JPH11191427A - Electric power recovering method from exhaust gas - Google Patents

Electric power recovering method from exhaust gas

Info

Publication number
JPH11191427A
JPH11191427A JP9358768A JP35876897A JPH11191427A JP H11191427 A JPH11191427 A JP H11191427A JP 9358768 A JP9358768 A JP 9358768A JP 35876897 A JP35876897 A JP 35876897A JP H11191427 A JPH11191427 A JP H11191427A
Authority
JP
Japan
Prior art keywords
anode
cathode
exhaust gas
electric power
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9358768A
Other languages
Japanese (ja)
Inventor
Hidekazu Kasai
英一 河西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP9358768A priority Critical patent/JPH11191427A/en
Publication of JPH11191427A publication Critical patent/JPH11191427A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide an electric power recovering method for recovering electric power by using an exhaust gas itself as a material from the exhaust gas containing CO2 which is exhausted from a thermal electric power plant. SOLUTION: A stacked cell 10 is assembled by connecting a plurality of unit cells in series each comprising an electrolyte plate 1 using molten carbonate as an electrolyte, a porous cathode 2 and a porous anode 3 between which the electrolyte plate 1 interposed, gas containing carbon dioxide of relatively high concentration and oxygen is supplied to the cathode, and a gas containing carbon dioxide of relatively low concentration is supplied to the anode, the electrochemical reaction of CO2 +1/2O2 +2e<-> →CO3 <2-> is conducted in the cathode, the carbonate ion produced is moved to the anode through the electrolyte plate, electrochemical reaction of CO3 <2-> →CO2 +1/2O2 +2e<-> is conducted in the anode, and electric power is generated between the cathode and the anode.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、二酸化炭素(CO2
ガスを含む排ガスから溶融塩を利用して電力を回収する
電力回収方法に関する。
The present invention relates to carbon dioxide (CO 2 )
The present invention relates to a power recovery method for recovering power from exhaust gas containing gas using molten salt.

【0002】[0002]

【従来の技術】近年、地球温暖化現象が世界的な問題と
なっており、CO2 ガスの排出量低減が重要な課題とな
っている。かかるCO2 ガスの排出量低減対象の1つ
が、火力発電所排ガス等の工業的燃焼排ガスであり、低
濃度かつ大量のCO2 ガスが高温で排出される特徴があ
る。
2. Description of the Related Art In recent years, the global warming phenomenon has become a global problem, and reducing the emission of CO 2 gas has become an important issue. One of such CO 2 gas emission reduction targets is an industrial combustion exhaust gas such as a thermal power plant exhaust gas, which is characterized in that a large amount of a low-concentration and large amount of CO 2 gas is emitted at a high temperature.

【0003】上記低濃度のCO2 ガスを濃縮して分離回
収する代表的な方法としては、吸収液にCO2 を化学
反応で吸収させ、それを加熱することなどにより、CO
2 を分離回収する化学吸収法、ゼオライトなどの固体
吸着剤の細孔にCO2 を物理的に吸着させ、圧力を下げ
ることによってCO2 を分離、回収する物理吸着法、
高分子膜に対する機体の透過速度の違いを利用してCO
2 を分離、回収する膜分離(透過)法、等が知られてい
る。
[0003] As a typical method for concentrating and separating and recovering the above-mentioned low-concentration CO 2 gas, CO 2 is absorbed by a chemical reaction in an absorbing solution and heated to obtain CO 2.
Chemical absorption of the 2 to separate and recover the CO 2 in the pores of the solid adsorbent, such as zeolite physically adsorbed, separated CO 2 by reducing the pressure, recovered physical adsorption method,
Utilizing the difference in the permeation speed of the airframe to the polymer membrane,
A membrane separation (permeation) method for separating and recovering 2 and the like are known.

【0004】しかし、上記の化学吸収法の場合には、
吸収液(溶媒)側の制約で、CO2ガスの温度を低くす
る必要があるので、分離のためには大きな加熱エネルギ
ーが必要になり、かつ吸収液の使用量が多く高価となる
問題がある。また、上記の物理吸着法の場合には、C
2 の分離に非常に大きなエネルギーが必要であり、大
容量化が困難である等の問題がある。一方、上記の膜
分離法の場合には、膜が非常に高価なためコストが高
く、かつ膨大な面積の膜が必要なため大容量化が困難で
あり、更に不純物が多い排ガスに適した膜の開発が必要
である等の問題がある。
However, in the case of the above-mentioned chemical absorption method,
Since the temperature of the CO 2 gas needs to be lowered due to the restriction on the absorbing liquid (solvent) side, there is a problem that a large heating energy is required for the separation, and the amount of the absorbing liquid used is large and expensive. . In the case of the above-mentioned physical adsorption method, C
There is a problem that very large energy is required for separating O 2 and it is difficult to increase the capacity. On the other hand, in the case of the above-mentioned membrane separation method, the cost is high because the membrane is very expensive, and it is difficult to increase the capacity because a huge area of the membrane is required. There are problems such as the need to develop

