原料ガスの流れを乱
してしまう。それゆえパージガスの流速Pは原料ガスの
流速Gより低いものとする。P<Gである。例えば原料
ガスの原料排出口での流速が0.5m/s〜2m/sと
すると、パージガスの流速は0.2m/s〜1m/sと
半分程度にする。
However, since the shielding plate is located at a position close to the heated substrate, the shielding plate is heated. In this state, film deposition is performed on the shielding plate. This is wasteful, and the deposited film sometimes peels off and falls on the substrate, creating defects. To prevent this, a purge gas is supplied between the shielding plate and the perforated plate. The purge gas prevents the raw material gas B descending in the peripheral portion from contacting the shielding plate. Therefore, no film is deposited on the shielding plate. Defects can be prevented from entering the thin film on the substrate without wasting the source gas. The purge gas may be an inert gas that does not cause a gas phase reaction. It is preferable to use nitrogen gas, a rare gas, or the like. If the flow rate P of the purge gas is higher than the flow rate G of the source gas, the flow of the source gas is disturbed. Therefore, the flow rate P of the purge gas is lower than the flow rate G of the source gas. P <G. For example, if the flow velocity of the raw material gas at the raw material discharge port is 0.5 m / s to 2 m / s, the flow velocity of the purge gas is reduced to about half, from 0.2 m / s to 1 m / s.

【0013】[0013]

【実施例】図1に本発明の実施例を示す。処理室の内部
の構造のみを書き、処理室(反応室)の壁は図示を省略
している。CVD処理室は縦長の容器であって真空に引
く事ができる。原料ガスは気相反応し廃ガスは真空排気
装置によって排気される。簡単のため処理室や真空排気
装置の図示を略している。被処理基板1は、加熱構造を
有する支持台2によって水平に支持されている。加熱機
構は抵抗加熱であるがここでは図示しない。また外部か
らランプ加熱あるいは高周波加熱であっても良い。支持
台1の中央に1枚のウエハが載っている枚葉式のものを
示すが複数枚を一挙に処理するようにしても良い。支持
台1は回転軸6によって支えられ必要に応じて回転昇降
できる構造になっている。支持台1はカーボンなどで作
られSiCなどのコ−ティングがなされる。ヒ−タはや
はりカーボンであって支持台の内部にもうけられる。ヒ
−タは回転せず外側の回転軸6と支持台2だけが回転す
る。基板(ウエハ)1はSi、GaAs、ガラスなどで
ある。
FIG. 1 shows an embodiment of the present invention. Only the internal structure of the processing chamber is illustrated, and the processing chamber (reaction chamber) wall is not shown. The CVD processing chamber is a vertically long container and can be evacuated. The raw material gas undergoes a gas phase reaction, and the waste gas is exhausted by a vacuum exhaust device. For simplicity, illustration of a processing chamber and a vacuum exhaust device are omitted. The substrate 1 to be processed is horizontally supported by a support 2 having a heating structure. The heating mechanism is resistance heating, but is not shown here. Lamp heating or high-frequency heating from outside may be used. Although a single wafer type in which one wafer is placed on the center of the support 1 is shown, a plurality of wafers may be processed at a time. The support base 1 is supported by a rotating shaft 6 and has a structure that can be rotated and moved up and down as needed. The support 1 is made of carbon or the like and coated with SiC or the like. The heater is also carbon and is provided inside the support. The heater does not rotate, and only the outer rotating shaft 6 and the support 2 rotate. The substrate (wafer) 1 is made of Si, GaAs, glass or the like.

