JPH11197708A - Thin foil of soft magnetic metal and its manufacture - Google Patents

Thin foil of soft magnetic metal and its manufacture

Info

Publication number
JPH11197708A
JPH11197708A JP807898A JP807898A JPH11197708A JP H11197708 A JPH11197708 A JP H11197708A JP 807898 A JP807898 A JP 807898A JP 807898 A JP807898 A JP 807898A JP H11197708 A JPH11197708 A JP H11197708A
Authority
JP
Japan
Prior art keywords
foil
magnetic metal
soft magnetic
thickness
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP807898A
Other languages
Japanese (ja)
Inventor
Akihiko Saito
章彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP807898A priority Critical patent/JPH11197708A/en
Publication of JPH11197708A publication Critical patent/JPH11197708A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/40Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling foils which present special problems, e.g. because of thinness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/28Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by cold-rolling, e.g. Steckel cold mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/02Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged horizontally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/004Heating the product
    • B21B2045/006Heating the product in vacuum or in inert atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2201/00Special rolling modes
    • B21B2201/18Vertical rolling pass lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B3/02Rolling special iron alloys, e.g. stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably manufacture a thin foil of a soft magnetic metal becoming a magnetic material of nearly <=10 μm to >=3 μm in thickness, performance of which is not lowered in a high frequency zone of 1000 MHz-1 GHz. SOLUTION: The foil of the soft magnetic metal which is worked into nearly <=20 μm to >=10 μm in thickness by rolling and annealing is formed into a desired thickness while vertically transferring it downward i.e., rolling it without applying a tension exceeding gravity. It is heated at the recrystallizing temperature or higher of the soft magnetic metal to recrystallize it. A thick foil e.g. a foil 1A of 100 μm on the market is taken out of a coil, and the thick one is allowed to roll by horizontally making it pass through a pair of rolling rolls 21a, 21b, 22a, 22b,... which are vertically positioned, however the foil 1B becoming nearly 10 μm in thickness is rolled by the rolling rolls 31a, 31b, 32a, 32b which are horizontally positioned avoiding the application of the tension exceeding gravity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、軟磁性金属の薄い
箔、とくに厚さ10μm以下の薄箔と、それを製造する
方法に関する。 本発明の薄箔は、高周波領域の特性が
すぐれていて、1GHz における透磁率μの値が10以上
を確保している。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thin foil of a soft magnetic metal, particularly a thin foil having a thickness of 10 μm or less, and a method for producing the same. The thin foil of the present invention has excellent characteristics in a high frequency region, and has a value of the magnetic permeability μ at 1 GHz of 10 or more.

【0002】[0002]

【従来の技術】PCパーマロイや各種の電磁ステンレス
を代表とする軟磁性金属の箔は、電磁波シールド材やノ
イズフィルターのコア材料として有用である。 本発明
者も、共同研究者との研究を含めて、いくつかの発明を
開示している(たとえば、磁気遮蔽用シートとこれを用
いたケーブルに関する特願平8−247322)。
2. Description of the Related Art Soft magnetic metal foils such as PC permalloy and various types of electromagnetic stainless steel are useful as electromagnetic wave shielding materials and core materials for noise filters. The present inventor has also disclosed several inventions, including research with co-workers (for example, Japanese Patent Application No. 8-247322 on magnetic shielding sheets and cables using the same).

【0003】最近の研究成果としては、コモンモードノ
イズのフィルターであって、1GHz以上の高周波領域で
性能が低下しないものがあり(特願平9−16772
6)、これは、100MHz〜1GHzの透磁率が、周波数と
の関連において定めた特定の領域にある軟磁性金属の、
厚さ10μm以下の箔をコアとして使用することによっ
て、高周波領域の高性能を実現したものである。
As a result of recent research, there is a common mode noise filter which does not deteriorate in a high frequency region of 1 GHz or more (Japanese Patent Application No. Hei 9-16772).
6) This means that the soft magnetic metal whose permeability from 100 MHz to 1 GHz is in a specific region defined in relation to frequency,
By using a foil having a thickness of 10 μm or less as a core, high performance in a high frequency region is realized.