【0005】一方、従来、かかるCO2 ガスを含む排ガ
ス自体を原料として電力を回収するシステムは存在せ
ず、高温の排ガスをそのまま無駄に大気放出していた。
On the other hand, there has hitherto not been a system for recovering electric power by using the exhaust gas itself containing such CO 2 gas as a raw material, and the high-temperature exhaust gas has been discharged to the atmosphere unnecessarily as it is.

【0006】[0006]

【発明が解決しようとする課題】本発明はかかる課題を
解決するために創案されたものである。すなわち、本発
明の目的は、火力発電所等から排出されるCO2 を含む
排ガスから、排ガス自体を原料として電力を回収する電
力回収方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem. That is, an object of the present invention is to provide a power recovery method for recovering power from exhaust gas containing CO 2 discharged from a thermal power plant or the like, using the exhaust gas itself as a raw material.

【0007】[0007]

【課題を解決するための手段】本発明によれば、溶融炭
酸塩を電解質とする電解質板と、これを両面から挟持す
る多孔質のカソード及びアノードと、からなる単セルを
複数直列に接続した積層電池を準備し、カソード側に相
対的に高濃度の二酸化炭素と酸素を含むガスを供給し、
アノード側に相対的に低濃度の二酸化炭素を含むガスを
供給し、カソード側で、CO2 +1/2O2 +2e-
CO3 2- の電気化学反応を行わせ、生成された炭酸イ
オンを電解質板を通しアノードに移動させ、アノード側
で、CO 3 2-→ CO2 +1/2O2 +2e- の電気化
学反応を行わせ、これにより、カソードとアノード間に
電力を発生させる、ことを特徴とする排ガスからの電力
回収方法が提供される。
According to the present invention, a molten coal is provided.
An electrolyte plate with an acid salt as the electrolyte and sandwiching it from both sides
Cell consisting of a porous cathode and anode
Prepare multiple stacked batteries connected in series, and
In contrast, a gas containing high concentrations of carbon dioxide and oxygen is supplied,
Gas containing relatively low concentration of carbon dioxide on the anode side
Supply and on the cathode side, COTwo+ 1 / 2OTwo+ 2e-
COThree 2- The electrochemical reaction of
On is moved to the anode through the electrolyte plate, and the anode side
And CO Three 2-→ COTwo+ 1 / 2OTwo+ 2e-Electrification
Reaction between the cathode and the anode.
Generating electric power from exhaust gas
A recovery method is provided.

【0008】上記本発明の方法によれば、溶融炭酸塩を
電解質とする電解質板とこれを両面から挟持する多孔質
のカソード及びアノードとから単セルが構成され、この
単セルを複数直列に接続して積層電池が構成されるの
で、単セルの発電電圧が低くても積層化により所望の電
圧を得ることができる。また、この積層電池のカソード
側に相対的に高濃度の二酸化炭素と酸素を含むガスを供
給し、アノード側に相対的に低濃度の二酸化炭素を含む
ガスを供給するので、両方の電極(カソードとアノー
ド)が酸化雰囲気となり、酸化雰囲気で使用できる安価
な電極を使用することができる。
According to the method of the present invention, a single cell is constituted by an electrolyte plate using molten carbonate as an electrolyte and a porous cathode and anode sandwiching the electrolyte plate from both sides, and a plurality of the single cells are connected in series. Thus, a desired voltage can be obtained by lamination even if the power generation voltage of the single cell is low. In addition, a gas containing a relatively high concentration of carbon dioxide and oxygen is supplied to the cathode side of the stacked battery, and a gas containing a relatively low concentration of carbon dioxide is supplied to the anode side. And the anode) become an oxidizing atmosphere, and an inexpensive electrode that can be used in the oxidizing atmosphere can be used.