【0014】基板1の上方に原料導入管7が設けられ
る。原料導入管7の下端は拡開し広い管部の下端には多
孔板4が取り付けられる。多孔板4は2mm〜4mm径
の小孔が多数穿孔される。均等分布であるとは限らな
い。基板1に均等な密度で原料ガスを噴射できるような
穴分布とする。多孔板4の外側には外套管9がある。こ
れはステンレスなどの金属である。厚みは3mm〜20
mmの程度であるが、ここでは10mmものを用いてい
る。外套管9までが原料導入管7である。原料導入管7
の外周にこれを囲むように筒状の遮蔽板10が設けられ
る。遮蔽板10の下端Wは多孔板4の下面よりさらに基
板側にある。つまり遮蔽板は多孔板より、基板方向に長
く張り出している。遮蔽板10によって多孔板4直下の
空間の一部が囲まれる。突出量Uの長さは、多孔板から
排出されるガスを基板方向に向かわせるだけの十分な長
さで、かつ基板を流れるガスがスムーズにその外側へと
押し出されるものとなっている。
A raw material introduction pipe 7 is provided above the substrate 1. The lower end of the raw material introduction tube 7 is expanded, and the perforated plate 4 is attached to the lower end of the wide tube portion. The perforated plate 4 has a large number of small holes having a diameter of 2 mm to 4 mm. The distribution is not always uniform. The hole distribution is such that the source gas can be injected at a uniform density onto the substrate 1. Outside the perforated plate 4 is a mantle tube 9. This is a metal such as stainless steel. The thickness is 3mm-20
Although it is on the order of mm, here, 10 mm is used. The raw material introduction tube 7 extends to the outer tube 9. Raw material introduction pipe 7
A cylindrical shielding plate 10 is provided on the outer periphery of the device so as to surround it. The lower end W of the shielding plate 10 is further on the substrate side than the lower surface of the perforated plate 4. That is, the shielding plate extends longer in the direction of the substrate than the perforated plate. A part of the space directly below the perforated plate 4 is surrounded by the shielding plate 10. The length of the protruding amount U is sufficient to direct the gas discharged from the perforated plate toward the substrate, and the gas flowing through the substrate is smoothly pushed out of the substrate.

【0015】原料導入管7の外側と遮蔽板10の間にガ
スの流路を形成する。これはパージガスの流路11であ
る。外套管9と遮蔽板10の間の流路11の終端つまり
外套管9と面一に小孔を多数穿孔した多孔リング12が
はめこんである。パージガスは原料ガスが遮蔽板10に
接触しないようにするための流路11に流される。これ
は窒素、希ガス、水素ガスなどである。
A gas flow path is formed between the outside of the raw material introduction pipe 7 and the shielding plate 10. This is the purge gas flow path 11. A perforated ring 12 having a large number of small holes formed in the end of the flow path 11 between the mantle tube 9 and the shielding plate 10, that is, flush with the mantle tube 9 is fitted therein. The purge gas is supplied to a flow path 11 for preventing the source gas from contacting the shielding plate 10. This is nitrogen, rare gas, hydrogen gas or the like.

【0016】以上の構成においてその作用を説明する。
原料ガス3は原料導入管7を通り処理室に導入される。
これが終端の多孔板4の原料ガス排出口8を通って基板
1に向けて噴出する。加熱された基板に接触すると原料
ガスは気相反応を起こす。気相反応の生成物は基板の上
に堆積し薄膜となる。未反応ガスと反応済のガスは基板
の表面をかすめて基板支持台の周辺にいたりさらに下方
に吸い込まれ排気部から外部へと排出される。中央部に
噴出する原料ガスCは比較的長く滞留する。周辺部のガ
スは中央分のガスCによって外部に押し出されるが、円
筒状の遮蔽板10があるので内側へ押し戻される。これ
によって周辺部に噴射される原料ガスもより長く基板近
傍に滞留できる。遮蔽板10の下端Wが多孔板4より下
にあるので原料ガスの周辺への流れをせき止める。単に
せき止めたのではガスは移出できないので遮蔽板10と
支持台2の間は空間になっている。
The operation of the above configuration will be described.
The raw material gas 3 is introduced into the processing chamber through the raw material introduction pipe 7.
This is ejected toward the substrate 1 through the source gas outlet 8 of the terminal plate 4. When contacting the heated substrate, the source gas causes a gas phase reaction. The products of the gas phase reaction are deposited on the substrate to form a thin film. The unreacted gas and the gas that has been reacted are grazed on the surface of the substrate and are drawn to the periphery of the substrate support or further downward, and are discharged to the outside from the exhaust unit. The source gas C ejected to the center stays for a relatively long time. The gas in the peripheral portion is pushed out to the outside by the gas C in the center, but is pushed back inside due to the cylindrical shielding plate 10. As a result, the source gas injected to the peripheral portion can stay longer near the substrate. Since the lower end W of the shielding plate 10 is below the perforated plate 4, the flow of the raw material gas to the periphery is blocked. Since gas cannot be transferred simply by damming, there is a space between the shielding plate 10 and the support 2.

