JPH11199362A - Production of compound semiconductor single crystal - Google Patents

Production of compound semiconductor single crystal

Info

Publication number
JPH11199362A
JPH11199362A JP854498A JP854498A JPH11199362A JP H11199362 A JPH11199362 A JP H11199362A JP 854498 A JP854498 A JP 854498A JP 854498 A JP854498 A JP 854498A JP H11199362 A JPH11199362 A JP H11199362A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
boron nitride
compound semiconductor
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP854498A
Other languages
Japanese (ja)
Inventor
Takeo Kawanaka
岳穂 川中
Hiroshi Okada
広 岡田
Yoshihiko Sakashita
由彦 坂下
Seiichiro Omoto
誠一郎 大元
Kazuhiro Uehara
一浩 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP854498A priority Critical patent/JPH11199362A/en
Publication of JPH11199362A publication Critical patent/JPH11199362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prolong the life of a crucible, suppress worsening of wetting of a liquid sealing agent and the crucible and improve single crystal quality and yield by using a crucible comprising a pyrolytic boron nitride having a specific density or above as a vessel for growth and using a liquid sealing agent. SOLUTION: In this method for producing a compound semiconductor single crystal by a growth method in a vessel such as vertical Bridgeman method or horizontal Bridgeman method, pyrolytic boron nitride crucible having >=2.0 g/cm<3> specific density and >=80 Å crystallite size in (a) axial direction is used as a vessel for growth. For example, pyrolytic boron nitride crucible having 2.2 g/cm3 density is used as the vessel for growth and GaP seed crystal is inserted into the bottom and GaP polycrystal mass is inserted thereon and B2 O3 is packed as a liquid sealing agent. The crystal and the liquid sealing agent are melted by heating the crucible. In this time, the melt is heated so that temperature gradient in vertical direction of the melt becomes a prescribed value. Then, temperature of the melt is lowered at a prescribed rate to grow GaP single crystal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は化合物半導体単結晶
の製造方法に関し、詳細には、垂直ブリッジマン法、水
平ブリッジマン法等の容器成長法による化合物半導体単
結晶の製造方法に関し、特には、発光ダイオードやレー
ザー、高周波デバイスなどに用いられるGaAs,GaP, InP
等の III−V族化合物半導体単結晶や、ZnSe等に代表さ
れるII−VI族化合物半導体単結晶の製造方法に関する技
術分野に属する。
The present invention relates to a method for producing a compound semiconductor single crystal, and more particularly, to a method for producing a compound semiconductor single crystal by a container growth method such as a vertical Bridgman method or a horizontal Bridgman method. GaAs, GaP, InP used for light emitting diodes, lasers, high frequency devices, etc.
And the like, and a method for producing a group II-VI compound semiconductor single crystal typified by ZnSe or the like.

【0002】[0002]

【従来の技術】垂直ブリッジマン法、水平ブリッジマン
法等の容器成長法によるGaAs,GaP, InP等の III−V族
化合物半導体単結晶やZnSe等に代表されるII−VI族化合
物半導体単結晶等の化合物半導体単結晶の製造方法は、
ルツボで融液を支持する構成であり、結晶の直径制御を
行うために成長結晶に与える温度勾配を大きくとる必要
がない。このため、低温度勾配下での育成により、熱歪
の低減された結晶が得られ、転位などの欠陥の密度の低
い高品質の単結晶が製造し得るという特徴を有する。
2. Description of the Related Art A single crystal of a group III-V compound semiconductor such as GaAs, GaP, InP or a single crystal of a group II-VI compound semiconductor represented by ZnSe or the like by a container growth method such as a vertical Bridgman method or a horizontal Bridgman method. The method for producing a compound semiconductor single crystal such as
Since the melt is supported by the crucible, it is not necessary to increase the temperature gradient applied to the grown crystal in order to control the diameter of the crystal. For this reason, by growing under a low temperature gradient, a crystal having reduced thermal strain can be obtained, and a high-quality single crystal having a low density of defects such as dislocations can be manufactured.

【0003】かかる化合物半導体単結晶の製造方法にお
いては、一般には石英ルツボの他、カーボンルツボ、窒
化ほう素ルツボ等の高純度セラミックスルツボ、熱分解
窒化ホウ素ルツボ等のルツボが成長容器として用いられ
る。
In such a method for producing a compound semiconductor single crystal, generally, a quartz crucible, a high-purity ceramic crucible such as a carbon crucible and a boron nitride crucible, and a crucible such as a pyrolytic boron nitride crucible are used as a growth vessel.

【0004】ところが、石英ルツボでは、その石英の軟
化点が1200℃付近であり、GaP やZnSe等の1500℃に達す
るような高い融点を持つ単結晶の成長には適さない。
又、カーボンルツボ、窒化ほう素ルツボ等の高純度セラ
ミックスルツボでは、多孔質であるため、融液中の揮発
成分が容器(ルツボ)を通して成長系の外部に飛散する
といった問題が生じる他、繰り返し使用における洗浄が
困難であったりして、高純度の単結晶の製造のためには
必ずしも低コストのルツボとはならないという問題があ
る。
However, a quartz crucible has a softening point of about 1200 ° C. and is not suitable for growing a single crystal having a high melting point such as GaP or ZnSe reaching 1500 ° C.
Further, since high-purity ceramic crucibles such as carbon crucibles and boron nitride crucibles are porous, there is a problem that volatile components in the melt are scattered outside the growth system through a container (crucible), and they are repeatedly used. However, there is a problem that a low-cost crucible is not always required for manufacturing a high-purity single crystal because of the difficulty in cleaning.

【0005】これに対し、熱分解窒化ホウ素ルツボは、
1500℃に達するような高融点の融液を支持するためにも
使用し得る。又、気密質であること、更に高純度である
ことから、化合物半導体単結晶の容器成長に適したルツ
ボとして用いられる。
On the other hand, a pyrolytic boron nitride crucible is
It can also be used to support melts with high melting points, up to 1500 ° C. Further, since it is airtight and has high purity, it is used as a crucible suitable for growing a compound semiconductor single crystal in a container.

【0006】ところで、特開昭63-79792号公報には、単
結晶の製造歩留まりの向上と結晶の高品質化のために熱
分解窒化ホウ素ルツボを液体封止剤とともに用いること
が有用であることが開示されている。
Japanese Patent Application Laid-Open No. 63-79792 discloses that it is useful to use a pyrolytic boron nitride crucible together with a liquid sealant in order to improve the production yield of single crystals and to improve the quality of crystals. Is disclosed.

【0007】液体封止剤は熱分解窒化ホウ素ルツボ材と
は良く濡れる性質を有するため、結晶の育成時には融液
の周囲をとりまくように液体封止剤の層が形成される。
この被覆効果(液体封止剤の層の形成)は、結晶と熱分
解窒化ホウ素ルツボとの直接の濡れによる反応を抑制
し、双晶の発生や多結晶化等の如き単結晶の製造歩留ま
りを低減させる問題の抑制に効果をもたらすことがわか
っており、特開昭63-79792号公報に記載の技術(発明)
等でも原料融液の形成時に熱分解窒化ホウ素ルツボの内
面に液体封止剤として酸化ほう素(B2O3)の層を形成さ
せることが必須とされている。更に、米国特許の例(4,
923,561, May 8, 1990)等では、予め熱分解窒化ホウ素
ルツボ内面を酸化させることにより、上記の如き酸化ほ
う素の層を確実に形成させる方法を示している。
[0007] Since the liquid sealant has a property of being well wetted by the pyrolytic boron nitride crucible material, a layer of the liquid sealant is formed so as to surround the melt at the time of growing the crystal.
This coating effect (formation of a liquid sealant layer) suppresses the reaction due to direct wetting between the crystal and the pyrolytic boron nitride crucible, and reduces the production yield of single crystals such as generation of twins and polycrystallization. It has been found that this has an effect in suppressing the problem of reduction, and the technology (invention) described in JP-A-63-79792 is known.
It is essential that a layer of boron oxide (B 2 O 3 ) be formed as a liquid sealant on the inner surface of a pyrolytic boron nitride crucible when forming a raw material melt. Further, examples of U.S. patents (4,
923, 561, May 8, 1990) and the like show a method for reliably forming a boron oxide layer as described above by oxidizing the inner surface of a pyrolytic boron nitride crucible in advance.

【0008】又、液体封止剤の不純物ゲッタリング効果
を利用して単結晶の高純度化をはかることは、多くの発
明例や文献例により公知である。
It is known from many invention examples and literature examples to purify a single crystal by utilizing the impurity gettering effect of the liquid sealant.

【0009】一方、ZnSe単結晶に代表されるように単結
晶育成時の結晶構造と常温での結晶構造とが異なり、単
結晶の育成の冷却過程において相転移点を持つ単結晶の
製造の場合には、双晶核の発生を低減させるために熱分
解窒化ホウ素ルツボと成長結晶との間に液体封止剤を用
いることが高品質の単結晶を得るための必須条件となる
ことを、本発明者らは以前に見出し、提案した(特願平
7-057749号)。
On the other hand, the crystal structure at the time of growing a single crystal is different from the crystal structure at room temperature, as typified by a ZnSe single crystal. The authors state that the use of a liquid sealant between the pyrolytic boron nitride crucible and the growing crystal to reduce the generation of twin nuclei is an essential condition for obtaining high-quality single crystals. The inventors have previously found and proposed (Japanese Patent Application No.
7-057749).

【0010】以上のように、熱分解窒化ホウ素ルツボを
液体封止剤とともに用いることは、高品質の化合物半導
体単結晶を歩留まり良く製造する方法として優れた方法
である。
As described above, the use of a pyrolytic boron nitride crucible together with a liquid sealing agent is an excellent method for producing a high-quality compound semiconductor single crystal with high yield.

【0011】しかしながら、単結晶成長が終了し、冷却
した際、液体封止剤はルツボや結晶と固着し、特に単結
晶成長後のルツボではルツボ内面の大きな剥離を引き起
こす他、ルツボ形状に起因する応力集中部分は特に破損
し易く、ルツボの寿命は必ずしも長いものとはいえな
い。
However, when the single crystal growth is completed and cooled, the liquid sealant adheres to the crucible or the crystal. In particular, the crucible after the single crystal growth causes a large peeling of the inner surface of the crucible, and is caused by the crucible shape. The stress-concentrated portion is particularly susceptible to breakage, and the life of the crucible is not always long.

【0012】又、GaP やZnSe等の1500℃に達するような
高融点を持つ単結晶の成長に熱分解窒化ホウ素ルツボを
液体封止剤とともに用いた場合には、ルツボ内面が脆弱
になり、大きく剥離するという劣化現象が顕著になるこ
とを本発明者らは見出した。このときにはルツボが液体
封止剤と反応して熱分解窒化ホウ素の微細結晶粒がルツ
ボ内面に生成し、ルツボが脆弱化するという変化がおこ
ること、即ち、ルツボ内面に劣化層が形成されることを
確認している。例えば、ZnSe等の成長においては1mm厚
のルツボを用いた場合、1回の成長でもルツボに穴が開
くといった問題を生じることがあり、実用に適さない。
When a pyrolytic boron nitride crucible is used together with a liquid sealant to grow a single crystal having a high melting point, such as GaP or ZnSe, reaching a temperature of 1500 ° C., the crucible inner surface becomes fragile. The present inventors have found that the degradation phenomenon of peeling becomes remarkable. At this time, the crucible reacts with the liquid sealant, and fine crystal grains of pyrolytic boron nitride are generated on the inner surface of the crucible, and the crucible becomes brittle, that is, a deteriorated layer is formed on the inner surface of the crucible. Have confirmed. For example, when a crucible having a thickness of 1 mm is used in the growth of ZnSe or the like, even a single growth may cause a problem that a hole is formed in the crucible, which is not suitable for practical use.

【0013】更に、熱分解窒化ホウ素ルツボは、CVD
(化学蒸着法)により製造されるため、高価であり、従
って、熱分解窒化ホウ素ルツボの寿命が上記の如く短い
ことは低コストの単結晶製造プロセスとしては問題が残
る。
Further, the pyrolytic boron nitride crucible is formed by CVD.
(Chemical vapor deposition), it is expensive. Therefore, the short life of the pyrolytic boron nitride crucible as described above remains a problem as a low-cost single crystal manufacturing process.