【0009】更に、カソード側で、CO2 +1/2O2
+2e- →CO3 2- の電気化学反応を行わせ、この反
応で生成した炭酸イオン(CO3 2-)がアノードに移動
し、アノード側で、CO3 2-→ CO2 +1/2O2
2e- の電気化学反応を行わせ、これにより、カソード
とアノード間に電力が発生するので、カソード側とアノ
ード側に供給するガス間にCO2 の濃度差があれば、発
電することができる。従って、従来そのまま廃棄してい
た火力発電所等からの排ガス自体を原料としてこれと空
気とから電力を回収することができる。
Furthermore, on the cathode side, CO 2 + 1 / 2O 2
An electrochemical reaction of + 2e → CO 3 2- is carried out, and the carbonate ion (CO 3 2- ) generated by this reaction moves to the anode, and on the anode side, CO 3 2- → CO 2 + 1 / 2O 2 +
Since the electrochemical reaction of 2e is performed, and electric power is generated between the cathode and the anode, power can be generated if there is a CO 2 concentration difference between the gases supplied to the cathode and the anode. Therefore, electric power can be recovered from the exhaust gas itself from the thermal power plant or the like, which has been conventionally discarded as it is, and from the air.

【0010】本発明の好ましい実施形態によれば、前記
溶融炭酸塩に、Li2 CO3 ,K2CO3 ,Na2 CO
3 等のアルカリ炭酸塩、又は、MgCO3 ,CaCO3
等のアルカリ土類炭酸塩を単独若しくは混合して使用
し、かつ、前記カソード及びアノードに、Ni,Fe,
Cu等を単独若しくは混合したものを主体としこれを酸
化させたものを使用する。これらの溶融炭酸塩、及び酸
化金属を用いることにより、積層電池を構成する部品
(コンポーネント)を安価に製造することができる。
According to a preferred embodiment of the present invention, the molten carbonate contains Li 2 CO 3 , K 2 CO 3 , and Na 2 CO 3 .
Alkaline carbonate such as 3 or MgCO 3 , CaCO 3
And the like, alone or as a mixture, and Ni, Fe,
A substance mainly composed of Cu or the like or a mixture thereof is used. By using these molten carbonates and metal oxides, it is possible to manufacture parts (components) constituting the laminated battery at low cost.

【0011】[0011]

【発明の実施の形態】以下、本発明の好ましい実施例を
図面を参照して説明する。なお、各図において、共通す
る部分には同一の符号を付して使用する。図1は、本発
明の電力回収方法を実施する発電設備の模式図であり、
図2は、この発電設備を構成する積層電池の模式図であ
る。図1及び図2において、積層電池10は、複数の単
セルを直列に接続した積層電池であり、各単セルは、溶
融炭酸塩を電解質とする電解質板1と、これを両面から
挟持する多孔質のカソード2及びアノード3とからな
る。なお、この図では単セルの構成のみを示している。
Preferred embodiments of the present invention will be described below with reference to the drawings. In the drawings, common parts are denoted by the same reference numerals. FIG. 1 is a schematic diagram of a power generation facility for implementing the power recovery method of the present invention,
FIG. 2 is a schematic view of a laminated battery constituting the power generation facility. 1 and 2, a laminated battery 10 is a laminated battery in which a plurality of unit cells are connected in series. Each unit cell has an electrolyte plate 1 using molten carbonate as an electrolyte and a porous plate sandwiching the electrolyte plate 1 from both sides. A cathode 2 and an anode 3 of high quality. This figure shows only the configuration of a single cell.

【0012】すなわち、単セルは、電解質板1、カソー
ド2及びアノード3から構成され、これを複数直列に接
続することにより積層電池10が構成されている。この
ように、積層電池10を構成することにより、単セルの
発電電圧が低くても積層化により所望の電圧を得ること
ができる。
That is, a single cell is composed of an electrolyte plate 1, a cathode 2 and an anode 3, and a plurality of these are connected in series to constitute a laminated battery 10. By configuring the stacked battery 10 in this manner, a desired voltage can be obtained by stacking even if the power generation voltage of the single cell is low.

