JPH11197996A - Working method and device for part in process of machining - Google Patents

Working method and device for part in process of machining

Info

Publication number
JPH11197996A
JPH11197996A JP10003643A JP364398A JPH11197996A JP H11197996 A JPH11197996 A JP H11197996A JP 10003643 A JP10003643 A JP 10003643A JP 364398 A JP364398 A JP 364398A JP H11197996 A JPH11197996 A JP H11197996A
Authority
JP
Japan
Prior art keywords
processing
working
machining
situation
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10003643A
Other languages
Japanese (ja)
Inventor
Shinya Sekiyama
伸哉 関山
Shinji Sawa
沢  真司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10003643A priority Critical patent/JPH11197996A/en
Publication of JPH11197996A publication Critical patent/JPH11197996A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Landscapes

  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)
  • Control By Computers (AREA)

Abstract

PROBLEM TO BE SOLVED: To avoid the generation of abnormality in a multi-form less-quantity production working to improve the yield of a product, by adequately changing a working condition in accordance with the comparing effect between a working situation predicted from a set working condition and a measured working situation. SOLUTION: The initial value of a working condition is set by a working condition deciding means 1 from the difference between the material and dimension of a raw material given as design information 9 and a desired product dimension. A working situation is predicted by a working situation predicting means 6 based on the working condition, and an actual working situation is measured by a working situation measuring means 3. This working situation measuring result and the working situation predicting result by the predicting means 6 are compared by a working situation comparing means 4, and working is made while charging the working condition by a working situation changing means 5 so as to eliminate the difference between a working situation measured result and a working situation predicted result. Consequently the optimum working can be continued because thus the work condition is adequately changed in accordance with requirement at every working process from the initial working condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はとくに多品種少量生
産の機械加工部品の機械加工工程において、加工状況を
自動で監視し能率良くかつ、最適な加工条件で加工でき
るように構成した加工方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a machining method for automatically monitoring a machining state, and efficiently and under optimal machining conditions, particularly in a machining process of a machined part of high-mix low-volume production. Related to the device.

【0002】[0002]

【従来の技術】多品種少量生産の機械加工部品はその製
造工程において、機械加工の高効率化を図るため、一般
にNC加工機を用いて加工する。NC加工機は設計情報
に基づいたNCデータで運転される加工機であり、1つ
の製品に対して1つのNCデータの作成が必要である。
多品種にわたる加工の場合はそれぞれの製品に対してN
Cデータの作成が必要であるため、例えば特開昭62−
217309号公報にはCAD/CAMの運用による加
工用のNCデータ作成方法が述べられている。この方法
によると設計情報(CAD情報)から直接加工のための
情報(加工条件、ツールパス、加工の手順等)を生成す
る。
2. Description of the Related Art Machined parts manufactured in a large variety of small quantities are generally processed using an NC processing machine in order to increase the efficiency of machining in the manufacturing process. The NC processing machine is a processing machine operated with NC data based on design information, and it is necessary to create one NC data for one product.
In the case of multi-product processing, N
Since it is necessary to create C data, for example,
No. 217309 describes a method of creating NC data for machining by using CAD / CAM. According to this method, information (machining conditions, tool path, machining procedure, etc.) for machining is directly generated from design information (CAD information).

【0003】加工機の制御に関しては以上のような方法
で対処可能であるが、実際の加工においては作成したN
Cデータにより確実に製品の加工が出来るかわからない
ため、最初の数個を加工する間は作業員が加工状況を監
視している。その時に問題が生じなければその後、、連
続して無人で加工を行う。
[0003] The control of the processing machine can be dealt with by the method described above, but in actual processing, the N
Since it is not clear from the C data whether the product can be processed reliably, an operator monitors the processing status while processing the first few pieces. If no problem occurs at that time, the processing is performed continuously and unattended.