【0014】また、上記の如きルツボの劣化が生じる
と、液体封止剤とルツボとの濡れが悪くなり、そのため
ルツボと結晶(融液)との間に液体封止剤が存在しない
部分があるようになり、かかる部分が多い場合もあり、
従って、液体封止剤が結晶(融液)を被覆しなくなると
いう問題が生じ、結晶とルツボとの固着から核生成が起
こり、そのため双晶の発生や多結晶化等が発生し、単結
晶化の製造歩留まりが低下するということも、本発明者
らの検討により明らかになっている。
Further, when the crucible is deteriorated as described above, the wettability between the liquid sealant and the crucible is deteriorated, so that there is a portion where the liquid sealant does not exist between the crucible and the crystal (melt). And there are many such parts,
Therefore, there arises a problem that the liquid sealant does not cover the crystal (melt), and nucleation occurs from the fixation of the crystal and the crucible, thereby causing twinning, polycrystallization, etc., and single crystallization It has also been clarified by the study of the present inventors that the production yield is reduced.

【0015】[0015]

【発明が解決しようとする課題】前記の如く、化合物半
導体単結晶の製造に際し、熱分解窒化ホウ素ルツボを液
体封止剤とともに用いる方法は、ルツボ内面の剥離等が
生じるためにルツボ寿命が短かく、又、ルツボ内面の劣
化や脆弱化が起こって(即ち、ルツボ内面に劣化層が生
じて)液体封止剤との濡れが悪化し、そのため双晶の発
生や多結晶化等が起こって単結晶品質が低下し、ひいて
は単結晶の製造歩留まりが低下してくるという問題点が
ある。
As described above, the method of using a pyrolytic boron nitride crucible together with a liquid sealant in the production of a compound semiconductor single crystal has a short crucible life due to peeling of the inner surface of the crucible. In addition, the inner surface of the crucible is deteriorated or weakened (that is, a deteriorated layer is formed on the inner surface of the crucible), and the wettability with the liquid sealant is deteriorated. As a result, twins and polycrystallization are generated. There is a problem that the crystal quality is reduced, and the production yield of the single crystal is reduced.

【0016】本発明は、このような事情に着目してなさ
れたものであって、その目的は、化合物半導体単結晶の
製造に際して熱分解窒化ホウ素ルツボを液体封止剤とと
もに用いる場合のルツボ内面の剥離によるルツボ寿命の
低下を抑制し得ると共に、液体封止剤とルツボとの反応
によって生じる劣化層の形成によりルツボ内面と液体封
止剤との濡れが低下することによる単結晶品質の低下及
び単結晶の製造歩留まりの低下を抑制し得る化合物半導
体単結晶の製造方法を提供しようとするものである。即
ち、ルツボ内面の剥離を低減して、それによりルツボ寿
命の向上がはかれると共に、液体封止剤とルツボとの濡
れの悪化を抑制し得、それにより単結晶品質の向上及び
単結晶の製造歩留まりの向上がはかれる化合物半導体単
結晶の製造方法を提供しようとするものである。
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a method for manufacturing a compound semiconductor single crystal by using a pyrolytic boron nitride crucible together with a liquid sealing agent. In addition to being able to suppress a decrease in crucible life due to peeling, the quality of the single crystal is reduced due to a decrease in the wetting between the inner surface of the crucible and the liquid sealant due to the formation of a deteriorated layer caused by the reaction between the liquid sealant and the crucible. An object of the present invention is to provide a method for manufacturing a compound semiconductor single crystal, which can suppress a decrease in crystal manufacturing yield. That is, the peeling of the inner surface of the crucible is reduced, whereby the crucible life is improved, and the deterioration of the wetting between the liquid sealant and the crucible can be suppressed, thereby improving the single crystal quality and the production yield of the single crystal. It is an object of the present invention to provide a method for producing a compound semiconductor single crystal in which the improvement of the crystal quality is achieved.

【0017】[0017]

【課題を解決するための手段】上記の目的を達成するた
め、本発明に係る化合物半導体単結晶の製造方法は、請
求項1〜8記載の化合物半導体単結晶の製造方法として
おり、それは次のような構成としたものである。即ち、
請求項1記載の化合物半導体単結晶は、垂直ブリッジマ
ン法、水平ブリッジマン法等の容器成長法による化合物
半導体単結晶の製造に際し、密度:2.0g/cm3 以上
の熱分解窒化ホウ素からなるルツボを成長容器として用
いると共に、液体封止剤を用いることを特徴とする化合
物半導体単結晶の製造方法である(第1発明)。
Means for Solving the Problems To achieve the above object, a method for producing a compound semiconductor single crystal according to the present invention is a method for producing a compound semiconductor single crystal according to claims 1 to 8, which comprises: The configuration is as described above. That is,
The compound semiconductor single crystal according to claim 1 is made of thermally decomposed boron nitride having a density of 2.0 g / cm 3 or more when producing the compound semiconductor single crystal by a container growth method such as a vertical Bridgman method or a horizontal Bridgman method. A method for producing a compound semiconductor single crystal, characterized in that a crucible is used as a growth vessel and a liquid sealant is used (first invention).

【0018】請求項2記載の化合物半導体単結晶は、垂
直ブリッジマン法、水平ブリッジマン法等の容器成長法
による化合物半導体単結晶の製造に際し、配向度:80
以上の熱分解窒化ホウ素からなるルツボを成長容器とし
て用いると共に、液体封止剤を用いることを特徴とする
化合物半導体単結晶の製造方法である(第2発明)。
The compound semiconductor single crystal according to claim 2 may have a degree of orientation of 80 when the compound semiconductor single crystal is manufactured by a container growth method such as a vertical Bridgman method or a horizontal Bridgman method.
A second aspect of the present invention is a method for producing a compound semiconductor single crystal, which comprises using a crucible made of the above pyrolytic boron nitride as a growth vessel and using a liquid sealant.

【0019】請求項3記載の化合物半導体単結晶は、垂
直ブリッジマン法、水平ブリッジマン法等の容器成長法
による化合物半導体単結晶の製造に際し、a軸方向の結
晶子サイズ:80Å以上の熱分解窒化ホウ素からなるル
ツボを成長容器として用いると共に、液体封止剤を用い
ることを特徴とする化合物半導体単結晶の製造方法であ
る(第3発明)。
The compound semiconductor single crystal according to claim 3 is thermally decomposed with a crystallite size in the a-axis direction: 80 ° or more when the compound semiconductor single crystal is manufactured by a container growth method such as a vertical Bridgman method or a horizontal Bridgman method. A method for producing a compound semiconductor single crystal, characterized in that a crucible made of boron nitride is used as a growth vessel and a liquid sealant is used (third invention).

【0020】請求項4記載の化合物半導体単結晶は、前
記ルツボがルツボ製造時に粗面構造を持たせて堆積され
てなる請求項1、2又は3記載の化合物半導体単結晶の
製造方法である(第4発明)。請求項5記載の化合物半
導体単結晶は、前記ルツボのR部分が該R部分以外の部
分よりも低密度であると共に低配向度である請求項1、
2、3又は4記載の化合物半導体単結晶の製造方法であ
る(第5発明)。請求項6記載の化合物半導体単結晶
は、前記ルツボの外側面に密度:2.0g/cm3未満の
熱分解窒化ホウ素が堆積されている請求項1、2、3、
4又は5記載の化合物半導体単結晶の製造方法である
(第6発明)。
The compound semiconductor single crystal according to claim 4 is the method according to claim 1, 2 or 3, wherein the crucible is deposited with a rough surface structure when the crucible is manufactured. 4th invention). The compound semiconductor single crystal according to claim 5, wherein the R portion of the crucible has a lower density and a lower degree of orientation than a portion other than the R portion.
A method for producing a compound semiconductor single crystal according to 2, 3 or 4 (fifth invention). The compound semiconductor single crystal according to claim 6, wherein pyrolytic boron nitride having a density of less than 2.0 g / cm 3 is deposited on the outer surface of the crucible.
A method for producing a compound semiconductor single crystal according to 4 or 5 (Sixth invention).

【0021】請求項7記載の化合物半導体単結晶は、垂
直ブリッジマン法、水平ブリッジマン法等の容器成長法
による化合物半導体単結晶の製造に際し、密度:2.0
g/cm3 以上の熱分解窒化ホウ素、配向度:80以上の
熱分解窒化ホウ素、a軸方向の結晶子サイズ:80Å以
上の熱分解窒化ホウ素の一種以上と密度:2.0g/cm
3 未満の熱分解窒化ホウ素とを交互に堆積させてなるル
ツボを成長容器として用いると共に、液体封止剤を用い
ることを特徴とする化合物半導体単結晶の製造方法であ
る(第7発明)。
The compound semiconductor single crystal according to claim 7 has a density of 2.0 when produced by a container growth method such as a vertical Bridgman method or a horizontal Bridgman method.
g / cm 3 or more, pyrolytic boron nitride having a degree of orientation of 80 or more, crystallite size in the a-axis direction: at least one kind of pyrolytic boron nitride having a size of 80 ° or more, and density: 2.0 g / cm 3
A method for producing a compound semiconductor single crystal, characterized in that a crucible obtained by alternately depositing less than 3 thermally decomposed boron nitrides is used as a growth vessel and a liquid sealant is used (a seventh invention).

【0022】請求項8記載の化合物半導体単結晶は、垂
直ブリッジマン法、水平ブリッジマン法等の容器成長法
による化合物半導体単結晶の製造に際し、密度:2.0
g/cm3 以上の熱分解窒化ホウ素、配向度:80以上の
熱分解窒化ホウ素、a軸方向の結晶子サイズ:80Å以
上の熱分解窒化ホウ素の一種以上を高純度炭素又は高純
度BN等の焼結体からなるルツボの内側面に堆積させて
なるルツボを成長容器として用いると共に、液体封止剤
を用いることを特徴とする化合物半導体単結晶の製造方
法である(第8発明)。
The compound semiconductor single crystal according to claim 8 has a density of 2.0 when manufactured by a container growth method such as a vertical Bridgman method or a horizontal Bridgman method.
g / cm 3 or more of pyrolytic boron nitride, orientation degree: 80 or more of pyrolytic boron nitride, crystallite size in a-axis direction: 80 ° or more of pyrolytic boron nitride of at least one of high-purity carbon or high-purity BN A method for producing a compound semiconductor single crystal, characterized in that a crucible deposited on the inner surface of a crucible made of a sintered body is used as a growth vessel and a liquid sealant is used (eighth invention).

【0023】[0023]

【発明の実施の形態】本発明は例えば次のような形態で
実施する。垂直ブリッジマン法、水平ブリッジマン法等
の容器成長法による化合物半導体単結晶製造用装置の成
長容器として、密度:2.0g/cm3 以上の熱分解窒化
ホウ素からなるルツボ、例えば密度:2.2g/cm3
熱分解窒化ホウ素ルツボを用いる。このルツボ内の底部
にGaP 種結晶を挿入し、その上にGaP 多結晶塊を挿入す
ると共に、同時に液体封止剤としてB2O3を充填する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is embodied in the following manner, for example. A crucible made of thermally decomposed boron nitride having a density of 2.0 g / cm 3 or more, for example, a density of 2.0, is used as a growth vessel of a compound semiconductor single crystal manufacturing apparatus by a vessel growth method such as a vertical Bridgman method or a horizontal Bridgman method. A pyrolytic boron nitride crucible of 2 g / cm 3 is used. A GaP seed crystal is inserted into the bottom of the crucible, a GaP polycrystalline mass is inserted thereon, and B 2 O 3 is simultaneously filled as a liquid sealant.