【0017】パージガスが多孔板4と遮蔽板10の間に
流れているから原料ガスは遮蔽板10の方へ流れず、遮
蔽板には薄膜が付着しない。またパージガスは、原料ガ
スを基板方向に対して向かわす為の押さえつけガスの役
割を持っている。ただし、パージガスが基板上での原料
ガスの流れを乱さない事に注意する必要がある。それゆ
えパージガスの出口流速Pは、原料ガスが多孔板より噴
出する流速G以下にする。
Since the purge gas flows between the perforated plate 4 and the shield plate 10, the source gas does not flow toward the shield plate 10, and no thin film adheres to the shield plate. Further, the purge gas has a role of a pressing gas for moving the source gas toward the substrate. However, care must be taken that the purge gas does not disturb the flow of the source gas on the substrate. Therefore, the outlet flow velocity P of the purge gas is set to be equal to or lower than the flow velocity G at which the raw material gas is ejected from the perforated plate.

【0018】[0018]

【発明の効果】本発明は、多孔板の周辺部から出る原料
ガスが基板に接触する機会をもたずそのまま排出される
ことを遮蔽板によって防ぐ。しかも中央部に出るガスよ
り周辺部に出るガス量の方が多いのであるから原料ガス
がより有効に利用される。原料ガスの消費効率を高める
上に大きな効果がある。例えば有機金属(トリメチルガ
リウム)、アルシンを用いたGaAs基板上にGaAs
薄膜を堆積させる化学的気相成長法において図2のよう
な従来例の構成では原料利用効率は10%であった。そ
れが本発明を用いた場合、消費効率が約15%に上昇し
た。つまり原料消費効率が約1.5倍になったのであ
る。高価な原料ガスであるからその効果は多大である。
According to the present invention, the shielding plate prevents the raw material gas discharged from the peripheral portion of the perforated plate from being directly discharged without having a chance to come into contact with the substrate. Moreover, since the amount of gas discharged to the peripheral portion is larger than the amount of gas discharged to the central portion, the source gas is more effectively used. There is a great effect on increasing the consumption efficiency of the source gas. For example, GaAs is formed on a GaAs substrate using organic metal (trimethylgallium) or arsine.
In the chemical vapor deposition method for depositing a thin film, the conventional material configuration as shown in FIG. 2 has a raw material utilization efficiency of 10%. When it used the present invention, the consumption efficiency increased to about 15%. That is, the raw material consumption efficiency has increased about 1.5 times. Since it is an expensive raw material gas, its effect is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例にかかる化学的気相成長装置の
内部の概略構成断面図。
FIG. 1 is a schematic sectional view of the inside of a chemical vapor deposition apparatus according to an embodiment of the present invention.

【図2】従来例にかかる化学的気相成長装置の内部の概
略構成図。
FIG. 2 is a schematic configuration diagram of the inside of a chemical vapor deposition apparatus according to a conventional example.

【符号の説明】[Explanation of symbols]

1 基板 2 支持台 3 原料ガス 4 多孔板 5 パージガス 6 回転軸 7 原料導入管 8 原料排出口 9 外套管 10 遮蔽板 11 パージガス流路 12 多孔リング DESCRIPTION OF SYMBOLS 1 Substrate 2 Support base 3 Raw material gas 4 Perforated plate 5 Purge gas 6 Rotating shaft 7 Raw material introduction tube 8 Raw material discharge port 9 Outer tube 10 Shield plate 11 Purge gas flow path 12 Porous ring

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 真空に引く事のできる処理室の内部に原
料ガスを導き多数の原料排出口を穿孔した多孔板から原
料ガスを加熱された基板に向けて噴出し原料ガスが気相
反応を起こして基板の上に薄膜を生成するようにした化
学的気相成長装置において、原料排出口より外側に筒状
の遮蔽板をその下端が多孔板より基板に接近した位置に
設け、遮蔽板と原料排出口との間に押し出し用パ−ジガ
スを流す構造を有することを特徴とする化学的気相成長
装置。
1. A source gas is introduced into a processing chamber capable of being evacuated, and the source gas is ejected from a perforated plate having a large number of source outlets toward a heated substrate to cause a gas phase reaction. In a chemical vapor deposition apparatus in which a thin film is formed on a substrate by raising it, a cylindrical shielding plate is provided outside the raw material discharge port at a position where the lower end is closer to the substrate than the perforated plate, and the shielding plate is provided. A chemical vapor deposition apparatus having a structure in which a purge gas for extruding flows between the material and a material discharge port.
JP1776998A 1998-01-13 1998-01-13 Chemical vapor phase growth apparatus Pending JPH11200052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1776998A JPH11200052A (en) 1998-01-13 1998-01-13 Chemical vapor phase growth apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1776998A JPH11200052A (en) 1998-01-13 1998-01-13 Chemical vapor phase growth apparatus