【0013】また、積層電池10のカソード側には相対
的に高濃度の二酸化炭素と酸素を含むガスがカソードガ
スライン4から供給され、同時に、アノード側には相対
的に低濃度の二酸化炭素を含むガスがアノードガスライ
ン5から供給されるようになっている。相対的に高濃度
の二酸化炭素と酸素を含むガス(以下、高濃度ガスとい
う)は、例えば、図1に例示するように、火力発電所等
の排ガス発生設備9から排出され、通常はそのまま廃棄
されるCO2 ガスを含む排ガスである。この高濃度ガス
は、少なくともアノードガスライン5に供給するガス
(以下、低濃度ガスという)よりはCO2 濃度が高く、
例えば10%程度以上のCO2 濃度であることが望まし
い。また、高濃度ガスは、積層電池10の作動に適した
高温で供給するのがよく、特に好ましくは、途中に温度
調節装置(例えば加熱器、冷却器、熱交換器)を備え、
積層電池10の最適作動温度で供給する。
A gas containing a relatively high concentration of carbon dioxide and oxygen is supplied from the cathode gas line 4 to the cathode side of the stacked battery 10, while a relatively low concentration of carbon dioxide is supplied to the anode side. The contained gas is supplied from the anode gas line 5. A gas containing relatively high concentrations of carbon dioxide and oxygen (hereinafter referred to as a high-concentration gas) is discharged from an exhaust gas generation facility 9 such as a thermal power plant as shown in FIG. Exhaust gas containing CO 2 gas. This high concentration gas has a higher CO 2 concentration than at least a gas supplied to the anode gas line 5 (hereinafter, referred to as a low concentration gas),
For example, a CO 2 concentration of about 10% or more is desirable. The high-concentration gas is preferably supplied at a high temperature suitable for the operation of the stacked battery 10, and particularly preferably, a temperature controller (for example, a heater, a cooler, or a heat exchanger) is provided on the way.
The battery is supplied at the optimum operating temperature of the laminated battery 10.

【0014】相対的に低濃度の二酸化炭素を含むガス
(低濃度ガス)は、例えば空気であり、大気中から直接
導入して、積層電池10の作動に適した高温に加熱して
供給する。なお、この低濃度ガスには、CO2 濃度が高
濃度ガスよりも十分低い限りで、排ガス、窒素等の不活
性ガス、等を用いることもできる。
A gas containing a relatively low concentration of carbon dioxide (low concentration gas) is, for example, air, which is directly introduced from the atmosphere and heated to a high temperature suitable for the operation of the stacked battery 10 and supplied. In addition, as the low-concentration gas, as long as the CO 2 concentration is sufficiently lower than that of the high-concentration gas, an exhaust gas, an inert gas such as nitrogen, or the like can be used.

【0015】更に、積層電池10のカソード側を通過し
たガスは、カソード排ガスライン6から排出され、同時
に、アノード側を通過したガスは、アノード排ガスライ
ン7から排出されるようになっている。図1では、カソ
ード排ガスライン6から出た排ガスが、スタック(煙突
11)から大気中に放出される。同様に、アノード排ガ
スライン7から出た排ガスも、カソード排ガスライン6
に合流させて、同一の煙突11から廃棄してもよく、或
いは別の工程に供給してもよい。
Further, the gas that has passed through the cathode side of the stacked battery 10 is discharged from the cathode exhaust gas line 6, and the gas that has passed through the anode side is discharged from the anode exhaust gas line 7. In FIG. 1, the exhaust gas emitted from the cathode exhaust gas line 6 is released from the stack (chimney 11) into the atmosphere. Similarly, the exhaust gas discharged from the anode exhaust gas line 7 is
And may be discarded from the same chimney 11 or supplied to another process.

【0016】図2において、電解質板1は、電解質とし
ての溶融塩を浸み込ませた多孔質平板であり、例えば、
リチウムアルミネート(LiAlO2 )により構成した
マトリックスに電解質である炭酸塩を主成分とする溶融
塩を含浸させたものを用いる。炭酸塩としては、Li2
CO3 ,K2 CO3 ,Na2 CO3 等のアルカリ炭酸塩
及びMgCO3 ,CaCO3 等のアルカリ土類炭酸塩を
単独若しくは混合して使用する。
In FIG. 2, an electrolyte plate 1 is a porous plate impregnated with a molten salt as an electrolyte.
A matrix made of lithium aluminate (LiAlO 2 ) impregnated with a molten salt mainly composed of a carbonate as an electrolyte is used. As the carbonate, Li 2
Alkaline carbonates such as CO 3 , K 2 CO 3 and Na 2 CO 3 and alkaline earth carbonates such as MgCO 3 and CaCO 3 are used alone or in combination.