【0024】次に、このルツボを加熱して所定温度に昇
温してルツボ内の結晶及び液体封止剤(B2O3)を溶融し
て融液となすと共に、この融液の垂直方向(ルツボ軸方
向)の温度勾配が所定温度勾配となるようにし、しかる
後、ルツボを所定の下降速度で下降させて、結晶を下方
から上方に向かって固化させ、これによりGaP 単結晶の
育成を行う。このGaP 単結晶の育成後、るつぼよりGaP
単結晶を取り出す。以降、上記の如き種結晶の挿入、多
結晶の挿入、液体封止剤の充填、昇温、単結晶の育成、
育成後の単結晶の取り出しという工程を繰り返して行
う。
Next, the crucible is heated and heated to a predetermined temperature to melt the crystals and the liquid sealing agent (B 2 O 3 ) in the crucible to form a melt, and to melt the melt in the vertical direction. The temperature gradient in the (crucible axis direction) is set to a predetermined temperature gradient. Thereafter, the crucible is lowered at a predetermined lowering speed to solidify the crystal from below to above, thereby growing the GaP single crystal. Do. After growing this GaP single crystal, the GaP
Take out the single crystal. Thereafter, insertion of a seed crystal as described above, insertion of a polycrystal, filling of a liquid sealant, heating, growth of a single crystal,
The process of taking out the single crystal after the growth is repeated.

【0025】本発明に係る化合物半導体単結晶の製造方
法は、前記の如く、垂直ブリッジマン法、水平ブリッジ
マン法等の容器成長法による化合物半導体単結晶の製造
に際し、密度:2.0g/cm3 以上の熱分解窒化ホウ素
からなるルツボを成長容器として用いると共に、液体封
止剤を用いるようにしている。即ち、熱分解窒化ホウ素
ルツボを液体封止剤とともに用いるに際し、この熱分解
窒化ホウ素ルツボとして密度:2.0g/cm3 以上の熱
分解窒化ホウ素からなるルツボ(以降、本発明に係る高
密度熱分解窒化ホウ素ルツボ、又は、高密度熱分解窒化
ホウ素ルツボという)を用いるようにしている(第1発
明)。
The method for producing a compound semiconductor single crystal according to the present invention is, as described above, a method for producing a compound semiconductor single crystal by a container growth method such as a vertical Bridgman method or a horizontal Bridgman method. A crucible made of three or more pyrolytic boron nitrides is used as a growth vessel, and a liquid sealant is used. That is, when the pyrolytic boron nitride crucible is used together with the liquid sealing agent, the pyrolytic boron nitride crucible is made of a pyrolytic boron nitride crucible having a density of 2.0 g / cm 3 or more. (Referred to as a decomposed boron nitride crucible or a high-density thermally decomposed boron nitride crucible) (first invention).

【0026】上記本発明に係る高密度熱分解窒化ホウ素
ルツボは、高密度(密度:2.0g/cm3以上)であるため、
低密度(密度:2.0g/cm3未満)の熱分解窒化ホウ素ルツ
ボに比較し、結晶子サイズが大きく、非等方的(配向度
が高い)である。そのため、反応し易い面方位の表面積
が小さくなることによって融液や液体封止剤との物理
的、化学的反応が起こり難い。
The high-density pyrolytic boron nitride crucible according to the present invention has a high density (density: 2.0 g / cm 3 or more).
Compared to low-density (density: less than 2.0 g / cm 3 ) pyrolytic boron nitride crucible, it has a larger crystallite size and is anisotropic (higher degree of orientation). Therefore, physical and chemical reactions with the melt or the liquid sealant are unlikely to occur due to a decrease in the surface area of the plane orientation in which the reaction is likely to occur.

【0027】従って、ルツボ内面に劣化層が生じ難く、
単結晶成長の終了後のルツボ内面の劣化層の厚みが著し
く低減し、そのため液体封止剤との濡れの悪化が起こり
難く、ひいては単結晶品質が向上し、単結晶の製造歩留
まりが向上する。即ち、ルツボ内面の変質(劣化)によ
るルツボ寿命の低下を抑制し得ると共に、液体封止剤と
ルツボとの濡れの悪化による単結晶品質の低下及び単結
晶の製造歩留まりの低下を抑制し得る。
Therefore, a deteriorated layer hardly occurs on the inner surface of the crucible,
The thickness of the deteriorated layer on the inner surface of the crucible after the completion of the single crystal growth is significantly reduced, so that the deterioration of the wettability with the liquid sealant hardly occurs, and the quality of the single crystal is improved, and the production yield of the single crystal is improved. That is, it is possible to suppress a decrease in crucible life due to deterioration (deterioration) of the inner surface of the crucible, and to suppress a decrease in single crystal quality and a decrease in single crystal production yield due to deterioration of wettability between the liquid sealant and the crucible.

【0028】この詳細を以下に説明する。The details will be described below.

【0029】熱分解窒化ホウ素ルツボは、その製造条件
によってその密度が変化することが構造との関連におい
て J. of Materials Science 23(1988)509等に詳しく記
述されている。同文献に示されている熱分解窒化ホウ素
ルツボの密度による構造の相違について図1(同文献よ
り引用)に示す。この図1からもわかる如く、低密度の
ものは結晶子サイズが小さく、又、等方的である(配向
度が低い)という特徴を有している。このように熱分解
窒化ホウ素(PBN)の密度が低い場合には結晶子サイ
ズが小さく、配向度が低い。一方、PBNの密度が高い
場合には結晶子サイズが大きくなるとともに配向度も高
くなる。このとき、ルツボ内面にはc面が大きく拡がる
構造となる。c面ではa面のように反応にあずかる結合
端がなく、液体封止剤との反応は小さくなる。従って、
高密度のルツボの場合には低密度のものに比べて、a面
の表面積が著しく小さくなるため、PBNの液体封止剤
中への溶解反応が低減され、結果として窒化ホウ素(B
N)結晶粒の成長が抑制される。又、高密度のルツボの
場合には空孔も少なくなり、さらに反応が低減される。
これらのことは、液体封止剤を用いた場合にはルツボ材
が液体封止剤に溶解し易くなり、その溶解の程度はPB
Nルツボの密度が低い場合に大きく、PBNルツボの密
度が高い場合には溶解し難くなることを示している。
It is described in detail in J. of Materials Science 23 (1988) 509 that the density of the pyrolytic boron nitride crucible changes depending on the manufacturing conditions in relation to the structure. FIG. 1 (cited from the document) shows the difference in structure depending on the density of the pyrolytic boron nitride crucible shown in the document. As can be seen from FIG. 1, the low-density one has a feature that the crystallite size is small and isotropic (the degree of orientation is low). When the density of pyrolytic boron nitride (PBN) is low, the crystallite size is small and the degree of orientation is low. On the other hand, when the density of PBN is high, the crystallite size increases and the degree of orientation also increases. At this time, the crucible has a structure in which the c-plane greatly expands on the inner surface. Unlike the a-plane, the c-plane has no bonding ends that participate in the reaction, and the reaction with the liquid sealant is small. Therefore,
In the case of high-density crucibles, the surface area of the a-plane becomes significantly smaller than that of low-density crucibles, so that the dissolution reaction of PBN in the liquid sealant is reduced, and as a result, boron nitride (B
N) The growth of crystal grains is suppressed. In the case of a high-density crucible, the number of pores is reduced, and the reaction is further reduced.
These facts indicate that when a liquid sealant is used, the crucible material is easily dissolved in the liquid sealant, and the degree of dissolution is PB
It shows that when the density of the N crucible is low, it is large, and when the density of the PBN crucible is high, it is difficult to dissolve.

【0030】このように低密度の熱分解窒化ホウ素ルツ
ボを液体封止剤とともに用いた場合には、ルツボ材(熱
分解窒化ホウ素)が液体封止剤に溶解し易くなる。この
液体封止剤に溶解した熱分解窒化ホウ素は、ルツボ表面
に再結晶して析出するという反応が起こることを本発明
者らは研究により見出した。
When the low-density thermally decomposed boron nitride crucible is used together with the liquid sealant, the crucible material (pyrolyzed boron nitride) is easily dissolved in the liquid sealant. The present inventors have found through research that the pyrolytic boron nitride dissolved in the liquid sealant undergoes a reaction of recrystallization and precipitation on the crucible surface.

【0031】即ち、その研究結果の一例として、密度:
1.90g/cm3 の熱分解窒化ホウ素ルツボを成長容器とし、
液体封止剤としてB2O3を用いた場合のGaP 単結晶の成長
後におけるルツボの断面の内面側近傍、及び、バージン
ルツボ材(単結晶の製造に供する前の状態の熱分解窒化
ホウ素ルツボ)の断面の内面側近傍の電子顕微鏡観察結
果(写真)を図2-(a)及び(b) として示す。図2-(a)か
ら、単結晶成長後のルツボ内面には平板状の窒化ホウ素
の結晶粒が成長していることがわかる。又、これらにつ
いてX線粉末回折によって定性分析を行ったところ、バ
ージンルツボではアモルファスに相当する特徴が回折パ
ターンに見られるのに対し、単結晶の成長後のルツボで
の内面側近傍部のものはh-BNの結晶のものであることが
確認された。更に、このh-BNの結晶粒は最大で0.5 μm
程度の大きさをもつ微結晶粒であり、この結晶粒の大き
さは熱分解窒化ホウ素の結晶子サイズの100 倍以上に相
当するものであり、単結晶製造への使用によりルツボが
変質していることが明らかである。又、単結晶の成長後
のルツボの場合、各結晶粒の間には空隙が生じ、ルツボ
材が多孔質化していることが図2-(a)からわかる。
That is, as an example of the research results, the density:
1.90 g / cm 3 pyrolytic boron nitride crucible is used as a growth vessel,
In the case of using B 2 O 3 as a liquid sealant, the vicinity of the inner surface side of the crucible cross section after the growth of the GaP single crystal, and the virgin crucible material (the pyrolytic boron nitride crucible in the state before being used for the production of the single crystal) 2) (a) and (b) show the results of electron microscopic observation (photograph) near the inner surface side of the cross section of FIG. From FIG. 2A, it can be seen that flat boron nitride crystal grains have grown on the inner surface of the crucible after single crystal growth. In addition, when qualitative analysis was performed on these by X-ray powder diffraction, the characteristics corresponding to amorphous were observed in the virgin crucible in the diffraction pattern, whereas those in the vicinity of the inner surface side in the crucible after single crystal growth were observed. It was confirmed that it was a crystal of h-BN. Furthermore, this h-BN crystal grain can be up to 0.5 μm
The size of these crystal grains is equivalent to 100 times or more the crystallite size of pyrolytic boron nitride. It is clear that there is. In addition, in the case of the crucible after the growth of the single crystal, voids are generated between the crystal grains, and it can be seen from FIG. 2- (a) that the crucible material is made porous.

【0032】これらは、液体封止剤に溶解した熱分解窒
化ホウ素がルツボ表面に再結晶して析出したことにより
生じた現象である。このような再結晶・析出により形成
された層(以下、再結晶層)は白色の脆弱な層(即ち、
劣化層)であり、単結晶成長の終了後の洗浄処理等のプ
ロセスによって簡単に剥離し、ルツボの劣化をもたら
し、ひいてはルツボ寿命を低下させる。
These are phenomena caused by the pyrolytic boron nitride dissolved in the liquid sealant being recrystallized and deposited on the crucible surface. The layer formed by such recrystallization / precipitation (hereinafter, recrystallized layer) is a white fragile layer (ie,
(Deterioration layer), which is easily peeled off by a process such as a cleaning process after the completion of single crystal growth, resulting in deterioration of the crucible and, consequently, shortening the crucible life.