【0004】上記の発明を実施するためには、軟磁性金
属の厚さ10μm以下の薄箔を必要とするが、このよう
な薄い箔を製造することは容易でない。 既知の圧延技
術により製造できるのは10μm以上の厚さのものであ
り、10μmを下回る厚さに圧延しようとすると、箔が
切れやすくなって安定な操業ができない。 磁気特性を
高めるために、圧延後に加熱して再結晶させる必要があ
るが、このとき箔が変形して平面性が失なわれることが
多い。
[0004] In order to carry out the above invention, a thin foil of a soft magnetic metal having a thickness of 10 µm or less is required, but it is not easy to manufacture such a thin foil. It is possible to manufacture a material having a thickness of 10 μm or more by a known rolling technique. If the thickness is reduced to less than 10 μm, the foil is easily cut and stable operation cannot be performed. In order to enhance the magnetic properties, it is necessary to recrystallize by heating after rolling, but at this time, the foil is often deformed and the flatness is lost.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、軟磁
性金属の薄箔、とくに厚さ10μm以下のものを製造す
る上で障害となっていた上記の問題を解決し、薄くて平
面性が高く、かつ磁気特性が向上したものを提供するこ
とにある。 そのような薄箔を安定して製造できる方法
を提供することも、本発明の目的に含まれる。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problem which has been an obstacle to the production of thin foils of soft magnetic metal, particularly those having a thickness of 10 μm or less. To provide a magnetic recording medium having high magnetic properties and improved magnetic properties. It is also an object of the present invention to provide a method capable of stably producing such a thin foil.

【0006】[0006]

【課題を解決するための手段】本発明の軟磁性金属の薄
箔は、軟磁性金属の圧延および熱処理によって製造され
た厚さ10μm以下の薄箔であって、実質上すべての結
晶粒子が薄箔の厚さ方向に貫通した形で存在するが、こ
の条件を満たす限度において微細な粒子である軟磁性金
属の薄箔である。 この薄箔は、図1に模式的に示すよ
うな断面構造を有する。
The soft magnetic metal thin foil of the present invention is a thin foil having a thickness of 10 μm or less produced by rolling and heat-treating a soft magnetic metal, and substantially all of the crystal grains are thin. Although it exists in a form penetrating in the thickness direction of the foil, it is a thin foil of soft magnetic metal that is fine particles as long as the condition is satisfied. This thin foil has a cross-sectional structure as schematically shown in FIG.

【0007】上記した軟磁性金属の薄箔を製造する本発
明の方法は、軟磁性金属の箔を圧延および焼鈍の繰り返
しにより次第に薄くし、厚さが10〜20μmの領域に
至った後は、非酸化性雰囲気中で、箔を垂直に下方に移
動させながらさらに圧延を続けて10μmを下回る厚さ
とし、ついで軟磁性金属の再結晶温度以上の温度に加熱
して再結晶を起させたのち、直ちに冷却して結晶粒の粗
大化を防ぐことからなる。
In the method of the present invention for producing a soft magnetic metal thin foil, the soft magnetic metal foil is gradually thinned by repeating rolling and annealing, and after reaching a region of 10 to 20 μm in thickness, In a non-oxidizing atmosphere, further rolling is performed while moving the foil vertically downward to a thickness of less than 10 μm, and then heated to a temperature higher than the recrystallization temperature of the soft magnetic metal to cause recrystallization. Cooling immediately to prevent coarsening of the crystal grains.

【0008】[0008]

【発明の実施の形態】軟磁性金属としては種々の合金が
あるが、前述したシールド材やノイズフィルターのコア
材としたときに高周波領域で有用なものは、PCパーマ
ロイ、パーメンジュール合金、ならびにFe−Cr−A
l合金およびFe−Cr−Si合金のような電磁ステン
レスである。 ノイズフィルターに例をとると、100
MHz 〜1GHz の周波数において減衰量が少なくとも15
dBであって、共振周波数が1GHz 以上となる条件をみた
すノイズフィルターを制作するためには、透磁率μが周
波数との関係で特定の領域にあることが必要であり、上
記4種の合金はこの前提を充足している。
BEST MODE FOR CARRYING OUT THE INVENTION There are various alloys as a soft magnetic metal, and those which are useful in a high frequency region when used as the above-mentioned shield material or core material of a noise filter include PC permalloy, permendur alloy, and Fe-Cr-A
1 and an electromagnetic stainless steel such as an Fe-Cr-Si alloy. Taking an example of a noise filter, 100
At least 15 attenuation at frequencies from MHz to 1 GHz
In order to produce a noise filter that satisfies the condition that the resonance frequency is 1 GHz or more in dB, the magnetic permeability μ needs to be in a specific region in relation to the frequency. This premise is satisfied.