【0017】また、電極(カソード2及びアノード3)
としては、高温でかつ酸化雰囲気に耐えられる導電性金
属酸化物として、どちらも、酸化ニッケル、酸化鉄、或
いは、酸化銅及びその他金属酸化物が単独又は混合され
たものにリチウムがドープされた多孔質体を用いる。こ
れらの溶融炭酸塩、及び酸化金属を用いることにより、
積層電池を構成する部品(コンポーネント)を安価に製
造することができる。
Further, electrodes (cathode 2 and anode 3)
As a conductive metal oxide that can withstand an oxidizing atmosphere at high temperatures, both are nickel oxide, iron oxide, or a porous material in which copper oxide and other metal oxides are used alone or mixed with lithium. Use a body. By using these molten carbonates and metal oxides,
Parts (components) constituting the laminated battery can be manufactured at low cost.

【0018】本発明の電力回収方法では、アノード側に
相対的に低濃度の二酸化炭素を含むガスを供給し、カソ
ード側で、CO2 +1/2O2 +2e- →CO3 2-
電気化学反応を行わせ、生成された炭酸イオンを電解質
板を通しアノードに移動させ、アノード側で、CO3 2-
→ CO2 +1/2O2 +2e- の電気化学反応を行わ
せ、これにより、カソードとアノード間に電力を発生さ
せる。
In the power recovery method of the present invention, a gas containing a relatively low concentration of carbon dioxide is supplied to the anode side, and the electrochemical reaction of CO 2 + 1 / 2O 2 + 2e → CO 3 2- is performed on the cathode side. The generated carbonate ions are transferred to the anode through the electrolyte plate, and CO 3 2-
→ Perform an electrochemical reaction of CO 2 + 1 / 2O 2 + 2e , thereby generating electric power between the cathode and the anode.

【0019】すなわち、CO2 及びO2 を含有する排ガ
ス(高濃度排ガス)を溶融炭酸塩と多孔質ガス電極2,
3から構成されるセルに導き、電極反応により炭酸イオ
ン(CO3 2-)を生成し、炭酸ガスの濃度差によりアノ
ード側に炭酸イオンが移動することにより電荷を移動さ
せ、電力を取り出す。
That is, an exhaust gas containing CO 2 and O 2 (high-concentration exhaust gas) is melted with a molten carbonate and a porous gas electrode 2.
The cell is guided to a cell composed of the cells 3 and generates carbonate ions (CO 3 2− ) by the electrode reaction. The carbonate ions move to the anode side due to the difference in the concentration of carbon dioxide gas, thereby transferring electric charges and extracting electric power.

【0020】図2はこの電気化学反応を模式的に示して
いる。この図に示すように、カソード2側で、 CO2 +1/2O2 +2e- →CO3 2-...(式1) の電気化学反応が行われ、炭酸イオンCO3 2-が生成さ
れる。次に、上記生成された炭酸イオンCO3 2-は、電
解質板1中を泳動してアノード3へ達し、アノード3側
で、 CO3 2-→CO2 +1/2O2 +2e- ...(式2) の電気化学反応が行われ、電子が奪われることにより、
炭酸イオンCO3 2-からCO2 が濃縮分離され、ガス出
口6から排出される。
FIG. 2 schematically shows this electrochemical reaction. As shown in this figure, on the cathode 2 side, CO 2 + 1 / 2O 2 + 2e → CO 3 2- . . . The electrochemical reaction of (Equation 1) is performed, and carbonate ion CO 3 2- is generated. Next, the generated carbonate ion CO 3 2- migrates in the electrolyte plate 1 and reaches the anode 3, where CO 3 2- → CO 2 + 1 / 2O 2 + 2e . . . When the electrochemical reaction of (Equation 2) is performed and electrons are deprived,
CO 2 is concentrated and separated from the carbonate ions CO 3 2- and discharged from the gas outlet 6.

【0021】従って、全体として、下記の電気化学反応
がカソード側とアノード側で生じることになり、電力が
取り出される。 CO2 +1/2O2 +2e- →CO3 2- →CO2 +1/2O2 +2e- (式3)
Accordingly, as a whole, the following electrochemical reaction occurs on the cathode side and the anode side, and power is taken out. CO 2 + 1 / 2O 2 + 2e → CO 3 2- → CO 2 + 1 / 2O 2 + 2e (Formula 3)

【0022】実際のセルでは電極のカソード側では、C
2 ,O2 が吸収されて、CO3 2-がアノード側に向か
って移動し、アノード3で電子を放出するとともにCO
2 と1/2O2 を放出する。発生した電力はアノード
3、カソード2間に接続された負荷装置8から回収す
る。負荷装置8は、例えば、直流を交流に変換するイン
バータ装置を備え、変換した交流電流を外部負荷に供給
するようになっている。
In an actual cell, on the cathode side of the electrode, C
O 2 and O 2 are absorbed, CO 3 2- moves toward the anode side, and emits electrons at the anode 3 while CO 2 is released.
2 and 1 / 2O 2 release. The generated power is recovered from a load device 8 connected between the anode 3 and the cathode 2. The load device 8 includes, for example, an inverter device that converts DC into AC, and supplies the converted AC current to an external load.