【0033】一般に、微結晶粒の成長では表面自由エネ
ルギーの小さい面で表面が覆われる形となる。これは、
表面自由エネルギーの大きい面は成長が速いため、先に
成長が完了し、結果として表面自由エネルギーの小さい
面が残るからである。このとき、表面自由エネルギーが
小さいということは表面張力が小さいということである
ので、結晶粒の成長した層では濡れ性が低下する。前記
再結晶層は結晶粒の成長した層である。従って、前記再
結晶層では、溶解・再結晶・析出前のPBNルツボ(例
えばもとのPBNルツボ)の表面に比べて、表面自由エ
ネルギーが小さくなり、そのため濡れ性が低下すると考
えられる。これは、ヤングの式、即ち、γSL−γS +γ
L cos θ=0〔但し、γSL;ルツボの表面張力、γS
ルツボ材と液体封止剤の界面張力、γL ;液体の表面張
力〕においてγS が小さくなることにより接触角が90°
より小さくなるための条件(濡れるための条件)、即
ち、γS >γSL+γL を満たさなくなるためであると考
えられる。
In general, in the growth of microcrystal grains, the surface is covered with a surface having a small surface free energy. this is,
This is because a surface having a large surface free energy grows quickly, so that the growth is completed first, and as a result, a surface having a small surface free energy remains. At this time, since the small surface free energy means a small surface tension, the wettability of the layer in which the crystal grains have grown is reduced. The recrystallized layer is a layer in which crystal grains have grown. Therefore, in the recrystallized layer, it is considered that the surface free energy is smaller than that of the surface of the PBN crucible before melting, recrystallization and precipitation (for example, the original PBN crucible), so that the wettability is reduced. This is the Young's equation, ie, γ SL −γ S + γ
L cos θ = 0 [However, γ SL ; surface tension of the crucible, γ S ;
Interfacial tension of the crucible material and the liquid encapsulant, gamma L; contact angle by gamma S is reduced in surface tension] of the liquid 90 °
This is presumably because the condition for smaller size (condition for wetting), that is, γ S > γ SL + γ L is not satisfied.

【0034】また、結晶粒が成長することにより、面粗
さが増大するが、凹凸のある面の濡れに対するウエンゼ
ルの式によれば、上記ヤングの式でのθの代わりにθW
を定義し、 cosθW =r cosθ〔但し、θW ;みかけの
接触角、r;滑らかな面の実際の面積〕となる。これ
は、表面積が増大することによって、濡れ易い場合には
ますます濡れ易く、濡れ難い場合にはますます濡れ難く
なることが示される。前記再結晶層はBN微結晶粒の成
長した層であり、BN微結晶粒の成長により面粗さが増
大している。従って、かかるBN微結晶粒の成長による
面粗さの増大も、ルツボと液体封止剤との濡れ性をさら
に低下させることになる。
Although the surface roughness is increased by the growth of the crystal grains, according to the Wenzel's formula for the wetting of the uneven surface, θ W is used instead of θ in the Young's formula.
Cos θ W = r cos θ [where, θ W ; apparent contact angle, r; actual area of a smooth surface]. This indicates that the increased surface area makes it more and more wettable if it is easy to get wet, and more difficult to get wet if it is difficult to get wet. The recrystallized layer is a layer in which BN microcrystal grains are grown, and the surface roughness is increased by the growth of BN microcrystal grains. Therefore, the increase in the surface roughness due to the growth of the BN fine crystal grains further reduces the wettability between the crucible and the liquid sealant.

【0035】上記低密度(密度:2.0g/cm3未満)の熱分
解窒化ホウ素ルツボに対して、高密度(密度:2.0g/cm3
以上)の熱分解窒化ホウ素ルツボは、結晶子サイズが大
きく、又、非等方的である(長方形状、層状的で配向度
が高い)ので、融液や液体封止剤との物理的、化学的反
応に関与する面の表面積が小さくなり、そのためルツボ
材が液体封止剤に溶解し難く、その結果、ルツボ内面に
窒化ホウ素の再結晶層(即ち、劣化層)が形成され難
く、劣化層の厚みが著しく減少し、従って、洗浄処理等
のプロセスでの剥離が生じ難く、そのためルツボ内面の
剥離によるルツボ寿命の低下を抑制し得、ルツボ寿命が
長くなる。
With respect to the low-density (density: less than 2.0 g / cm 3 ) pyrolytic boron nitride crucible, the high-density (density: 2.0 g / cm 3)
The above-mentioned pyrolytic boron nitride crucible has a large crystallite size and is anisotropic (rectangular, layered, and highly oriented), so that it cannot be physically and melted or a liquid sealant. The surface area of the surface involved in the chemical reaction is reduced, so that the crucible material is hardly dissolved in the liquid sealant, and as a result, a recrystallized layer of boron nitride (ie, a degraded layer) is hardly formed on the inner surface of the crucible, and the The thickness of the layer is remarkably reduced, and therefore, peeling in a process such as a cleaning process is unlikely to occur. Therefore, a decrease in crucible life due to peeling of the inner surface of the crucible can be suppressed, and the crucible life is prolonged.

【0036】又、上記の如く窒化ホウ素の再結晶層(劣
化層)が形成され難く、その厚みが著しく減少するの
で、窒化ホウ素の再結晶層の形成による表面張力の低下
が起こり難く、そのため液体封止剤との濡れの悪化が起
こり難く、化合物半導体単結晶製造のための原料融液を
完全にとりまくように液体封止剤層を形成させることが
でき、従って、液体封止剤とルツボとの濡れの悪化によ
る単結晶品質の低下を抑制し得、単結晶品質が向上し、
単結晶の製造歩留まりが向上する。
Further, as described above, a recrystallized layer (deteriorated layer) of boron nitride is hardly formed, and its thickness is significantly reduced. Therefore, a decrease in surface tension due to the formation of the recrystallized layer of boron nitride hardly occurs. Deterioration of the wetting with the sealant is unlikely to occur, and the liquid sealant layer can be formed so as to completely surround the raw material melt for the production of the compound semiconductor single crystal. Of single crystal quality due to deterioration of wettability of single crystal can be suppressed,
The production yield of single crystals is improved.

【0037】従って、本発明に係る化合物半導体単結晶
の製造方法によれば、ルツボ内面の剥離によるルツボ寿
命の低下を抑制し得、ルツボ寿命の向上がはかれると共
に、液体封止剤とルツボとの濡れの悪化による単結晶品
質の低下及び単結晶の製造歩留まりの低下を抑制し得、
単結晶品質の向上及び単結晶の製造歩留まりの向上がは
かれるようになる。
Therefore, according to the method of manufacturing a compound semiconductor single crystal according to the present invention, it is possible to suppress a decrease in crucible life due to peeling of the inner surface of the crucible, to improve the crucible life, and to improve the performance of the liquid sealant and the crucible. A decrease in single crystal quality due to deterioration of wetting and a decrease in production yield of the single crystal can be suppressed,
The single crystal quality and the production yield of the single crystal can be improved.

【0038】図3に、単結晶製造に使用した熱分解窒化
ホウ素ルツボの密度と、単結晶製造使用によりルツボ内
面に形成された劣化層(再結晶層:h-BN層)の厚み、再
結晶層での最大結晶粒サイズとの関係を示す。図3か
ら、熱分解窒化ホウ素ルツボの密度が高くなると、劣化
層の厚み及び最大結晶粒サイズが小さくなり、特に、熱
分解窒化ホウ素ルツボの密度が2.0g/cm3以上になると、
劣化層の厚み及び最大結晶粒サイズが小さくなることが
わかる。又、密度:2.2g/cm3の熱分解窒化ホウ素ルツボ
の場合には、h-BN結晶粒が認められないことがわかる。
FIG. 3 shows the density of the pyrolytic boron nitride crucible used for the production of the single crystal, the thickness of the deteriorated layer (recrystallized layer: h-BN layer) formed on the inner surface of the crucible by the production of the single crystal, and the recrystallization. 4 shows the relationship with the maximum grain size in a layer. From FIG. 3, when the density of the pyrolytic boron nitride crucible increases, the thickness of the deteriorated layer and the maximum crystal grain size decrease, and particularly, when the density of the pyrolytic boron nitride crucible becomes 2.0 g / cm 3 or more,
It can be seen that the thickness of the deteriorated layer and the maximum crystal grain size are reduced. In the case of a pyrolytic boron nitride crucible having a density of 2.2 g / cm 3 , it can be seen that no h-BN crystal grains are observed.

【0039】ここで、熱分解窒化ホウ素ルツボの厚みは
一般的に0.8 〜1.0mm 程度であるとし、その場合のルツ
ボ寿命を試算する。図3からわかる如く、密度:2.0g/c
m3未満の熱分解窒化ホウ素ルツボの場合、劣化層の厚み
は約300 μm 以上であるので、2〜3回程度しか使えな
いことになる。これに対して、密度:2.05g/cm3 の熱分
解窒化ホウ素ルツボの場合、劣化層の厚みは100 μm 程
度であるので、8〜10回程度は使えることになり、3倍
以上のルツボ寿命となる。かかる試算結果及び図3から
わかる如く、熱分解窒化ホウ素ルツボはその密度:2.0g
/cm3を境にして極端にルツボ寿命に差が生じる。
Here, the thickness of the thermally decomposed boron nitride crucible is generally about 0.8 to 1.0 mm, and the crucible life in that case is estimated. As can be seen from FIG. 3, the density: 2.0 g / c
In the case of a thermally decomposed boron nitride crucible of less than m 3 , the thickness of the deteriorated layer is about 300 μm or more, so that it can be used only about two or three times. On the other hand, in the case of a pyrolytic boron nitride crucible having a density of 2.05 g / cm 3 , since the thickness of the deteriorated layer is about 100 μm, it can be used about 8 to 10 times, and the crucible life is three times or more. Becomes As can be seen from the calculation results and FIG. 3, the pyrolytic boron nitride crucible has a density of 2.0 g.
An extreme difference in crucible life occurs at / cm 3 .

【0040】又、熱分解窒化ホウ素ルツボは一般的に高
価なものであり、ルツボ寿命:2〜3回程度のもので
は、化合物半導体単結晶及びその製造方法にかかるコス
トに占めるルツボ費用の割合が大き過ぎて実用に適さな
いが、ルツボ寿命:4回程度以上のものでは実用可能で
ある。かかる点からも、熱分解窒化ホウ素ルツボの密度
を2.0g/cm3以上にすることの意義がある。
The pyrolytic boron nitride crucible is generally expensive, and if the crucible life is about two to three times, the ratio of the crucible cost to the cost of the compound semiconductor single crystal and the manufacturing method thereof is low. Although it is too large to be suitable for practical use, a crucible with a life of about four times or more can be used. From this point of view, it is meaningful to set the density of the pyrolytic boron nitride crucible to 2.0 g / cm 3 or more.

【0041】ところで、熱分解窒化ホウ素ルツボの配向
度は密度及び結晶子サイズと相関関係にある。即ち、低
密度であれば低配向度であり、高密度であれば高配向度
であり、そして、前記本発明に係る高密度(密度:2.0g
/cm3以上)の熱分解窒化ホウ素ルツボは、配向度:80以
上の熱分解窒化ホウ素ルツボに相当する。従って、かか
る配向度:80以上の熱分解窒化ホウ素ルツボを成長容器
として用いると、前記本発明(第1発明)の場合と同様
の作用効果が得られる(第2発明)。
The degree of orientation of the pyrolytic boron nitride crucible has a correlation with the density and the crystallite size. That is, if the density is low, the degree of orientation is low, if the density is high, the degree of orientation is high, and the high density (density: 2.0 g
/ cm 3 or more) corresponds to a pyrolytic boron nitride crucible having an orientation degree of 80 or more. Therefore, when a pyrolytic boron nitride crucible having such a degree of orientation: 80 or more is used as a growth vessel, the same operation and effect as in the case of the present invention (first invention) can be obtained (second invention).