【0009】この種の軟磁性金属は、加工性があまりよ
くないが、厚さ100μm程度の箔は容易に製造できる
から、市場で入手可能である。 このような厚い箔から
出発して、既知の技術により圧延と焼鈍を繰り返して薄
くして行っても、20μmを超えて10μm程度までは
加工可能である。
[0009] This kind of soft magnetic metal is not so good in workability, but a foil having a thickness of about 100 µm can be easily manufactured, and is available on the market. Starting from such a thick foil, even if rolling and annealing are repeatedly performed to reduce the thickness by a known technique, it is possible to process from over 20 μm to about 10 μm.

【0010】10μm以下に圧延しようとすると箔が切
れるのは、この種の金属の強度が加工性の低いわりに大
きくないため、わずかな張力にも耐えないからである。
本発明では、厚さ10μm以下に至った箔を、図2に
示すように、垂直に下方に移動させながら、従って重力
を超える張力が箔に加わることのない条件下に圧延を行
なって、たとえば7μm以下5μm程度に薄くする。
この方法によるときは、少なくとも厚さ3μmまで薄く
できることが、発明者の経験から明らかになっている。
[0010] The reason why the foil is cut when it is rolled to 10 µm or less is that the strength of this kind of metal is not large despite its low workability, so that it cannot withstand a slight tension.
In the present invention, while the foil having a thickness of 10 μm or less is moved vertically downward as shown in FIG. 2, the foil is rolled under conditions in which no tension exceeding the gravity is applied to the foil. The thickness is reduced to about 7 μm or less and about 5 μm.
It is clear from the experience of the inventor that when using this method, the thickness can be reduced to at least 3 μm.

【0011】図2において、厚い箔たとえば前記した市
販の100μmの箔(1A)をコイルから繰り出し、厚
いうちは上下に置かれた圧延ロール(21a,21b;
22a,22b;…)の組を水平に通過させても圧延可
能であるが、10μmに近い厚さになった箔(1B)は
左右に置かれた圧延ロール(31a,31b;32a,
32b)により、上記したように重力を超える張力を加
えることを避けて圧延する。
In FIG. 2, a thick foil, for example, the above-mentioned commercially available 100 μm foil (1A) is unwound from a coil, and the rolls (21a, 21b;
22a, 22b;) can be rolled horizontally, but the foil (1B) having a thickness close to 10 μm can be rolled by rolling rolls (31a, 31b; 32a,
According to 32b), rolling is performed while avoiding applying a tension exceeding gravity as described above.

【0012】所望の厚さに至った薄い箔(1C)は、管
状の加熱炉(4)内を連続的に通して、急速に加熱する
ことにより再結晶させる。 加熱手段は、誘導加熱、輻
射加熱など任意であるが、酸化による変質を防ぐため、
加熱雰囲気は非酸化性でなければならない。 この目的
のため、図2の例ではチャンバー(5)で加熱炉および
その下方を区画し、箔の出入口を除いて外気と遮断し
て、内部に非酸化性ガスを流通させるように構成してあ
る。 非酸化性雰囲気は、たとえばアンモニアの分解に
より生成したガスを利用することによって容易に形成す
ることができる。
The thin foil (1C) having the desired thickness is continuously passed through the tubular heating furnace (4) and recrystallized by rapid heating. Heating means is optional, such as induction heating, radiant heating, but to prevent deterioration due to oxidation,
The heating atmosphere must be non-oxidizing. For this purpose, in the example of FIG. 2, the heating furnace and the lower part thereof are partitioned by the chamber (5), and are cut off from the outside air except for the entrance and exit of the foil, so that the non-oxidizing gas flows inside. is there. The non-oxidizing atmosphere can be easily formed, for example, by utilizing a gas generated by decomposition of ammonia.