【0023】[0023]

【実施例】図3は、図2の積層電池を構成する単セルの
発電試験結果である。この図において、(A)は電流密
度とセル電圧の関係、(B)は電流密度とセル出力の関
係をそれぞれ示している。なお、この試験は、高濃度ガ
スとして10%のCO2 を含む空気を使用し、低濃度ガ
スとして空気を使用した。その他の条件は、通常の溶融
炭酸塩型燃料電池(作動温度約650℃)と同様であ
る。
FIG. 3 shows a power generation test result of a single cell constituting the laminated battery of FIG. In this figure, (A) shows the relationship between the current density and the cell voltage, and (B) shows the relationship between the current density and the cell output. In this test, air containing 10% CO 2 was used as the high concentration gas, and air was used as the low concentration gas. Other conditions are the same as those of a normal molten carbonate fuel cell (operating temperature: about 650 ° C.).

【0024】図3の結果から、CO2 を含む排ガスか
ら、排ガス自体を原料として電力を回収することが可能
であることがわかる。また、この電力回収方法では、反
応性の高い高温の溶融炭酸塩を使用するため低い過電圧
での反応が進行可能で実用的な電流密度での電力取り出
しが可能である。また、電極材も白金等の高価な材料を
使用することなく、ほぼ100%近くの電流効率で電力
取り出しが可能である。
From the results shown in FIG. 3, it can be seen that electric power can be recovered from the exhaust gas containing CO 2 by using the exhaust gas itself as a raw material. Further, in this power recovery method, since a high-reactivity high-temperature molten carbonate is used, a reaction at a low overvoltage can proceed, and power can be taken out at a practical current density. Also, power can be extracted with a current efficiency of nearly 100% without using expensive materials such as platinum as the electrode material.

【0025】なお、本発明は上述した実施例に限定され
ず、本発明の要旨を逸脱しない範囲で種々変更できるこ
とは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various changes can be made without departing from the spirit of the present invention.

【0026】[0026]

【発明の効果】上述したように、本発明の方法によれ
ば、単セルを複数直列に接続して積層電池が構成される
ので、単セルの発電電圧が低くても積層化により所望の
電圧を得ることができる。また、この積層電池のカソー
ド側に相対的に高濃度の二酸化炭素と酸素を含むガスを
供給し、アノード側に相対的に低濃度の二酸化炭素を含
むガスを供給するので、両方の電極(カソードとアノー
ド)が酸化雰囲気となり、酸化雰囲気で使用できる安価
な電極(例えば、Ni,Fe,Cu等)を使用すること
ができる。
As described above, according to the method of the present invention, a stacked battery is formed by connecting a plurality of single cells in series, so that even if the power generation voltage of the single cells is low, the desired voltage can be obtained by stacking. Can be obtained. In addition, a gas containing a relatively high concentration of carbon dioxide and oxygen is supplied to the cathode side of the stacked battery, and a gas containing a relatively low concentration of carbon dioxide is supplied to the anode side. And the anode) become an oxidizing atmosphere, and inexpensive electrodes (eg, Ni, Fe, Cu, etc.) that can be used in the oxidizing atmosphere can be used.

【0027】更に、カソード側とアノード側で電気化学
反応を行わせ、これにより、カソードとアノード間に電
力が発生するので、カソード側とアノード側に供給する
ガス間にCO2 の濃度差があれば、発電することができ
る。従って、従来そのまま廃棄していた火力発電所等か
らの排ガス自体を原料としてこれと空気とから電力を回
収することができる。
Further, an electrochemical reaction is caused between the cathode side and the anode side, whereby electric power is generated between the cathode and the anode. Therefore, there is a CO 2 concentration difference between the gases supplied to the cathode side and the anode side. Power can be generated. Therefore, electric power can be recovered from the exhaust gas itself from the thermal power plant or the like, which has been conventionally discarded as it is, and from the air.