【0004】また、上述の加工状況の監視を自動化する
方法としては工具の振動を検知する方法(例えば特開平
2−224527号公報等)やAEセンサにより工具欠
損等の異常を検出する方法(例えば特開昭62−212
447号公報等)、切削力を測定する方法(例えば特開
平6−8106号公報等)、複数の検出手段を合わせて
監視する方法(例えば特開平3−3755号公報等)が
述べられている。これらの加工状況の監視方法は何れの
検知方法においても、予め決めてある基準値を測定結果
と比較し加工状況を判断するものである。基準値は例え
ば同一の加工条件で加工したときの測定結果や、全く同
一の被加工物を加工したときの測定結果を用いる。
[0004] As a method of automating the monitoring of the machining condition, a method of detecting tool vibration (for example, JP-A-2-224527) and a method of detecting an abnormality such as a tool defect using an AE sensor (for example, JP-A-62-212
No. 447), a method of measuring a cutting force (for example, Japanese Patent Application Laid-Open No. 6-8106), and a method of monitoring a plurality of detecting means together (for example, Japanese Patent Application Laid-Open No. 3-3755). . In any of these detection methods, the processing status is monitored by comparing a predetermined reference value with a measurement result to determine the processing status. As the reference value, for example, a measurement result obtained when processing is performed under the same processing conditions or a measurement result obtained when processing the same workpiece is used.

【0005】[0005]

【発明が解決しようとする課題】従来の加工状況の監視
方法によると、まず加工中に何らかの原因で生じる突発
的な加工状況の変化が考慮されていない。例えば不確定
な要因で加工中に工具が欠損してしまった場合は所望の
加工形状が得られない。いわゆる過負荷防止機構を設け
ても過負荷の判定基準以下で発生した工具の欠損は検知
できない。とくに多品種少量生産の機械加工部品の場合
は過負荷の判定基準すら決めることが出来ないという問
題がある。すなわち大量生産の場合は上述した従来技術
により、予め加工条件を決めるための加工を行い、判定
基準を決めることが可能であるが、多品種少量生産品の
加工の場合は加工個数が少ないため上記のような方法を
適用することは難しい。
According to the conventional method for monitoring the processing condition, sudden changes in the processing condition caused by any cause during the processing are not taken into consideration. For example, if a tool is lost during machining due to uncertain factors, a desired machining shape cannot be obtained. Even if a so-called overload prevention mechanism is provided, it is not possible to detect the loss of the tool that occurs below the overload judgment standard. In particular, in the case of machined parts produced in a large variety of small quantities, there is a problem that even an overload judgment standard cannot be determined. That is, in the case of mass production, processing for determining the processing conditions is performed in advance by the above-described conventional technology, and it is possible to determine the determination criterion. It is difficult to apply such a method.

【0006】従来の方法には(例えば特開平6−810
6号等)過負荷を検出する方法として、加工時の切削力
を測定する方法が述べられているが、これらの方法では
測定結果を比較する対象が過去の同一条件での加工時の
測定結果や、予め何らかの基準で決めておかなければな
らない値である。すなわち、同一条件で多数加工する場
合のみに有効である。
[0006] Conventional methods (for example, Japanese Patent Laid-Open No. 6-810)
No. 6, etc.) As a method of detecting overload, a method of measuring a cutting force at the time of machining is described. In these methods, a measurement result is compared with a past measurement result at the time of machining under the same condition. Or a value that must be determined in advance by some standard. That is, it is effective only when a large number of workpieces are machined under the same conditions.