【0013】加熱温度は、もちろん再結晶温度以上の温
度であり、具体的には、PCパーマロイおよびパーメン
ジュール合金では800℃以上、電磁ステンレスでは7
00℃以上である。 高温の方が短時間で再結晶化が進
むが、あまり高温となって融点に近づくと、加熱中に箔
が自重でクリープして切断してしまうから、適当な限度
内の温度とする。
The heating temperature is, of course, a temperature higher than the recrystallization temperature, specifically, 800 ° C. or higher for PC permalloy and permendur alloy, and 7 ° C. for electromagnetic stainless steel.
It is 00 ° C or higher. The recrystallization proceeds in a shorter time at a higher temperature, but if the temperature becomes too high and approaches the melting point, the foil will creep under its own weight and break during heating, so the temperature should be within an appropriate limit.

【0014】必要な加熱時間は、合金組成、加工履歴、
箔の厚さなどの因子によっても影響されるが、通常2分
間程度である。 一方、再結晶が行われたならば、それ
以上に加熱することは結晶粒の粗大化を招き、磁気特性
がかえって低下する原因となるから、避けなければなら
ない。 通常、5分間を超える加熱は、無用または有害
である。
The required heating time depends on the alloy composition, processing history,
Although it is influenced by factors such as the thickness of the foil, it is usually about 2 minutes. On the other hand, if recrystallization has been performed, heating beyond that would cause the crystal grains to be coarse and cause the magnetic properties to be rather deteriorated, and thus must be avoided. Usually, heating for more than 5 minutes is useless or harmful.

【0015】再結晶が行われた薄い箔は、結晶の粗大化
を防いで組織を固定させるため、直ちに冷却する必要が
ある。 冷却は、低い温度の非酸化性ガス(6)と接触
させることによって、容易に行なえる。 それに代え
て、またはそれとともに、低い温度に保たれた冷却ロー
ル(7)と接触させることも効果的である。 いずれに
しても箔は薄いから、冷却は速やかに進む。
The recrystallized thin foil needs to be immediately cooled in order to prevent the crystal from becoming coarse and fix the structure. Cooling can be easily achieved by contacting with a low temperature non-oxidizing gas (6). Alternatively or together, it is also advantageous to make contact with a cooling roll (7) kept at a low temperature. In any case, the cooling proceeds quickly because the foil is thin.

【0016】[0016]

【実施例】PCパーマロイの100μmの箔から出発
し、図2に示した構成の装置で圧延および熱処理を行な
った。 ただし、箔の厚さ約10μmを境に工程を分
け、それまでは4段の圧延ロールを使用して各回の圧下
率が約50%となる圧延を行ない、間に約500℃に加
熱して放冷する焼鈍工程を加えた。 続く垂直方向に移
動させつつ行なう圧延は、2段のロールを使用して各回
の圧下率を約30%とすることによって、厚さ約5μm
の薄箔とした。
EXAMPLE Starting from a 100 μm foil of PC permalloy, rolling and heat treatment were carried out in an apparatus having the structure shown in FIG. However, the process is divided at a boundary of the foil thickness of about 10 μm, and until then, rolling is performed using a four-stage rolling roll so that the rolling reduction is about 50% each time, and then heating to about 500 ° C. An annealing step for cooling was added. The subsequent rolling while moving in the vertical direction is performed by using a two-stage roll to reduce the rolling reduction of each time to about 30%, thereby obtaining a thickness of about 5 μm.
Thin foil.

【0017】この厚さ約5μmの薄箔をそのまま立型管
状炉内に入れ、誘導加熱により800℃に加熱した。
炉内滞留時間は、2.5分間である。 雰囲気は、窒素
ガスを流通させて非酸化性に保った。
The thin foil having a thickness of about 5 μm was directly placed in a vertical tube furnace and heated to 800 ° C. by induction heating.
The residence time in the furnace is 2.5 minutes. The atmosphere was kept non-oxidizing by flowing nitrogen gas.