【0028】従って、本発明の排ガスからの電力回収方
法は、火力発電所等から排出されるCO2 を含む排ガス
から、排ガス自体を原料として電力を回収することがで
きる、等の優れた効果を有する。
Therefore, the method for recovering power from exhaust gas of the present invention has excellent effects such as the ability to recover power from exhaust gas containing CO 2 discharged from a thermal power plant or the like using the exhaust gas itself as a raw material. Have.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の電力回収方法を実施する発電設備の模
式図である。
FIG. 1 is a schematic diagram of a power generation facility for implementing a power recovery method of the present invention.

【図2】図1の発電設備を構成する積層電池の模式図で
ある。
FIG. 2 is a schematic diagram of a stacked battery constituting the power generation facility of FIG.

【図3】図2の積層電池を構成する単セルの発電試験結
果である。
FIG. 3 is a result of a power generation test of a single cell constituting the stacked battery of FIG. 2;

【符号の説明】[Explanation of symbols]

1 電解質板 2 カソード 3 アノード 4 カソードガスライン 5 アノードガスライン 6 カソード排ガスライン 7 アノード排ガスライン 8 負荷装置 9 排ガス発生設備 10 積層電池 11 スタック(煙突) DESCRIPTION OF SYMBOLS 1 Electrolyte plate 2 Cathode 3 Anode 4 Cathode gas line 5 Anode gas line 6 Cathode exhaust gas line 7 Anode exhaust gas line 8 Load device 9 Exhaust gas generation equipment 10 Stacked battery 11 Stack (chimney)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 溶融炭酸塩を電解質とする電解質板と、
これを両面から挟持する多孔質のカソード及びアノード
と、からなる単セルを複数直列に接続した積層電池を準
備し、 カソード側に相対的に高濃度の二酸化炭素と酸素を含む
ガスを供給し、アノード側に相対的に低濃度の二酸化炭
素を含むガスを供給し、 カソード側で、CO2 +1/2O2 +2e- →CO3 2-
の電気化学反応を行わせ、生成された炭酸イオンを電
解質板を通しアノードに移動させ、 アノード側で、CO3 2-→ CO2 +1/2O2 +2e
- の電気化学反応を行わせ、これにより、カソードとア
ノード間に電力を発生させる、ことを特徴とする排ガス
からの電力回収方法。
1. An electrolyte plate using molten carbonate as an electrolyte,
Prepare a stacked battery in which a plurality of single cells composed of a porous cathode and an anode sandwiching this from both sides are connected in series, and a gas containing relatively high concentrations of carbon dioxide and oxygen is supplied to the cathode side, A gas containing a relatively low concentration of carbon dioxide is supplied to the anode side, and CO 2 + 1 / 2O 2 + 2e → CO 3 2-
And the generated carbonate ions are transferred to the anode through the electrolyte plate. On the anode side, CO 3 2- → CO 2 + 1 / 2O 2 + 2e
- to perform the electrochemical reaction, thereby, a cathode and an anode between generating electric power, the power recovery process from the exhaust gas, characterized in that.
【請求項2】 前記溶融炭酸塩に、Li2 CO3 ,K2
CO3 ,Na2 CO 3 等のアルカリ炭酸塩、又は、Mg
CO3 ,CaCO3 等のアルカリ土類炭酸塩を単独若し
くは混合して使用し、かつ、前記カソード及びアノード
に、Ni,Fe,Cu等を単独若しくは混合したものを
主体としこれを酸化させたものを使用する、ことを特徴
とする請求項1に記載の排ガスからの電力回収方法。
2. The method according to claim 1, wherein the molten carbonate is LiTwoCOThree, KTwo
COThree, NaTwoCO ThreeAlkali carbonates such as, or Mg
COThree, CaCOThreeOr other alkaline earth carbonates
Or a mixture thereof, and the cathode and the anode
Ni, Fe, Cu, etc., alone or mixed
The main feature is that it is used by oxidizing it.
The method for recovering power from exhaust gas according to claim 1.
JP9358768A 1997-12-26 1997-12-26 Electric power recovering method from exhaust gas Pending JPH11191427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9358768A JPH11191427A (en) 1997-12-26 1997-12-26 Electric power recovering method from exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9358768A JPH11191427A (en) 1997-12-26 1997-12-26 Electric power recovering method from exhaust gas

Publications (1)

Publication Number Publication Date
JPH11191427A true JPH11191427A (en) 1999-07-13