【0007】しかしながら、本発明の対象とする多品種
少量生産機械加工部品の加工においては、加工対象がど
のようなものであっても、簡便に加工条件を設定でき、
しかも滞ることなく加工を継続する必要があるが、従来
の方法では本発明の目的である多品種少量生産機械加工
部品加工の自動化は極めて難しい。また、素材について
も同様であり不良品を出さないようにする必要がある。
また、加工条件の決定はNCデータ作成時に行い、その
後数個の試し加工をし、適宜加工条件を変更するのが一
般的であるが、試し加工を行わなければならないため、
やはり多品種少量生産品の加工に対しては効率が悪い。
However, in the machining of multi-product, small-volume, low-volume machined parts to be processed by the present invention, the processing conditions can be easily set regardless of the processing object.
Moreover, it is necessary to continue the processing without delay, but it is extremely difficult to automate the processing of the machined parts for multi-product small-quantity production, which is the object of the present invention, by the conventional method. The same is true for the material, and it is necessary to prevent defective products.
In general, it is common to determine the processing conditions at the time of creating the NC data, then perform several test processings, and change the processing conditions as appropriate. However, since the test processing must be performed,
Again, the efficiency is low for the processing of high-mix low-volume production.

【0008】[0008]

【課題を解決するための手段】上記課題はまず加工状況
の比較対象を与えられた加工条件から算定することによ
り達成される。すなわち加工状況が異常かどうかを判断
する基準を予め測定しておくのではなく、設定された加
工条件から予め予測し算出しておくものである。比較対
象をこのようにして求めることにより、いわゆる試し加
工の必要はなくなる。さらに、測定された加工状況に応
じて適宜加工条件を変えることにより、異常の発生を回
避し製品の歩留まりを向上できる。
The above object is attained by first calculating a comparison object of processing conditions from a given processing condition. That is, a reference for judging whether or not the machining state is abnormal is not measured in advance, but is predicted and calculated in advance from set machining conditions. By determining the comparison object in this way, the need for so-called trial processing is eliminated. Further, by appropriately changing the processing conditions according to the measured processing conditions, occurrence of abnormalities can be avoided and the product yield can be improved.

【0009】また、図3に示したように加工条件に応じ
た予測が出来るため、初期の加工条件から加工工程毎の
要求に応じて適宜加工条件を変更し、最適な加工を持続
できるようになる。例えば測定値が予測値より大きい場
合は条件の設定値を変更し予測値に近づけるようにする
ことにより加工時の異常を回避できる。逆に加工状況の
実測値が予測値よりも小さい場合には同様に加工条件を
変更し、能率の高い加工を達成できる。
Further, as shown in FIG. 3, since the prediction according to the processing conditions can be performed, the processing conditions can be appropriately changed from the initial processing conditions according to the requirements of each processing step so that the optimum processing can be maintained. Become. For example, when the measured value is larger than the predicted value, an abnormality during processing can be avoided by changing the set value of the condition so as to approach the predicted value. Conversely, when the actual measurement value of the machining condition is smaller than the predicted value, the machining conditions are changed in the same manner, and highly efficient machining can be achieved.

【0010】以上のように加工中に加工条件の変更を行
うことにより、過去に加工経験のない製品の制作におい
ても、試し加工等を行う必要が無く高品質で高能率な加
工ができる。
As described above, by changing the processing conditions during processing, even in the production of a product having no processing experience in the past, it is possible to perform high quality and high efficiency processing without performing trial processing.

【0011】[0011]