Publications (1)

Publication Number Publication Date
JPH11200052A true JPH11200052A (en) 1999-07-27

Family

ID=11952934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1776998A Pending JPH11200052A (en) 1998-01-13 1998-01-13 Chemical vapor phase growth apparatus

Country Status (1)

Country Link
JP (1) JPH11200052A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1386981A1 (en) * 2002-07-05 2004-02-04 Ulvac, Inc. A thin film-forming apparatus
JP2006524911A (en) * 2003-04-30 2006-11-02 アイクストロン、アーゲー Semiconductor vapor deposition process and apparatus using two kinds of process gas pretreated on one side
JP2009068105A (en) * 2007-09-10 2009-04-02 Ind Technol Res Inst Film coating system and isolating device thereof
JP2009235470A (en) * 2008-03-26 2009-10-15 Tokyo Electron Ltd Film deposition system, and film deposition method
JP2009242879A (en) * 2008-03-31 2009-10-22 Ngk Insulators Ltd Dlc film deposition method
JP2011190519A (en) * 2010-03-16 2011-09-29 Tokyo Electron Ltd Film forming apparatus
CN103314134A (en) * 2011-03-15 2013-09-18 东芝三菱电机产业***株式会社 Film formation device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1386981A1 (en) * 2002-07-05 2004-02-04 Ulvac, Inc. A thin film-forming apparatus
JP2006524911A (en) * 2003-04-30 2006-11-02 アイクストロン、アーゲー Semiconductor vapor deposition process and apparatus using two kinds of process gas pretreated on one side
JP4700602B2 (en) * 2003-04-30 2011-06-15 アイクストロン、アーゲー Semiconductor vapor deposition process and apparatus using two kinds of process gas pretreated on one side
JP2009068105A (en) * 2007-09-10 2009-04-02 Ind Technol Res Inst Film coating system and isolating device thereof
US8316796B2 (en) 2007-09-10 2012-11-27 Industrial Technology Research Institute Film coating system and isolating device thereof
JP2009235470A (en) * 2008-03-26 2009-10-15 Tokyo Electron Ltd Film deposition system, and film deposition method
JP2009242879A (en) * 2008-03-31 2009-10-22 Ngk Insulators Ltd Dlc film deposition method
JP2011190519A (en) * 2010-03-16 2011-09-29 Tokyo Electron Ltd Film forming apparatus
CN103314134A (en) * 2011-03-15 2013-09-18 东芝三菱电机产业***株式会社 Film formation device
US10121931B2 (en) 2011-03-15 2018-11-06 Toshiba Mitsubishi-Electric Industrial Systems Corporation Film formation device

Similar Documents

Publication Publication Date Title
JP4931082B2 (en) Gas head and thin film manufacturing apparatus
US7931749B2 (en) Shower head and film-forming device using the same
US5972114A (en) Film deposition apparatus with anti-adhesion film and chamber cooling means
US6340499B1 (en) Method to increase gas residence time in a reactor
KR101183500B1 (en) Catalyst body chemical vapor phase growing apparatus
KR100514726B1 (en) Vacuum processing apparatus
JPH1136076A (en) Cvd deposition apparatus and cvd deposition method
KR20050034567A (en) Apparatus and method for forming thin films using upstream and downstream exhaust mechanisms
US6004885A (en) Thin film formation on semiconductor wafer
GB2282825A (en) Chemical vapour deposition apparatus
JPH10330944A (en) Substrate treating device
JPH11200052A (en) Chemical vapor phase growth apparatus
JP2001358077A (en) Thin film forming device
JPH1154441A (en) Catalytic chemical evaporation device
US6194030B1 (en) Chemical vapor deposition velocity control apparatus
US20030175426A1 (en) Heat treatment apparatus and method for processing substrates
US20040112290A1 (en) Apparatus for forming film in semiconductor process and method for feeding gas into the same apparatus
JPH10223538A (en) Vertical heat-treating apparatus
JP3955392B2 (en) Crystal growth apparatus and crystal growth method
JP3403194B2 (en) CVD apparatus and CVD method
KR940007175Y1 (en) Low pressure cvd apparatus of wafer
JP2002373861A (en) Bath type heat-treating apparatus
JPH10223620A (en) Semiconductor manufacturing device
JPH0361377A (en) Microwave-plasma film depositing device
JPH10167897A (en) Method for growing gan film