【0042】ここで、上記熱分解窒化ホウ素ルツボの配
向度は例えば下記の如きX線回折により求められる。即
ち、熱分解窒化ホウ素ルツボは、ルツボ形状の基板上に
CVD法等により熱分解窒化ホウ素を堆積し、積層して所
定厚みにした後、ルツボ形状の基板を外すことにより作
製される。このルツボからX線回折用試料を採取し、こ
の試料について熱分解窒化ホウ素の積層面に平行な面
(c面)及び垂直な面(A面)でのX線回折をし、それ
により熱分解窒化ホウ素の積層面と平行な面(c面)で
の 002面の回折強度(以下、C2)、該c面での 100面の
回折強度(以下、C1)、熱分解窒化ホウ素の積層面と垂
直な面(A面)での 002面の回折強度(以下、A2)、該
積層面と垂直な面での 100面の回折強度(以下、A1)を
求め、配向度=(C2/C1)/(A2/A1)の式より配向度
を算出して求める。
Here, the degree of orientation of the pyrolytic boron nitride crucible can be determined by, for example, the following X-ray diffraction. That is, the pyrolytic boron nitride crucible is placed on a crucible-shaped substrate.
It is manufactured by depositing pyrolytic boron nitride by a CVD method or the like, laminating the layers to a predetermined thickness, and then removing the crucible-shaped substrate. A sample for X-ray diffraction is collected from the crucible, and the sample is subjected to X-ray diffraction on a plane (c-plane) parallel to the lamination plane of pyrolytic boron nitride and a plane (A-plane) perpendicular to the lamination plane. Diffraction intensity of 002 plane (hereinafter, C 2 ) on a plane (c-plane) parallel to the lamination plane of boron nitride, diffraction intensity of 100 plane on the c-plane (hereinafter, C 1 ), lamination of pyrolytic boron nitride The diffraction intensity of the 002 plane on the plane perpendicular to the plane (A plane) (hereinafter, A 2 ) and the diffraction intensity of the 100 plane on the plane perpendicular to the lamination plane (A 1 ) were obtained. It is determined by calculating the degree of orientation from the formula: C 2 / C 1 ) / (A 2 / A 1 ).

【0043】一方、低配向度であれば結晶子サイズが小
さく、高配向度であれば結晶子サイズが大きいので、低
密度であれば結晶子サイズが小さく、高密度であれば結
晶子サイズが大きく、そして、前記本発明に係る高密度
(密度:2.0g/cm3以上)の熱分解窒化ホウ素ルツボは、
a軸方向の結晶子サイズ:80Å以上の熱分解窒化ホウ素
ルツボに相当する。従って、かかる結晶子サイズ:80Å
以上の熱分解窒化ホウ素ルツボを成長容器として用いる
と、前記本発明(第1発明)の場合と同様の作用効果が
得られる(第3発明)。ここで、a軸方向とは、熱分解
窒化ホウ素の積層面に平行な方向のことである。a軸方
向の結晶子サイズとは、熱分解窒化ホウ素の積層面に平
行な方向の結晶子サイズ、即ち、c面を観察した場合に
観察される結晶の長手方向のサイズのことである。
On the other hand, when the degree of orientation is low, the crystallite size is small, and when the degree of orientation is high, the crystallite size is large. The large, high-density (density: 2.0 g / cm 3 or more) pyrolytic boron nitride crucible according to the present invention is:
Crystallite size in the a-axis direction: Equivalent to a pyrolytic boron nitride crucible of 80 ° or more. Therefore, such crystallite size: 80Å
When the above pyrolytic boron nitride crucible is used as a growth vessel, the same function and effect as in the case of the present invention (first invention) can be obtained (third invention). Here, the a-axis direction is a direction parallel to the lamination surface of the pyrolytic boron nitride. The crystallite size in the a-axis direction refers to the crystallite size in the direction parallel to the plane of lamination of the pyrolytic boron nitride, that is, the size in the longitudinal direction of the crystal observed when the c-plane is observed.

【0044】ところで、一般に熱分解窒化ホウ素ルツボ
はその密度が高くなるに伴って配向度が高くなるため、
剥離を起こし易くなる傾向があり、特に、熱分解窒化ホ
ウ素ルツボの増径部の端等の如くRの小さい部分では熱
応力が集中し易いため、この小R部から大きく剥離した
り、ルツボが破損したりすることがある。従って、本発
明に係るルツボの如き高密度熱分解窒化ホウ素ルツボに
おいて、ルツボ寿命の観点からは前記の如き剥離や破損
を防止するための対策を講じておくことが望ましい。
By the way, in general, the degree of orientation of a pyrolytic boron nitride crucible increases as its density increases.
There is a tendency for peeling to occur, and in particular, thermal stress tends to concentrate at a small R portion such as the end of a diameter-increased portion of a pyrolytic boron nitride crucible. It may be damaged. Therefore, in the high-density pyrolytic boron nitride crucible such as the crucible according to the present invention, it is desirable to take the above-mentioned countermeasures for preventing peeling or breakage from the viewpoint of crucible life.

【0045】そこで、前記本発明に係る高密度熱分解窒
化ホウ素ルツボ(密度:2.0g/cm3以上のもの、配向度:
80以上のもの、或いは、a軸方向の結晶子サイズ:80Å
以上のもの)がルツボ製造時に粗面構造を持たせて堆積
されてなるようにすることが望ましい(第4発明)。そ
うすると、ルツボの小R部での剥離及びルツボ破損が生
じ難くなり、ルツボ寿命がより向上する。即ち、熱分解
窒化ホウ素を堆積し積層させて熱分解窒化ホウ素ルツボ
を製造する際に、堆積層の表面が粗面になるように堆積
し、その上に堆積層の表面が粗面になるように堆積し、
これを繰り返して各堆積層の表面が粗面になるように次
々と堆積するようにすると、得られる熱分解窒化ホウ素
ルツボは各堆積層間の密着性が向上し、そのため、各堆
積層間の耐剥離性が向上し、ルツボ強度が向上し、従っ
て、ルツボの小R部での剥離及びルツボ破損が生じ難く
なり、又、該小R部以外の個所での剥離及びルツボ破損
もさらに生じ難くなり、ルツボ寿命がより向上する。こ
のようなルツボは、例えばNon-Wetting Nitride として
市販されている粗面構造をとるルツボを密度:2.0g/cm3
以上に製造することにより得られる。
Therefore, the high-density pyrolytic boron nitride crucible according to the present invention (having a density of 2.0 g / cm 3 or more, a degree of orientation:
80 or more, or crystallite size in the a-axis direction: 80Å
Is desirably deposited with a rough surface structure during the production of the crucible (fourth invention). Then, peeling and crucible breakage at the small radius portion of the crucible are less likely to occur, and the crucible life is further improved. That is, when a pyrolytic boron nitride is deposited and laminated to produce a pyrolytic boron nitride crucible, the surface of the deposition layer is deposited so as to have a rough surface, and the surface of the deposition layer has a rough surface thereon. Deposited on
By repeating this process so that the surfaces of the deposited layers are successively roughened, the resulting thermally decomposed boron nitride crucible has improved adhesion between the deposited layers, and therefore, the separation resistance between the deposited layers is improved. The properties are improved, the crucible strength is improved, and therefore, peeling and crucible damage at the small R portion of the crucible are less likely to occur, and peeling and crucible damage at locations other than the small R portion are further less likely to occur, Crucible life is further improved. Such a crucible is, for example, a commercially available non-wetting nitrate crucible having a rough surface structure with a density of 2.0 g / cm 3.
It is obtained by manufacturing as described above.

【0046】又、前記ルツボのR部分が該R部分以外の
部分よりも低密度であると共に低配向度であるようにす
ることが望ましい(第5発明)。そうすると、ルツボの
小R部での剥離及びルツボ破損が生じ難くなり、ルツボ
寿命がより向上する。このとき、前記ルツボのR部分の
密度を2.0g/cm3より少し低くすると、さらにルツボ寿命
が向上する。かかるルツボを図4に例示する。
It is desirable that the R portion of the crucible has a lower density and a lower degree of orientation than portions other than the R portion (fifth invention). Then, peeling and crucible breakage at the small radius portion of the crucible are less likely to occur, and the crucible life is further improved. At this time, when the density of the R portion of the crucible is slightly lower than 2.0 g / cm 3 , the crucible life is further improved. Such a crucible is illustrated in FIG.

【0047】更に、前記ルツボの外側面に密度:2.0g/c
m3未満の熱分解窒化ホウ素が堆積されているようにする
ことが望ましい(第6発明)。そうすると、ルツボの小
R部での剥離及びルツボ破損が生じ難くなり、ルツボ寿
命がより向上する。
Further, the outer surface of the crucible has a density of 2.0 g / c.
It is desirable that less than m 3 of pyrolytic boron nitride be deposited (sixth invention). Then, peeling and crucible breakage at the small radius portion of the crucible are less likely to occur, and the crucible life is further improved.

【0048】前記本発明に係る高密度熱分解窒化ホウ素
ルツボに代えて、密度:2.0g/cm3以上の熱分解窒化ホウ
素、配向度:80以上の熱分解窒化ホウ素、a軸方向の結
晶子サイズ:80Å以上の熱分解窒化ホウ素の一種以上と
密度:2.0g/cm3未満の熱分解窒化ホウ素とを交互に堆積
させてなるルツボを成長容器として用いると、前記本発
明(第1発明)の場合と同様の作用効果が得られると共
に、ルツボの小R部での剥離及びルツボ破損が生じ難く
なり、ルツボ寿命をより向上し得るようになる(第7発
明)。
In place of the high-density pyrolytic boron nitride crucible according to the present invention, pyrolytic boron nitride having a density of 2.0 g / cm 3 or more, pyrolytic boron nitride having an orientation degree of 80 or more, and crystallites in the a-axis direction When the crucible obtained by alternately depositing at least one kind of pyrolytic boron nitride having a size of 80 mm or more and pyrolytic boron nitride having a density of less than 2.0 g / cm 3 is used as a growth vessel, the present invention (first invention) The same operation and effect as in the case (1) can be obtained, and peeling and crucible breakage at the small R portion of the crucible hardly occur, so that the crucible life can be further improved (seventh invention).

【0049】前記本発明に係る高密度熱分解窒化ホウ素
ルツボに代えて、密度:2.0g/cm3以上の熱分解窒化ホウ
素、配向度:80以上の熱分解窒化ホウ素、a軸方向の結
晶子サイズ:80Å以上の熱分解窒化ホウ素の一種以上を
高純度炭素又は高純度BN等の焼結体からなるルツボの
内側面に堆積させてなるルツボを成長容器として用いる
と、前記本発明(第1発明)の場合と同様の作用効果が
得られると共に、ルツボの小R部での剥離及びルツボ破
損が生じ難くなり、ルツボ寿命をより向上し得、又、ル
ツボコストの低減がはかれるようになる(第8発明)。
In place of the high density pyrolytic boron nitride crucible according to the present invention, pyrolytic boron nitride having a density of 2.0 g / cm 3 or more, pyrolytic boron nitride having an orientation degree of 80 or more, and crystallites in the a-axis direction When the crucible formed by depositing at least one kind of pyrolytic boron nitride having a size of 80 ° or more on the inner surface of a crucible made of a sintered body such as high-purity carbon or high-purity BN is used as a growth vessel, Invention), the same effects as those of the invention can be obtained, and peeling and crucible breakage at the small R portion of the crucible are less likely to occur, so that the crucible life can be further improved, and the crucible cost can be reduced. Eighth invention).

【0050】本発明において、熱分解窒化ホウ素ルツボ
の厚みや直径等の大きさは、特には限定されず、製造す
る化合物半導体単結晶の種類や使用目的、融液に与える
温度勾配等の製造条件等に応じて適宜設定される。
In the present invention, the size, such as the thickness and diameter, of the pyrolytic boron nitride crucible is not particularly limited, and the production conditions such as the type and purpose of the compound semiconductor single crystal to be produced, the temperature gradient applied to the melt, and the like. It is set as appropriate according to the above.

【0051】化合物半導体単結晶の製造の際のルツボの
加熱温度、融液の温度勾配、ルツボの下降速度等の製造
条件は、特には限定されず、製造する化合物半導体単結
晶の種類や使用目的等に応じて適宜設定される。
Manufacturing conditions such as the heating temperature of the crucible, the temperature gradient of the melt, and the crucible lowering speed during the production of the compound semiconductor single crystal are not particularly limited, and the type and purpose of the compound semiconductor single crystal to be produced are used. It is set as appropriate according to the above.

【0052】本発明法により製造する化合物半導体単結
晶の種類は、限定されず、例えば、GaAs,GaP, InP, Zn
Se,ZnS, CdTe 等を製造することができる。
The type of the compound semiconductor single crystal manufactured by the method of the present invention is not limited. For example, GaAs, GaP, InP , Zn
Se, ZnS, CdTe, etc. can be manufactured.