【発明の実施の形態】本発明の実施の形態を図面を参照
して説明する。図1は本発明の一実施例の構成及び加工
の手順を示したブロック図である。本加工装置の加工機
の制御部は加工条件の決定手段1、加工機の制御手段
2、加工状況の測定手段3、加工状況の予測手段6、加
工状況の比較手段4、加工条件変更手段5、加工条件の
知識データベース7、加工状況知識データベース8によ
って構成されている。加工条件の決定手段1は加工対象
の素材寸法、製品寸法、材質、所望の精度等の設計情報
9から加工条件知識データベース7を参照し、該加工部
位の加工条件を決定する。加工条件知識データベース7
は加工経験を蓄えているものであるが、過去に該当する
加工経験がない場合は、初期の加工条件として適当な加
工条件を生成する。加工機の制御手段2は加工機の運動
を司る部分であり、一般の加工機におけるNCコントロ
ーラと同様のものである。
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration and a processing procedure of an embodiment of the present invention. The control unit of the processing machine of the present processing apparatus includes processing condition determining means 1, processing machine control means 2, processing state measuring means 3, processing state prediction means 6, processing state comparison means 4, processing condition changing means 5, , A processing condition knowledge database 7 and a processing status knowledge database 8. The processing condition determining means 1 refers to the processing condition knowledge database 7 from the design information 9 such as the material dimensions, product dimensions, materials, and desired accuracy of the processing target, and determines the processing conditions of the processing portion. Processing condition knowledge database 7
Stores the machining experience. If there is no corresponding machining experience in the past, an appropriate machining condition is generated as an initial machining condition. The control means 2 of the processing machine is a part for controlling the movement of the processing machine, and is similar to an NC controller in a general processing machine.

【0012】本発明においても既存の加工機のNC部分
をそのまま流用し、いわゆるDNC運転させている。加
工状況測定手段3は種々の測定方法が考えられるが、本
実施例ではその一例として切削力、加工点の温度、加工
時の振動について記述する。なお、加工状況の測定方法
は、加工時に発生するAEを測定する方法等どのような
方法でも良い。加工状況の予測手段は選択した加工状況
の測定方法に対応し、例えば切削力を測定する場合は加
工条件、被加工物の材料等の情報から切削力を予測す
る。加工時の切削力の予測方法の一例をあげると旋削加
工の場合は、(数1)〜(数3)を用いて求められる。
Also in the present invention, the NC portion of the existing processing machine is diverted as it is, and a so-called DNC operation is performed. Various measuring methods can be considered for the processing state measuring means 3. In this embodiment, the cutting force, the temperature of the processing point, and the vibration during the processing are described as examples. It should be noted that the method of measuring the processing state may be any method such as a method of measuring AE generated during processing. The processing status predicting means corresponds to the selected processing status measurement method. For example, when measuring the cutting power, the cutting power is predicted from information such as the processing conditions and the material of the workpiece. To give an example of a method for predicting the cutting force at the time of machining, in the case of turning, the cutting force is obtained using (Equation 1) to (Equation 3).

【0013】[0013]

【数1】Fp=kpsaf …(数1)## EQU1 ## F p = k p K s af (Equation 1)

【0014】[0014]

【数2】Ft=ktsaf …(数2)[Number 2] F t = k t K s af ... ( number 2)

【0015】[0015]

【数3】Ff=kfsaf …(数3) ここで、Fp:主分力(N)、 Ft:背分力(N)、 Ff:送り分力(N) であり、添字p,t,fは力の働く方向を示している。
また、Ksは材料によって異なる比切削抵抗(N/m
2)、kは工具形状及び加工作業(外径加工、内径加
工、端面加工、溝入れ、突っ切り、倣い加工、ねじ切り
加工等)別に求められる係数、aは切り込み量(m
m)、fは一回転当たりの工具送り量(mm)を表して
いる。
[Number 3] F f = k f K s af ... ( number 3) where, F p: main component force (N), F t: the back component force (N), F f: at a feed component force (N) The subscripts p, t, and f indicate the direction in which the force acts.
K s is a specific cutting force (N / m
m 2 ) and k are coefficients determined for each tool shape and machining operation (outer diameter machining, inner diameter machining, end face machining, grooving, parting off, copying, thread cutting, etc.), and a is the cutting depth (m
m) and f represent the tool feed amount (mm) per rotation.