【0018】上記の熱処理を経て、再結晶は行なわれた
が組織が微細に保たれ、平面性の高いPCパーマロイ薄
箔が得られた。 このPCパーマロイの箔にエポキシ系
接着剤を塗布し、20枚積層したものを加熱加圧するこ
とにより、接着剤を硬化させて一体化した。 磁性材料
の厚さの合計は0.1mmであるが、各層間には5〜20
μmの厚さで接着剤の層がある。 積層板を切断し、幅
1mm×長さ15mmのコアを製作した。 このコアの周囲
に、#30エナメル被覆銅線を20ターン巻いて、ノイ
ズフィルター素子とした。
After the above heat treatment, recrystallization was performed, but the structure was kept fine, and a PC permalloy thin foil having high flatness was obtained. An epoxy-based adhesive was applied to this PC permalloy foil, and a laminate of 20 sheets was heated and pressurized to cure and integrate the adhesive. The total thickness of the magnetic material is 0.1 mm, but 5-20
There is a layer of adhesive with a thickness of μm. The laminate was cut to produce a core having a width of 1 mm and a length of 15 mm. Around this core, a # 30 enamel-coated copper wire was wound 20 turns to obtain a noise filter element.

【0019】比較のため、上記の最終圧延工程で得られ
た、再結晶のための熱処理を経ていない厚さ5μmのP
Cパーマロイ薄箔を使用して、同じノイズフィルター素
子を製作した(比較例1とする)。 また、既知の技術
で厚さ20μmまで圧延したPCパーマロイ箔を5枚
(磁性材料の厚さが上記と同じ0.1mmになるよう)重
ね、同様にエポキシ系接着剤で一体化して、これもノイ
ズフィルター素子に加工した(比較例2とする)。
For comparison, the 5 μm-thick P obtained in the above-mentioned final rolling step, which has not been subjected to a heat treatment for recrystallization.
The same noise filter element was manufactured using C permalloy thin foil (referred to as Comparative Example 1). In addition, five PC permalloy foils rolled to a thickness of 20 μm by a known technique are laminated (so that the thickness of the magnetic material is the same as the above 0.1 mm), and similarly integrated with an epoxy-based adhesive. It was processed into a noise filter element (Comparative Example 2).

【0020】「ネットワークアナライザー」(HP社
製)を用いて、上記3種のノイズフィルター素子のノイ
ズ減衰性能を、100MHz〜1GHzの間で測定した。 結
果を、図3に示す。 図3のグラフから、本発明の薄箔
を使用してノイズフィルターを製作すると、100〜6
00MHz 台の間は15dBを超える減衰が実現すること、
700MHz付近から1GHzの間は減衰量が若干小さくなる
が、それでも10dBは確保できていることがわかる。
Using a "network analyzer" (manufactured by HP), the noise attenuation performance of the above three types of noise filter elements was measured between 100 MHz and 1 GHz. The results are shown in FIG. From the graph of FIG. 3, when a noise filter is manufactured using the thin foil of the present invention, 100 to 6
Attenuation exceeding 15 dB is realized during the 00 MHz range,
It can be seen that the attenuation is slightly reduced from around 700 MHz to 1 GHz, but 10 dB is still ensured.

【0021】[0021]

【発明の効果】本発明により、軟磁性金属の箔であって
厚さ10μmを下回る薄箔の製造が可能になった。 こ
の薄箔は、はじめに記したように、そのまま、またはゴ
ムやプラスチックに練り込んでシートにして、電磁シー
ルド材としたり、上記実施例のように積層してノイズフ
ィルターのコア材としたりすることができる。 軟磁性
金属として、透磁率μが周波数との関係において特定の
範囲にあるものを使用した場合は、1GHz またはそれ以
上の高周波領域ですぐれた磁気特性を発揮する。
According to the present invention, it has become possible to produce a soft magnetic metal foil having a thickness of less than 10 μm. As described at the beginning, this thin foil may be used as it is or kneaded in rubber or plastic to form a sheet to be used as an electromagnetic shielding material, or may be laminated as in the above embodiment to be used as a core material of a noise filter. it can. When a soft magnetic metal having a magnetic permeability μ in a specific range in relation to frequency is used, excellent magnetic properties are exhibited in a high frequency region of 1 GHz or more.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の軟磁性金属薄箔の結晶粒子を模式的
に示す、拡大した平面図および断面図。
FIG. 1 is an enlarged plan view and a cross-sectional view schematically showing crystal grains of a soft magnetic metal foil of the present invention.

【図2】 本発明の軟磁性金属薄箔の製造工程を示す概
念図。
FIG. 2 is a conceptual diagram showing a manufacturing process of the soft magnetic thin metal foil of the present invention.