【0053】[0053]

【実施例】(実施例1)図4に示す形状を有する熱分解
窒化ホウ素ルツボであって、厚み:0.8mm ,直胴部の直
径:2インチ(50mm),シードウェル部(細径部)の直
径:5mm,高さ(全長):240mm 、直胴部の長さ:180m
m ,シードウェル部の長さ:40mmであり、粗面構造を有
し、密度:2.14g/cm3 である熱分解窒化ホウ素ルツボの
シードウェル部に (111)方位を有するGaP 種結晶を挿入
し、その上にGaP 多結晶塊:1000gを挿入すると共に、そ
の周囲に液体封止剤として水分量:200ppmの粉末状B
2O3:200gを充填し、又、ドーパントとしてGa2S3:0.06g
をルツボ内に添加した。
EXAMPLE 1 Example 1 is a pyrolytic boron nitride crucible having the shape shown in FIG. 4, having a thickness of 0.8 mm, a diameter of a straight body portion of 2 inches (50 mm), and a seed well portion (small diameter portion). Diameter: 5mm, height (total length): 240mm, straight body length: 180m
m, seed well length: 40 mm, rough surface structure, density: 2.14 g / cm 3 Density: 2.14 g / cm 3 Insert a GaP seed crystal with (111) orientation into the seed well part of the crucible. Then, 1000 g of GaP polycrystalline mass is inserted on top of it, and a powder sealant with a water content of 200 ppm
2 O 3 : Fill 200 g, and as a dopant Ga 2 S 3 : 0.06 g
Was added into the crucible.

【0054】次に、このルツボを高圧縦型垂直ブリッジ
マン炉にセットし、室温で40kgのアルゴンを高圧容器内
(炉内)に充填した後、加熱して所定温度(1490℃)に
昇温してルツボ内の結晶及び液体封止剤(B2O3)並びに
ドーパント(Ga2S3)を溶融して融液となすと共に、この
融液の垂直方向(ルツボ軸方向)の温度勾配が10℃/cm
となるようにし、しかる後、ルツボを10mm/hrの速度で
下降させて、結晶を下方から上方に向かって固化させ、
これによりGaP 単結晶の育成を行った。この後、ルツボ
及び結晶を室温まで冷却してから、温メタノール浴中に
て結晶の周囲に取り巻いているB2O3を溶解し、その後、
単結晶を取り出した。
Next, the crucible was set in a high-pressure vertical vertical Bridgman furnace, and at room temperature, 40 kg of argon was charged into the high-pressure vessel (furnace), and then heated to a predetermined temperature (1490 ° C.). Then, the crystal in the crucible, the liquid sealant (B 2 O 3 ) and the dopant (Ga 2 S 3 ) are melted to form a melt, and the temperature gradient in the vertical direction (crucible axis direction) of the melt is reduced. 10 ℃ / cm
Then, the crucible is lowered at a speed of 10 mm / hr to solidify the crystal from below to above,
Thus, a GaP single crystal was grown. Thereafter, the crucible and the crystal were cooled to room temperature, and then B 2 O 3 surrounding the crystal was dissolved in a warm methanol bath, and thereafter,
A single crystal was taken out.

【0055】この後、ルツボを観察及び調査したとこ
ろ、ルツボ内面に厚み:30μm の白色の劣化層が形成さ
れていることがわかった。そして、この劣化層を剥がし
てみたところ、この劣化層は厚み:20μm の熱分解窒化
ホウ素の層とともに容易にルツボ壁より剥離した。
After that, when the crucible was observed and examined, it was found that a white deteriorated layer having a thickness of 30 μm was formed on the inner surface of the crucible. When the deteriorated layer was peeled off, the deteriorated layer was easily peeled off from the crucible wall together with a layer of a pyrolytic boron nitride having a thickness of 20 μm.

【0056】上記剥離後のルツボの内壁よりX線回折用
粉末状試料を採取し、X線粉末回折によって定性分析を
行った結果、図5-(a)に示す如く、熱分解窒化ホウ素の
アモルファス構造の特徴を示すもの、即ち、アモルファ
ス構造の熱分解窒化ホウ素であることが確認され、従っ
て、劣化層の厚みは薄く30μm 程度であり、ルツボの劣
化は内部にまで進んでいないことが判明した。
A powdery sample for X-ray diffraction was collected from the inner wall of the crucible after the peeling, and qualitative analysis was performed by X-ray powder diffraction. As a result, as shown in FIG. It was confirmed that the material exhibited structural features, that is, pyrolytic boron nitride having an amorphous structure.Therefore, it was found that the thickness of the deteriorated layer was as thin as about 30 μm, and that the crucible did not progress to the inside. .

【0057】一方、得られたGaP 単結晶は、表面に光沢
があり、これは単結晶の育成、製造の際に液体封止剤が
完全に結晶(融液)の周囲を取り巻いていたことを示し
ている。
On the other hand, the obtained GaP single crystal had a glossy surface, which means that the liquid sealant completely surrounded the crystal (melt) during the growth and manufacture of the single crystal. Is shown.

【0058】上記の如き GaP種結晶の挿入、 GaP多結晶
の挿入、液体封止剤(B2O3)の充填、ドーパント(Ga2S3)
の添加、昇温、 GaP単結晶の育成、育成後の GaP単結晶
の取り出しという工程を合計10回繰り返して行った。そ
の結果、ルツボの破損は全く生じなかった。又、得られ
たGaP 単結晶は、10回のいずれの場合も双晶や多結晶が
認められず、更に、転位密度はいずれの場合も100 個/
cm2 以下であり、高品質のものであった。
Insertion of GaP seed crystal, insertion of GaP polycrystal, filling of liquid sealant (B 2 O 3 ), dopant (Ga 2 S 3 )
, The temperature was raised, the GaP single crystal was grown, and the GaP single crystal was taken out after the growth was repeated 10 times in total. As a result, no crucible was broken. Further, in the obtained GaP single crystal, no twin or polycrystal was observed in any of the 10 times, and the dislocation density was 100 / s in each case.
cm 2 or less and of high quality.

【0059】(比較例1)密度:1.90g/cm3 の熱分解窒
化ホウ素ルツボを用い、この点を除き実施例1の場合と
同様の条件、方法によりGaP 単結晶の育成、製造を行っ
た。
Comparative Example 1 Using a pyrolytic boron nitride crucible having a density of 1.90 g / cm 3, a GaP single crystal was grown and manufactured under the same conditions and method as in Example 1 except for this point. .

【0060】その結果、単結晶の育成後のルツボ内面に
厚み:300 μm の白色の劣化層が形成されていた。この
劣化層より試料を採取し、X線粉末回折による定性分析
を行った結果、図5-(b)に示す如く、h-BNの結晶である
ことが確認され、従って、劣化層の厚みは厚く300 μm
であり、ルツボの劣化は相当内部にまで進んでいること
が判明した。
As a result, a white deteriorated layer having a thickness of 300 μm was formed on the inner surface of the crucible after growing the single crystal. A sample was taken from the deteriorated layer, and qualitative analysis was performed by X-ray powder diffraction. As a result, as shown in FIG. 5- (b), it was confirmed that the crystal was an h-BN crystal. 300 μm thick
It was found that the deterioration of the crucible had advanced considerably inside.

【0061】一方、得られたGaP 単結晶は、表面に光沢
がなく、これは液体封止剤とルツボとの濡れ性が悪く、
液体封止剤とルツボとが濡れていなかったことを示唆し
ている。
On the other hand, the obtained GaP single crystal has no gloss on the surface, which is poor in wettability between the liquid sealant and the crucible.
This suggests that the liquid sealant and the crucible were not wet.

【0062】上記の如きGaP 単結晶の育成、製造工程を
繰り返して行ったところ、3回目には降温中(ルツボの
下降中、単結晶の育成後の冷却中)にルツボにクラック
が生じた。尚、1回目の育成では、双晶や多結晶が少な
く、転位密度:平均100 個/cm2 以下である高品質のGa
P 単結晶が得られたものの、2回目の育成では、結晶増
径部より多結晶化しており、3回目の育成では、双晶や
多結晶が増え、転位密度:平均10000 個/cm2 程度であ
り、品質が低いものしか得られず、単結晶の育成の繰り
返しのたびに品質が異なり、一定しなかった。
When the growth and production steps of the GaP single crystal as described above were repeated, cracks occurred in the crucible during the third temperature reduction (during lowering of the crucible, cooling during the growth of the single crystal). In the first growth, high-quality Ga having few twins and polycrystals and a dislocation density of 100 or less / cm 2 on average was used.
Although a P single crystal was obtained, in the second growth, polycrystallized from the crystal diameter-increased part, and in the third growth, twins and polycrystals increased, and the dislocation density was about 10,000 / cm 2 on average. Thus, only low-quality ones were obtained, and the quality was different and not constant each time the single crystal was grown.

【0063】(実施例2)厚み:10μm 、密度:1.90g/
cm3 の熱分解窒化ホウ素の層と、厚み:10μm 、密度:
2.10g/cm3 の熱分解窒化ホウ素の層とを交互に堆積(積
層)させた構造を有するルツボであって、直胴部の直
径:3インチ(75mm)であり、その他の寸法及び形状が
実施例1の場合と同様である熱分解窒化ホウ素ルツボを
用いて、下記の如くしてGaAs単結晶の育成を行った。
Example 2 Thickness: 10 μm, Density: 1.90 g /
cm 3 layer of pyrolytic boron nitride, thickness: 10 μm, density:
2. A crucible having a structure in which layers of pyrolytic boron nitride of 2.10 g / cm 3 are alternately deposited (laminated). The diameter of the straight body is 3 inches (75 mm), and other dimensions and shapes are different. Using the same pyrolytic boron nitride crucible as in Example 1, GaAs single crystals were grown as follows.

【0064】即ち、上記熱分解窒化ホウ素ルツボのシー
ドウェル部に (100)方位を有するGaAs種結晶を挿入し、
その上にGaAs多結晶塊:3000gを挿入すると共に、その周
囲に液体封止剤として水分量:100ppmの粉末状B2O3:40g
を充填した。このとき、GaAs多結晶塊には予めドーパン
トとしてシリコン:1.0×1019/cm3分散させ、ルツボ形状
に沿う形状に成形してあるものを用いた。
That is, a GaAs seed crystal having a (100) orientation was inserted into the seed well portion of the pyrolytic boron nitride crucible,
3,000 g of GaAs polycrystalline mass is inserted on top of it, and powder B 2 O 3 having a water content of 100 ppm: 40 g is used as a liquid sealant around it.
Was charged. At this time, the GaAs polycrystalline mass used was a material in which silicon: 1.0 × 10 19 / cm 3 was dispersed as a dopant in advance and shaped into a crucible shape.

【0065】次に、このルツボを石英製の封管容器内
に、内部を、融液の形成される温度で解離するひ素の圧
力に対応する量の金属ひ素と共に、封管した。この封管
後のものを常圧縦型垂直ブリッジマン炉にセットした
後、加熱して所定温度(1300℃)に昇温してルツボ内原
料を溶融して融液となすと共に、この融液の垂直方向
(ルツボ軸方向)の温度勾配が15℃/cmとなるように
し、しかる後、ルツボを5mm/hrの速度で下降させて、
GaAs単結晶の育成を行った。この後、ルツボ及び結晶を
室温まで冷却してから、温メタノール浴中にて結晶の周
囲に取り巻いているB2O3を溶解し、その後、単結晶を取
り出した。
Next, the crucible was sealed in a sealed tube made of quartz together with an amount of metallic arsenic corresponding to the pressure of arsenic that dissociates at the temperature at which the melt is formed. After the tube was set in a normal pressure vertical vertical Bridgman furnace, the tube was heated and heated to a predetermined temperature (1300 ° C.) to melt the raw material in the crucible to form a melt. So that the temperature gradient in the vertical direction (crucible axis direction) becomes 15 ° C./cm, and then the crucible is lowered at a speed of 5 mm / hr.
A GaAs single crystal was grown. Thereafter, the crucible and the crystal were cooled to room temperature, and then B 2 O 3 surrounding the crystal was dissolved in a warm methanol bath, and then the single crystal was taken out.