【0016】さらに、本発明では測定方法により発生す
る誤差を勘案しており、切削力の測定の場合は測定器の
温度ドリフトを差し引いた予測を行う。本発明による切
削力の予測例と測定例の時間推移を図4に示す。予測例
はステンレス鋼(SUS304)をサーメット(P20
種相当)の工具(JIS形式TNMG160408)で
切削速度150m/min、切り込み量0.2mm、工
具送り速度0.2mm/回転で外径旋削加工を行ったと
きの予測例である。温度ドリフトは測定器、被加工物、
工具及び加工機全体の温度変化により生じる。温度測定
例を図5に示すが、切削温度に関しても加工条件から求
めた予測値を用いて温度ドリフトを補償している。
Further, in the present invention, the error generated by the measuring method is taken into consideration, and in the case of measuring the cutting force, the prediction is performed by subtracting the temperature drift of the measuring instrument. FIG. 4 shows a time transition of a prediction example and a measurement example of the cutting force according to the present invention. The prediction example is a stainless steel (SUS304) cermet (P20)
This is a prediction example when outer diameter turning is performed at a cutting speed of 150 m / min, a cutting depth of 0.2 mm, and a tool feed speed of 0.2 mm / rotation with a tool (JIS type TNMG160408). Temperature drift can be measured by measuring instruments, workpieces,
It is caused by temperature changes in the tool and the entire machine. FIG. 5 shows an example of the temperature measurement. The temperature drift is also compensated for the cutting temperature using the predicted value obtained from the processing conditions.

【0017】図4に示した切削力の実測例は被加工物の
回転に同期した切削力変動を生じている。また、平均的
に見ると加工の開始の瞬間にある切削力になり、その後
温度ドリフトを生じながらほぼ一定の切削力を示す。加
工開始後は回転数に起因した変動成分を除いても予測値
とは若干差がある。この測定例では加工中に送り速度を
修正し、切削力を下げ、同時に学習した予測値と実測値
との差から誤差分を修正した予測を行い、ほぼ予測通り
の切削力を示すようになっている。
In the actual measurement example of the cutting force shown in FIG. 4, the cutting force varies in synchronization with the rotation of the workpiece. Further, on average, the cutting force becomes the cutting force at the moment of the start of processing, and thereafter shows a substantially constant cutting force while causing a temperature drift. After the start of machining, there is a slight difference from the predicted value even if the fluctuation component caused by the rotation speed is removed. In this measurement example, the feed rate was corrected during machining, the cutting force was reduced, and at the same time, the prediction was performed with the error corrected from the difference between the learned predicted value and the actually measured value, and the cutting force was almost as predicted. ing.

【0018】この加工条件及び修正方法のスキルは加工
条件知識DB、加工状況知識DBを参照し、荒加工、仕
上げ加工等の加工工程別に自動設定する。例えば荒加工
工程では加工能率を重視し、予測値と実測値の比較のた
めの閾値を大きくとり、工具の折損限界まで許容する。
また、仕上げ加工工程においては被加工物の品質を重視
し、予測値と実測値との差を許容せず、直ちに加工条件
を修正し最適な加工条件に変更しながら加工を行う。
The machining conditions and the skills of the correction method are automatically set for each machining process such as rough machining and finish machining with reference to the machining condition knowledge DB and the machining status knowledge DB. For example, in the rough machining process, emphasis is placed on machining efficiency, and a large threshold value is used for comparison between the predicted value and the actually measured value to allow up to the breakage limit of the tool.
Further, in the finishing step, the quality of the workpiece is emphasized, the difference between the predicted value and the measured value is not allowed, and the processing is performed while immediately correcting the processing conditions and changing to the optimum processing conditions.

【0019】本実施例では切削力を測定し、加工状況を
判断する方法について記述したが、切削温度を用いる方
法や加工点の振動、AE等を用いても同様である。
In this embodiment, a method for measuring a cutting force and judging a machining state has been described. However, the same applies to a method using a cutting temperature, a vibration at a machining point, AE, and the like.