【図3】 本発明の実施例および比較例の薄箔をコア材
とするノイズフィルターの、ノイズ減衰性能を、使用周
波数との関係において示した図。
FIG. 3 is a diagram showing the noise attenuation performance of a noise filter using a thin foil as a core material in Examples and Comparative Examples of the present invention in relation to a used frequency.

【符号の説明】[Explanation of symbols]

1A 軟磁性金属の箔(市販の厚い箔) 1B 軟磁性金属の箔(10μm近くまで薄くした箔) 1C 軟磁性金属の箔(10μm以下に薄くした箔、熱
処理前) 1D 軟磁性金属の箔(10μm以下に薄くした箔、熱
処理後) 21a,21b;22a,22b;… 上下に置かれた
圧延ロール 31a,31b;32a,32b;… 左右に置かれた
圧延ロール 4 加熱炉 5 チャンバー 6 非酸化性ガス 7 冷却ロール
1A Soft magnetic metal foil (commercially thick foil) 1B Soft magnetic metal foil (thinned to near 10 μm) 1C Soft magnetic metal foil (thinned to 10 μm or less, before heat treatment) 1D Soft magnetic metal foil ( 21a, 21b; 22a, 22b; rolling rolls 31a, 31b; 32a, 32b; rolling rolls placed on the left and right 4 Heating furnace 5 Chamber 6 Non-oxidizing Gas 7 Cooling roll

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 軟磁性金属の圧延および熱処理によって
製造された厚さ10μm以下の薄箔であって、実質上す
べての結晶粒子が薄箔の厚さ方向に貫通した形で存在す
るが、この条件を満たす限度において微細な粒子である
軟磁性金属の薄箔。
1. A thin foil having a thickness of 10 μm or less produced by rolling and heat-treating a soft magnetic metal, wherein substantially all crystal grains are present in a form penetrating in the thickness direction of the thin foil. Soft magnetic metal thin foil that is fine particles as far as the conditions are satisfied.
【請求項2】 軟磁性金属が、PCパーマロイ、パーメ
ンジュール合金(Fe−50Co−2V)、ならびにF
e−Cr−Al合金およびFe−Cr−Si合金のいず
れかである電磁ステンレスからえらんだものである請求
項1の薄箔。
2. The soft magnetic metal comprises PC permalloy, permendur alloy (Fe-50Co-2V), and F
2. The thin foil according to claim 1, wherein the foil is selected from an electromagnetic stainless steel that is one of an e-Cr-Al alloy and an Fe-Cr-Si alloy.
【請求項3】 軟磁性金属の箔を圧延および焼鈍の繰り
返しにより次第に薄くし、厚さが10〜20μmの領域
に至った後は、非酸化性雰囲気中で、箔を垂直に下方に
移動させながらさらに圧延を続けて10μmを下回る厚
さとし、ついで軟磁性金属の再結晶温度以上の温度に加
熱して再結晶を起させたのち、直ちに冷却して結晶粒の
粗大化を防ぐことからなる軟磁性金属の薄箔の製造方
法。
3. The soft magnetic metal foil is gradually thinned by repeating rolling and annealing, and after reaching a thickness of 10 to 20 μm, the foil is moved vertically downward in a non-oxidizing atmosphere. While further rolling, the thickness was reduced to less than 10 μm, then heated to a temperature higher than the recrystallization temperature of the soft magnetic metal to cause recrystallization, and then cooled immediately to prevent coarsening of the crystal grains. A method for producing a thin sheet of magnetic metal.
【請求項4】 軟磁性金属の再結晶温度以上の温度への
加熱を、厚さ10μm以下の箔を、非酸化性雰囲気に保
った炉内を垂直に下方に移動させながら、軟磁性金属が
PCパーマロイまたはパーメンジュール合金の場合は8
00℃以上の温度に、電磁ステンレスの場合は700℃
以上の温度に、2〜5分間加熱することによって実施
し、それに続く冷却を、やはり非酸化性ガスに接触させ
ることによって実施する請求項3の製造方法。
4. A method for heating a soft magnetic metal to a temperature higher than a recrystallization temperature of a soft magnetic metal while vertically moving a foil having a thickness of 10 μm or less in a furnace maintained in a non-oxidizing atmosphere. 8 for PC permalloy or permendur alloy
Temperature above 00 ° C, 700 ° C for electromagnetic stainless steel
4. The method according to claim 3, wherein the heating is performed at the above-mentioned temperature for 2 to 5 minutes, and the subsequent cooling is also performed by contacting with a non-oxidizing gas.
JP807898A 1998-01-19 1998-01-19 Thin foil of soft magnetic metal and its manufacture Pending JPH11197708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP807898A JPH11197708A (en) 1998-01-19 1998-01-19 Thin foil of soft magnetic metal and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP807898A JPH11197708A (en) 1998-01-19 1998-01-19 Thin foil of soft magnetic metal and its manufacture