Family

ID=18461014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9358768A Pending JPH11191427A (en) 1997-12-26 1997-12-26 Electric power recovering method from exhaust gas

Country Status (1)

Country Link
JP (1) JPH11191427A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319428A (en) * 2001-04-19 2002-10-31 Ishikawajima Harima Heavy Ind Co Ltd Molten carbonate fuel cell power generating device
JP2008507113A (en) * 2004-06-03 2008-03-06 フュエルセル エナジー, インコーポレイテッド Power plant / fuel cell system using integrated high-efficiency fossil fuels to suppress carbon dioxide emissions
US9077006B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9819042B2 (en) 2013-09-30 2017-11-14 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319428A (en) * 2001-04-19 2002-10-31 Ishikawajima Harima Heavy Ind Co Ltd Molten carbonate fuel cell power generating device
JP2008507113A (en) * 2004-06-03 2008-03-06 フュエルセル エナジー, インコーポレイテッド Power plant / fuel cell system using integrated high-efficiency fossil fuels to suppress carbon dioxide emissions
US9419295B2 (en) 2013-03-15 2016-08-16 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells at a reduced electrical efficiency
US10093997B2 (en) 2013-03-15 2018-10-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
US9077008B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9077005B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9178234B2 (en) 2013-03-15 2015-11-03 Exxonmobil Research And Engineering Company Integrated power generation using molten carbonate fuel cells
US9257711B2 (en) 2013-03-15 2016-02-09 Exxonmobil Research And Engineering Company Integrated carbon capture and chemical production using fuel cells
US9263755B2 (en) 2013-03-15 2016-02-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
US9343764B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in methanol synthesis
US9343763B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells for synthesis of nitrogen compounds
US9362580B2 (en) 2013-03-15 2016-06-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in a refinery setting
US10676799B2 (en) 2013-03-15 2020-06-09 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9647284B2 (en) 2013-03-15 2017-05-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9553321B2 (en) 2013-03-15 2017-01-24 Exxonmobile Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9520607B2 (en) 2013-03-15 2016-12-13 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells with fermentation processes
US9650246B2 (en) 2013-03-15 2017-05-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
US9735440B2 (en) 2013-03-15 2017-08-15 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
US9786939B2 (en) 2013-03-15 2017-10-10 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9077006B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9923219B2 (en) 2013-03-15 2018-03-20 Exxonmobile Research And Engineering Company Integrated operation of molten carbonate fuel cells
US9941534B2 (en) 2013-03-15 2018-04-10 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9455463B2 (en) 2013-03-15 2016-09-27 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US10283802B2 (en) 2013-09-30 2019-05-07 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
US9819042B2 (en) 2013-09-30 2017-11-14 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator

Similar Documents

Publication Publication Date Title
CA2397682A1 (en) Multipurpose reversible electrochemical system
US20040081859A1 (en) Solid oxide regenerative fuel cell
JP2007538379A5 (en)
JP2019502227A (en) System for capturing CO2 from a fuel cell
TWI226718B (en) Fuel cells using plasma
JP2004186074A (en) Method for recovering carbon dioxide using molten carbonate type fuel cell
JP2002319428A (en) Molten carbonate fuel cell power generating device
WO2020241115A1 (en) Electrochemical device and hydrogen generation method
JPH11169661A (en) Carbon dioxide recovering device
CN109273791A (en) A kind of minimizing technology of applying waste lithium ionic power battery septation
JP4100479B2 (en) Carbon dioxide decomposition method
JP2023525988A (en) Electrochemically driven carbon dioxide separator
JPH11191427A (en) Electric power recovering method from exhaust gas
WO2019144751A1 (en) Liquid metal fuel cell
JP2001300250A (en) Carbon dioxide concentration device
CN102163743A (en) Vacuum explosion-proof lithium-ion battery
JPH02311302A (en) Purification apparatus for hydrogen gas to be supplied to fuel cell
JP2001023670A (en) Fuel cell power generating system
CN114481175B (en) Repairable solid symmetrical electrolytic cell device based on strontium ferrite electrode catalytic layer
JPS62274561A (en) Molten carbonate fuel cell
JP4385424B2 (en) Carbon dioxide concentration method and apparatus
JPH06275291A (en) Molten carbonate fuel cell system
JP2517799B2 (en) Electrochemical exhaust gas treatment system
JPH04334870A (en) Fused carbonate type fuel cell generating set
JP2004220942A (en) Solid oxide fuel cell system and fuel cell combined cycle power generation plant