【0066】その結果、単結晶育成後のルツボ内面に厚
み:約20μm の白色の劣化層が形成されていることがわ
かった。この劣化層は簡単にルツボ壁より剥離した。こ
の剥離後のルツボ内壁より試料を採取し、分析を行った
結果、高密度(2.10g/cm3 )であり、前記剥離は高密度
層(密度:2.10g/cm3 の熱分解窒化ホウ素層)と低密度
層(密度:1.90g/cm3 の熱分解窒化ホウ素層)との間で
生じ、又、剥離したのは低密度層、高密度層を合わせた
1層分(各1層)であることがわかった。
As a result, it was found that a white deteriorated layer having a thickness of about 20 μm was formed on the inner surface of the crucible after growing the single crystal. This deteriorated layer was easily separated from the crucible wall. The crucible inner wall after peeling Samples were taken from the result of analysis, a high density (2.10 g / cm 3), the release high density layer (density pyrolytic boron nitride layer of 2.10 g / cm 3 ) And a low-density layer (pyrolytic boron nitride layer with a density of 1.90 g / cm 3 ), and peeled off for one low-density layer and one high-density layer (one layer each) It turned out to be.

【0067】得られたGaAs単結晶は、表面に光沢があ
り、これは単結晶の育成の際に液体封止剤が完全に結晶
(融液)の周囲を取り巻いていたことを示している。
又、転位密度:100 個/cm2 以下であり、キャリア濃度
は1.0 ×1018〜6.0 ×1018/cm3の間に制御されたもので
あった。
The obtained GaAs single crystal had a glossy surface, indicating that the liquid sealant completely surrounded the crystal (melt) during the growth of the single crystal.
The dislocation density was 100 or less / cm 2 and the carrier concentration was controlled between 1.0 × 10 18 and 6.0 × 10 18 / cm 3 .

【0068】上記の如きGaAs単結晶の育成、製造を繰り
返して行った。その結果、ルツボは約20μm づつ劣化し
ていくことがわかり、15回の繰り返し使用においても破
損は生じなかった。又、得られたGaAs単結晶は、15回の
いずれの場合も双晶や多結晶が認められず、歩留りは10
0 %であり、品質が安定していた。
The growth and production of the GaAs single crystal as described above were repeated. As a result, it was found that the crucible deteriorated by about 20 μm at a time, and no damage occurred even after repeated use of 15 times. In the obtained GaAs single crystal, no twin or polycrystal was observed in any of the 15 times, and the yield was 10%.
0%, and the quality was stable.

【0069】(比較例2)密度:1.90g/cm3 の熱分解窒
化ホウ素ルツボを用い、この点を除き実施例2の場合と
同様の条件、方法によりGaAs単結晶の育成、製造を行っ
た。
Comparative Example 2 Using a pyrolytic boron nitride crucible having a density of 1.90 g / cm 3, a GaAs single crystal was grown and manufactured under the same conditions and method as in Example 2 except for this point. .

【0070】その結果、単結晶の育成後のルツボ内面に
厚み:250 μm の白色の劣化層が形成されていた。又、
表面の光沢にはむらを生じており、このことからルツボ
内面が濡れていた部分とそうでない部分とを生じていた
ことが示唆される。
As a result, a white deteriorated layer having a thickness of 250 μm was formed on the inner surface of the crucible after growing the single crystal. or,
The surface gloss was uneven, suggesting that the inner surface of the crucible had wet and non-wet parts.

【0071】上記の如きGaAs単結晶の育成、製造を繰り
返して行ったところ、1回目は結晶増径部より多結晶化
しており、2回目には単結晶が得られた。この単結晶の
転位密度は平均1000個/cm2 以下であったが、サンプリ
ングしたウエーハーの一部には、図6に示される如く、
結晶周辺部に高転位密度の部分が偏存しているものがあ
った。3回目の育成では双晶の導入されたものが得られ
た。
When the growth and production of the GaAs single crystal as described above were repeated, the first time the polycrystal was formed from the crystal diameter-increased portion, and the second time a single crystal was obtained. Although the dislocation density of this single crystal was 1000 or less / cm 2 on average, some of the sampled wafers contained, as shown in FIG.
In some cases, high dislocation density portions were unevenly distributed around the crystal. In the third growth, one in which twins were introduced was obtained.

【0072】(実施例3)高純度炭素からなる内径:1
インチのルツボの内面に、厚み:100μm 、密度:2.20g/
cm3 の熱分解窒化ホウ素の層を形成させた構造を有する
ルツボを成長容器として用い、下記の如くしてZnSe単結
晶の育成を行った。
Example 3 Inner Diameter of High Purity Carbon: 1
On the inner surface of an inch crucible, thickness: 100μm, density: 2.20g /
Using a crucible having a structure in which a layer of pyrolytic boron nitride of cm 3 was formed as a growth vessel, a ZnSe single crystal was grown as follows.

【0073】即ち、上記ルツボのシードウェル部にZnSe
種結晶を挿入し、その上にZnSe多結晶塊:100g を挿入す
ると共に、その周囲に水分量:100ppmの粉末状B2O3:20g
を充填した。このルツボを蒸気圧制御高圧縦型ブリッジ
マン成長炉にセットし、この容器内(炉内)に常温でア
ルゴンを2気圧導入し、所定温度(1540℃)に昇温して
ルツボ内原料を溶融して融液となすと共に、この融液の
垂直方向の温度勾配が約20℃/cmとなるようにし、一
方、蒸気圧制御リザーバーには亜鉛を充填し、リザーバ
ー温度を1000℃に設定した。しかる後、ルツボを3mm/
hrの速度で下降させて、ZnSe単結晶の育成を行った。次
に、これを100 ℃/hrで1200℃まで降温した後、300 ℃
/hrで室温まで冷却した。この冷却後、温メタノール浴
中にてB2O3を溶解し、その後、結晶塊(インゴット)を
取り出した。
That is, ZnSe was added to the seed well of the crucible.
A seed crystal is inserted, and ZnSe polycrystalline mass: 100 g is inserted thereon, and a powdery B 2 O 3 having a water content of 100 ppm: 20 g is placed around the seed crystal.
Was charged. This crucible is set in a vapor pressure controlled high-pressure vertical Bridgman growth furnace, 2 atmospheres of argon are introduced into the vessel (furnace) at room temperature, and the temperature is raised to a predetermined temperature (1540 ° C) to melt the material in the crucible. The melt was then made to have a vertical temperature gradient of about 20 ° C./cm, while the vapor pressure control reservoir was filled with zinc and the reservoir temperature was set at 1000 ° C. After a while, crucible is 3mm /
The ZnSe single crystal was grown by lowering at a rate of hr. Next, the temperature was lowered to 1200 ° C at 100 ° C / hr, and then 300 ° C.
/ Hr to room temperature. After the cooling, B 2 O 3 was dissolved in a warm methanol bath, and then a crystal lump (ingot) was taken out.

【0074】このようにして得られた結晶塊を縦割りし
た後、鏡面研磨し、NaOH水溶液によりエッチングしたと
ころ、図7-(a)に示される如く、結晶塊を貫く双晶が結
晶塊内に4本観察された程度であり、品質が優れている
ことが確認された。即ち、この双晶は、後述する比較例
3の場合に認められるラメラ状の双晶に比較し、極めて
量的に少なく、かかる点において実施例3に係る結晶は
比較例3の場合の結晶よりも品質が優れている。
After the crystal mass obtained in this manner was vertically divided, mirror-polished and etched with an aqueous NaOH solution, twins penetrating the crystal mass were formed in the crystal mass as shown in FIG. Approximately four were observed, and it was confirmed that the quality was excellent. That is, the twins are much smaller in quantity than the lamellar twins observed in the case of Comparative Example 3 described later, and in this respect, the crystals according to Example 3 are larger than the crystals in Comparative Example 3. Even the quality is excellent.

【0075】前記単結晶育成後のルツボ内面に白色の劣
化層が形成されていたが、その厚みは20μm 程度であ
り、薄かった。この劣化層を剥離した後のルツボを再使
用して上記の如きZnSe単結晶の育成を行ったところ、劣
化層の厚みは20μm であった。
A white deteriorated layer was formed on the inner surface of the crucible after the growth of the single crystal, but the thickness was as small as about 20 μm. When the crucible after peeling off the deteriorated layer was reused to grow a ZnSe single crystal as described above, the thickness of the deteriorated layer was 20 μm.

【0076】(比較例3)成長容器として実施例3のル
ツボに代えて密度:1.90g/cm3 の熱分解窒化ホウ素ルツ
ボを用いた。この点を除き実施例3の場合と同様の条
件、方法によりZnSe単結晶の育成を行った。
Comparative Example 3 A thermally decomposed boron nitride crucible having a density of 1.90 g / cm 3 was used in place of the crucible of Example 3 as a growth vessel. A ZnSe single crystal was grown under the same conditions and method as in Example 3 except for this point.

【0077】その結果、単結晶の育成後に液体封止剤の
B2O3は結晶上部に溜まり、その部分が外部まで著しく白
色化しており、大気中に取り出すと、結晶上部とB2O3
の境界部分でルツボが破損した。
As a result, after growing the single crystal,
B 2 O 3 was accumulated at the upper portion of the crystal, and the portion was remarkably whitened to the outside. When taken out into the atmosphere, the crucible was damaged at the boundary between the upper portion of the crystal and B 2 O 3 .

【0078】ルツボを破壊することによって結晶を取り
出したところ、ルツボと結晶との間には液体封止剤が存
在していないことが確認された。
When the crystal was taken out by breaking the crucible, it was confirmed that no liquid sealant was present between the crucible and the crystal.

【0079】得られた結晶の表面には光沢がなく、結晶
を縦割りした後、鏡面研磨し、NaOH水溶液によりエッチ
ングしたところ、図7-(b)に示される如く、ラメラ状の
双晶が観察された。
The surface of the obtained crystal was not glossy, the crystal was vertically divided, mirror-polished, and etched with an aqueous NaOH solution. As shown in FIG. 7- (b), lamella twins were formed. Was observed.

【0080】[0080]

【発明の効果】本発明に係る化合物半導体単結晶の製造
方法によれば、ルツボ内面の剥離によるルツボ寿命の低
下を抑制し得、ルツボ寿命の向上がはかれるようになる
と共に、液体封止剤とルツボとの濡れの悪化による単結
晶品質の低下及び単結晶の製造歩留まりの低下を抑制し
得、単結晶品質の向上及び単結晶の製造歩留まりの向上
がはかれるようになる。
According to the method of manufacturing a compound semiconductor single crystal according to the present invention, the crucible life can be prevented from being shortened due to the peeling of the inner surface of the crucible, and the crucible life can be improved. It is possible to suppress a decrease in the quality of the single crystal and a decrease in the production yield of the single crystal due to the deterioration of the wetting with the crucible, thereby improving the quality of the single crystal and the production yield of the single crystal.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 熱分解窒化ホウ素の結晶学的構造を示す模式
図であって、(a) は低密度の熱分解窒化ホウ素、(b) は
高密度の熱分解窒化ホウ素についてのものである。
FIG. 1 is a schematic view showing the crystallographic structure of pyrolytic boron nitride, wherein (a) is for low-density pyrolytic boron nitride and (b) is for high-density pyrolytic boron nitride.

【図2】 熱分解窒化ホウ素ルツボの断面でのルツボ内
面側近傍の結晶構造を示す図面代用写真であって、(a)
は単結晶製造に使用後の熱分解窒化ホウ素ルツボ、(b)
は単結晶製造に使用前の熱分解窒化ホウ素ルツボについ
てのものである。
FIG. 2 is a photograph substituted for a drawing showing a crystal structure near the crucible inner surface side in a cross section of the pyrolytic boron nitride crucible, wherein (a)
Is a pyrolytic boron nitride crucible used for single crystal production, (b)
Is for a pyrolytic boron nitride crucible before use in single crystal production.