Publications (1)

Publication Number Publication Date
JPH11197708A true JPH11197708A (en) 1999-07-27

Family

ID=11683313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP807898A Pending JPH11197708A (en) 1998-01-19 1998-01-19 Thin foil of soft magnetic metal and its manufacture

Country Status (1)

Country Link
JP (1) JPH11197708A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033182A3 (en) * 2001-10-11 2003-10-09 Wet Automotive Systems Ag Device and method for the production of flat metal
JP2013165163A (en) * 2012-02-10 2013-08-22 Dainippon Printing Co Ltd Manufacturing method of metal shield plate and metal shield plate
CN113290053A (en) * 2021-05-27 2021-08-24 江苏中基复合材料有限公司 Secondary rerolling annealing device for flexible pasting type ceramic welding liner aluminum foil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033182A3 (en) * 2001-10-11 2003-10-09 Wet Automotive Systems Ag Device and method for the production of flat metal
EP1428588A1 (en) * 2001-10-11 2004-06-16 W.E.T. Automotive Systems Ag Device and method for heat treatment of flat metal
JP2013165163A (en) * 2012-02-10 2013-08-22 Dainippon Printing Co Ltd Manufacturing method of metal shield plate and metal shield plate
CN113290053A (en) * 2021-05-27 2021-08-24 江苏中基复合材料有限公司 Secondary rerolling annealing device for flexible pasting type ceramic welding liner aluminum foil

Similar Documents

Publication Publication Date Title
JP6790043B2 (en) Laminated magnetic core
Noh et al. Relationship between crystallization process and magnetic properties of Fe‐(Cu‐Nb)‐Si‐B amorphous alloys
EP3522186A1 (en) Nanocrystal alloy magnetic core, magnetic core unit, and method for manufacturing nanocrystal alloy magnetic core
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
KR101015075B1 (en) Method of producing a strip of nanocrystalline material and device for producing a wound core from said strip
JP6870381B2 (en) Electrical steel sheet and its manufacturing method
WO2020235643A1 (en) Production method for nanocrystalline alloy ribbon having resin film
JP6131856B2 (en) Early microcrystalline alloy ribbon
TWI444483B (en) Fe-based amorphous alloy ribbon and magnetic core formed thereby
JP2008231463A (en) Fe-BASED SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY STRIP, AND MAGNETIC COMPONENT
JP2007182594A (en) Amorphous alloy thin strip, nano-crystalline soft magnetic alloy, and magnetic core composed of nano-crystalline soft magnetic alloy
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
JP6024831B2 (en) Method for producing Fe-based nanocrystalline alloy and method for producing Fe-based nanocrystalline alloy magnetic core
WO2019009311A1 (en) Tape-wound core, and method for producing tape-wound core
JPH0617204A (en) Soft magnetic alloy and its manufacture and magnetic core
US6171408B1 (en) Process for manufacturing tape wound core strips and inductive component with a tape wound core
JPH11197708A (en) Thin foil of soft magnetic metal and its manufacture
JP2009114511A (en) Method for manufacturing soft-magnetic metal-foil
JP2008136185A (en) Antenna core its manufacturing method, and antenna
JP7452335B2 (en) Method for manufacturing Fe-based nanocrystalline alloy magnetic core
EP4044773A1 (en) High-frequency acceleration cavity core, and high-frequency acceleration cavity in which same is used
JP4445195B2 (en) Amorphous alloy ribbon and magnetic core using it
JPS6360264A (en) Production of amorphous co alloy
JP2008098323A (en) Magnetic appliance
KR0140788B1 (en) Ultrathin fe based nanocrystalline alloys and method for preparing ultrathin ribbons