【0020】[0020]

【発明の効果】本発明によると、過去に加工経験のない
製品の加工時にいわゆる試し加工が不要となる。また、
加工時に加工状況を勘案して加工条件を変更できるた
め、高能率な加工を提供できる。さらに、加工工程別に
判断基準を変更できるため仕上げ工程等では高品質な加
工も可能である。
According to the present invention, so-called trial machining is unnecessary when machining a product having no machining experience in the past. Also,
Since the processing conditions can be changed in consideration of the processing conditions during processing, highly efficient processing can be provided. Furthermore, since the judgment criteria can be changed for each processing step, high-quality processing can be performed in the finishing step and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の装置構成及び、加工の手順を示したブ
ロック図。
FIG. 1 is a block diagram showing an apparatus configuration of the present invention and a processing procedure.

【図2】本発明のフローチャート。FIG. 2 is a flowchart of the present invention.

【図3】条件変更のスキルを表した特性図。FIG. 3 is a characteristic diagram showing a skill of condition change.

【図4】本発明の加工状況の測定例及び予測例を示した
特性図。
FIG. 4 is a characteristic diagram showing a measurement example and a prediction example of a processing state according to the present invention.

【図5】切削温度の測定例を示した特性図。FIG. 5 is a characteristic diagram showing a measurement example of a cutting temperature.

【図6】振動の測定例を示した特性図。FIG. 6 is a characteristic diagram showing a measurement example of vibration.

【符号の説明】[Explanation of symbols]

1…決定手段、2…制御手段、3…測定手段、4…比較
手段、5…変更手段、6…予測手段、7…知識データベ
ース、 8…知識データベース。
DESCRIPTION OF SYMBOLS 1 ... determination means, 2 ... control means, 3 ... measurement means, 4 ... comparison means, 5 ... change means, 6 ... prediction means, 7 ... knowledge database, 8 ... knowledge database.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI G05B 19/18 K ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI G05B 19/18 K

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】製品設計情報から加工のためのNCデータ
を生成し自動加工を行うための装置であって、加工機上
に加工状況の測定部を設置した加工機において、設計情
報として与えられる素材の材質及び寸法と所望の製品寸
法との差から、加工条件の初期値を設定する手段、該加
工条件に基づいた加工状況を予測する手段、加工状況測
定結果と前記加工状況予測結果とを比較する手段を設
け、実際の加工時に加工状況をモニタし、上述の予測結
果との差を無くすように加工条件を変更しながら加工す
ることを特徴とする機械加工部品の加工方法及びその装
置。
1. An apparatus for generating NC data for processing from product design information and performing automatic processing, wherein the apparatus is provided as design information in a processing machine having a processing state measuring unit installed on the processing machine. From the difference between the material and dimensions of the material and the desired product dimensions, means for setting initial values of the processing conditions, means for predicting the processing status based on the processing conditions, processing status measurement results and the processing status prediction results A method and apparatus for machining a machined part, comprising: means for comparing, monitoring a machining state during actual machining, and machining while changing machining conditions so as to eliminate a difference from the above-described predicted result.
【請求項2】加工状況の予測手段によって得られた結果
をDBに蓄積する手段、加工状況の測定結果をDBに蓄
積する手段、加工状況予測結果と加工状況の測定結果と
から予測手段の誤差を算出する手段、予測手段の誤差か
ら予測方法を変更する手段を設けたことを特徴とする請
求項1記載の加工方法及びその装置。
2. A means for accumulating a result obtained by a means for estimating a machining state in a DB, a means for accumulating a measurement result of a machining state in a DB, and an error of the estimating means based on the machining state prediction result and the measurement result of the machining state 2. A processing method and apparatus according to claim 1, further comprising means for calculating the prediction method and means for changing the prediction method based on an error of the prediction means.
【請求項3】加工機上に複数の加工状況測定部を設置
し、設計情報に基づいて適宜加工状況の測定方法及び予
測方法を選択することを特徴とする請求項1記載の加工
方法及びその装置。
3. The processing method according to claim 1, wherein a plurality of processing state measuring units are installed on the processing machine, and a method for measuring and predicting the processing state is appropriately selected based on the design information. apparatus.
【請求項4】加工条件の変更のルールを加工状況の測定
結果に基づいて変更するように構成したことを特徴とす
る請求項1記載の加工方法及びその装置。
4. The processing method and apparatus according to claim 1, wherein a rule for changing the processing condition is changed based on a measurement result of the processing state.
JP10003643A 1998-01-12 1998-01-12 Working method and device for part in process of machining Pending JPH11197996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10003643A JPH11197996A (en) 1998-01-12 1998-01-12 Working method and device for part in process of machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10003643A JPH11197996A (en) 1998-01-12 1998-01-12 Working method and device for part in process of machining