【図3】 ルツボ密度と、単結晶製造の際にルツボ内面
に形成された劣化層の厚み、再結晶層における最大結晶
粒サイズとの関係を示す図である。
FIG. 3 is a diagram showing the relationship between the crucible density, the thickness of a deteriorated layer formed on the inner surface of the crucible during the production of a single crystal, and the maximum crystal grain size in a recrystallized layer.

【図4】 本発明に係る熱分解窒化ホウ素ルツボの一例
であってルツボR部が低密度である熱分解窒化ホウ素ル
ツボの形状と各部での密度を示す図である。
FIG. 4 is a view showing an example of a pyrolytic boron nitride crucible according to the present invention, in which a crucible R portion has a low density, and a shape of the pyrolytic boron nitride crucible and a density at each portion.

【図5】 熱分解窒化ホウ素ルツボより採取された試料
のX線粉末回折の結果を示す図であって、(a) は実施例
1に係る熱分解窒化ホウ素ルツボの非劣化層より採取さ
れた試料、(b) は比較例1に係る熱分解窒化ホウ素ルツ
ボの劣化層より採取された試料についてのものである。
FIG. 5 is a diagram showing the results of X-ray powder diffraction of a sample collected from a pyrolytic boron nitride crucible, where (a) is obtained from a non-degraded layer of the pyrolytic boron nitride crucible according to Example 1. Sample (b) is a sample obtained from the deteriorated layer of the pyrolytic boron nitride crucible according to Comparative Example 1.

【図6】 比較例2に係る単結晶製造法により製造され
た単結晶塊より採取したウエーハーでの転位密度分布を
示す図である。
FIG. 6 is a diagram showing a dislocation density distribution on a wafer collected from a single crystal mass produced by a single crystal production method according to Comparative Example 2.

【図7】 製造された単結晶塊での双晶の存在状況をス
ケッチした図であって、(a) は比較例3に係る単結晶製
造法により製造された単結晶塊、(b) は実施例3に係る
単結晶製造法により製造された単結晶塊についてのもの
である。
FIGS. 7A and 7B are diagrams in which the twins in the manufactured single crystal mass are sketched, wherein FIG. 7A is a single crystal mass manufactured by the single crystal manufacturing method according to Comparative Example 3, and FIG. This is for a single crystal mass produced by the single crystal production method according to Example 3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大元 誠一郎 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 上原 一浩 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Seiichiro Omoto 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Inside Kobe Research Institute, Kobe Steel Ltd. (72) Inventor Kazuhiro Uehara Araimachi, Takasago City, Hyogo Prefecture 2-3-1, Shinhama Kobe Steel, Ltd. Takasago Works

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 垂直ブリッジマン法、水平ブリッジマン
法等の容器成長法による化合物半導体単結晶の製造に際
し、密度:2.0g/cm3 以上の熱分解窒化ホウ素から
なるルツボを成長容器として用いると共に、液体封止剤
を用いることを特徴とする化合物半導体単結晶の製造方
法。
1. A crucible made of pyrolytic boron nitride having a density of 2.0 g / cm 3 or more is used as a growth vessel for producing a compound semiconductor single crystal by a vessel growth method such as a vertical Bridgman method or a horizontal Bridgman method. A method for producing a compound semiconductor single crystal, comprising using a liquid sealing agent.
【請求項2】 垂直ブリッジマン法、水平ブリッジマン
法等の容器成長法による化合物半導体単結晶の製造に際
し、配向度:80以上の熱分解窒化ホウ素からなるルツ
ボを成長容器として用いると共に、液体封止剤を用いる
ことを特徴とする化合物半導体単結晶の製造方法。
2. A crucible made of thermally decomposed boron nitride having a degree of orientation of 80 or more is used as a growth container when manufacturing a compound semiconductor single crystal by a container growth method such as a vertical Bridgman method or a horizontal Bridgman method. A method for producing a compound semiconductor single crystal, comprising using a stopper.
【請求項3】 垂直ブリッジマン法、水平ブリッジマン
法等の容器成長法による化合物半導体単結晶の製造に際
し、a軸方向の結晶子サイズ:80Å以上の熱分解窒化
ホウ素からなるルツボを成長容器として用いると共に、
液体封止剤を用いることを特徴とする化合物半導体単結
晶の製造方法。
3. A crucible made of thermally decomposed boron nitride having a crystallite size in the a-axis direction of 80 ° or more in the production of a compound semiconductor single crystal by a container growth method such as a vertical Bridgman method or a horizontal Bridgman method. Use and
A method for producing a compound semiconductor single crystal, comprising using a liquid sealant.
【請求項4】 前記ルツボがルツボ製造時に粗面構造を
持たせて堆積されてなる請求項1、2又は3記載の化合
物半導体単結晶の製造方法。
4. The method for producing a compound semiconductor single crystal according to claim 1, wherein said crucible is deposited with a rough surface structure during crucible production.
【請求項5】 前記ルツボのR部分が該R部分以外の部
分よりも低密度であると共に低配向度である請求項1、
2、3又は4記載の化合物半導体単結晶の製造方法。
5. The crucible according to claim 1, wherein the R portion of the crucible has a lower density and a lower degree of orientation than portions other than the R portion.
5. The method for producing a compound semiconductor single crystal according to 2, 3, or 4.
【請求項6】 前記ルツボの外側面に密度:2.0g/
cm3 未満の熱分解窒化ホウ素が堆積されている請求項
1、2、3、4又は5記載の化合物半導体単結晶の製造
方法。
6. The density of the outer surface of the crucible is 2.0 g /
6. The method for producing a compound semiconductor single crystal according to claim 1, wherein pyrolytic boron nitride of less than cm 3 is deposited.
【請求項7】 垂直ブリッジマン法、水平ブリッジマン
法等の容器成長法による化合物半導体単結晶の製造に際
し、密度:2.0g/cm3 以上の熱分解窒化ホウ素、配
向度:80以上の熱分解窒化ホウ素、a軸方向の結晶子
サイズ:80Å以上の熱分解窒化ホウ素の一種以上と密
度:2.0g/cm3 未満の熱分解窒化ホウ素とを交互に
堆積させてなるルツボを成長容器として用いると共に、
液体封止剤を用いることを特徴とする化合物半導体単結
晶の製造方法。
7. A method for producing a compound semiconductor single crystal by a container growth method such as a vertical Bridgman method or a horizontal Bridgman method, wherein a thermally decomposed boron nitride having a density of 2.0 g / cm 3 or more and a heat of an orientation degree of 80 or more are produced. Crucible obtained by alternately depositing pyrolytic boron nitride, pyrolytic boron nitride having a crystallite size in the a-axis direction of 80 ° or more and pyrolytic boron nitride having a density of less than 2.0 g / cm 3 is used as a growth vessel. Use and
A method for producing a compound semiconductor single crystal, comprising using a liquid sealant.
【請求項8】 垂直ブリッジマン法、水平ブリッジマン
法等の容器成長法による化合物半導体単結晶の製造に際
し、密度:2.0g/cm3 以上の熱分解窒化ホウ素、配
向度:80以上の熱分解窒化ホウ素、a軸方向の結晶子
サイズ:80Å以上の熱分解窒化ホウ素の一種以上を高
純度炭素又は高純度BN等の焼結体からなるルツボの内
側面に堆積させてなるルツボを成長容器として用いると
共に、液体封止剤を用いることを特徴とする化合物半導
体単結晶の製造方法。
8. A method for producing a compound semiconductor single crystal by a container growth method such as a vertical Bridgman method or a horizontal Bridgman method, wherein a thermally decomposed boron nitride having a density of 2.0 g / cm 3 or more and a heat of 80 or more are oriented. Decomposed boron nitride, a crystallite size in the a-axis direction: a crucible formed by depositing at least one kind of thermally decomposed boron nitride having a size of 80 ° or more on the inner surface of a crucible made of a sintered body such as high-purity carbon or high-purity BN. A method for producing a compound semiconductor single crystal, comprising using a liquid sealing agent.
JP854498A 1998-01-20 1998-01-20 Production of compound semiconductor single crystal Pending JPH11199362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP854498A JPH11199362A (en) 1998-01-20 1998-01-20 Production of compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP854498A JPH11199362A (en) 1998-01-20 1998-01-20 Production of compound semiconductor single crystal

Publications (1)

Publication Number Publication Date
JPH11199362A true JPH11199362A (en) 1999-07-27

Family

ID=11696093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP854498A Pending JPH11199362A (en) 1998-01-20 1998-01-20 Production of compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JPH11199362A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003413A1 (en) * 2003-07-03 2005-01-13 Hitachi Chemical Co., Ltd. Crucible and method of growing single crystal by using crucible
JP2006327895A (en) * 2005-05-27 2006-12-07 Sumitomo Electric Ind Ltd Method for manufacturing compound semiconductor single crystal, vertical pbn vessel for the same, and method for selecting vessel
DE112011101731T5 (en) 2010-05-21 2013-03-21 Sumitomo Electric Industries, Ltd. A pyrolytic boron nitride container for growing a crystal, and a method for growing a semiconductor crystal using the container

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003413A1 (en) * 2003-07-03 2005-01-13 Hitachi Chemical Co., Ltd. Crucible and method of growing single crystal by using crucible
US7399360B2 (en) 2003-07-03 2008-07-15 Hitachi Chemical Company, Ltd. Crucible and method of growing single crystal by using crucible
US7785416B2 (en) 2003-07-03 2010-08-31 Hitachi Chemical Company, Ltd. Crucible and single crystal growth method using crucible
JP2006327895A (en) * 2005-05-27 2006-12-07 Sumitomo Electric Ind Ltd Method for manufacturing compound semiconductor single crystal, vertical pbn vessel for the same, and method for selecting vessel
DE112011101731T5 (en) 2010-05-21 2013-03-21 Sumitomo Electric Industries, Ltd. A pyrolytic boron nitride container for growing a crystal, and a method for growing a semiconductor crystal using the container
DE112011101731B4 (en) 2010-05-21 2018-03-22 Sumitomo Electric Industries, Ltd. A pyrolytic boron nitride container for growing a crystal and use of the container

Similar Documents

Publication Publication Date Title
JP5796626B2 (en) Seed used for crystalline silicon ingot casting
JP5864998B2 (en) Method for growing β-Ga 2 O 3 single crystal
CN101696514A (en) Method for producing polycrystal ingot
CN100338268C (en) Furnace for growing compound semiconductor single crystal and method of growing the same by using the furnace
WO2004106597A1 (en) Indium phosphide substrate, indium phosphide single crystal and process for producing them
US6946030B2 (en) Method for the production of a silica glass crucible with crystalline regions from a porous silica glass green body
US8828139B2 (en) Method of manufacturing sapphire seed and method of manufacturing sapphire single crystal
WO2003089697A1 (en) Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
WO1996015297A1 (en) Process for bulk crystal growth
JP4726138B2 (en) Quartz glass crucible
JPH11199362A (en) Production of compound semiconductor single crystal
WO2004055249A1 (en) Process for producing single crystal of compound semiconductor and crystal growing apparatus
JP3806791B2 (en) Method for producing compound semiconductor single crystal
KR101954785B1 (en) Method for producing multicrystalline silicon
TWI281520B (en) InP single crystal, GaAs single crystal, and method for producing thereof
JP3648703B2 (en) Method for producing compound semiconductor single crystal
TWI565657B (en) Containers for silicon ingots
JP3738471B2 (en) Method for producing II-VI or III-V compound single crystal
JP2007045640A (en) Forming method of semiconductor bulk crystal
JP3683714B2 (en) Deposition substrate and electronic device
JPH0987086A (en) Production of single crystal
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
TW202424285A (en) Systems and methods for forming single crystal silicon ingots with crucibles having a synthetic liner
JP2007184496A (en) Crystal semiconductor particle manufacturing method and photoelectric conversion device
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041124

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Effective date: 20070703

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20071030

Free format text: JAPANESE INTERMEDIATE CODE: A02