Publications (1)

Publication Number Publication Date
JPH11197996A true JPH11197996A (en) 1999-07-27

Family

ID=11563172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10003643A Pending JPH11197996A (en) 1998-01-12 1998-01-12 Working method and device for part in process of machining

Country Status (1)

Country Link
JP (1) JPH11197996A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002366212A (en) * 2001-06-07 2002-12-20 Yoshiaki Kakino Numerical control machine tool
JP2006095656A (en) * 2004-09-30 2006-04-13 Doshisha Boring machine for printed board and method for deciding boring condition of printed board using it
KR101325150B1 (en) * 2012-05-23 2013-11-06 한국생산기술연구원 Apparatus and method for monitoring machining process reflecting setting error
WO2016136919A1 (en) * 2015-02-25 2016-09-01 株式会社山本金属製作所 Temperature measurement device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002366212A (en) * 2001-06-07 2002-12-20 Yoshiaki Kakino Numerical control machine tool
JP2006095656A (en) * 2004-09-30 2006-04-13 Doshisha Boring machine for printed board and method for deciding boring condition of printed board using it
KR101325150B1 (en) * 2012-05-23 2013-11-06 한국생산기술연구원 Apparatus and method for monitoring machining process reflecting setting error
WO2016136919A1 (en) * 2015-02-25 2016-09-01 株式会社山本金属製作所 Temperature measurement device
JPWO2016136919A1 (en) * 2015-02-25 2018-03-22 株式会社山本金属製作所 Temperature measuring device

Similar Documents

Publication Publication Date Title
US6937942B2 (en) Method and apparatus of detecting tool abnormality in a machine tool
US7657356B2 (en) Controller
JP3435117B2 (en) Processing control system
CN1053505C (en) Method of and device for correcting of cutting-edge of tool in numerically controlled machine tool
JP2003326438A (en) Tool anomaly detector
JP4860444B2 (en) Abnormality detection method in cutting
CZ293210B6 (en) Automatic monitoring of tool status
JP2011118840A (en) Numerical control device having motor load torque measuring function
KR20180024093A (en) Tool breakage and wear monitoring method
KR101787347B1 (en) Control method of numerical control machine tool
JP7463505B2 (en) Method for detecting rejects during machining of structurally identical workpieces and associated numerically controlled workpiece machining device - Patents.com
JPH11197996A (en) Working method and device for part in process of machining
US6859680B2 (en) Numerical controlling unit having tool-breakage detecting function
JP2004160564A (en) Machine tool
JP3526070B2 (en) Numerical control device and numerical control machining method
US10007252B2 (en) Machine tool controller
JPH04311206A (en) Control method for avoiding abnormality in numerically controlled machine tool
JP2000084797A (en) Controller of nc machine
JPH0839399A (en) Thermal displacement correcting device for machine tool
JPH029554A (en) Cutting tool damage detecting device
KR100519046B1 (en) Work inspect method and apparatus of the machine tools
CN110434670B (en) Method for machining a starting component by means of a machining tool and machining tool
KR102585246B1 (en) Method of diagnosing process abnormality using virtual processing
JPH10328972A (en) Numerically controlled machining method and device
GB2462117A (en) Controlling a machine tool