JPH11190787A - Heat resistant direct joint structure of high melting point material and high thermal conductivity material or jointing method therefor - Google Patents

Heat resistant direct joint structure of high melting point material and high thermal conductivity material or jointing method therefor

Info

Publication number
JPH11190787A
JPH11190787A JP9360223A JP36022397A JPH11190787A JP H11190787 A JPH11190787 A JP H11190787A JP 9360223 A JP9360223 A JP 9360223A JP 36022397 A JP36022397 A JP 36022397A JP H11190787 A JPH11190787 A JP H11190787A
Authority
JP
Japan
Prior art keywords
temperature
copper alloy
thermal conductivity
tungsten
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9360223A
Other languages
Japanese (ja)
Inventor
Shintaro Ishiyama
新太郎 石山
Shigeru Saito
滋 斎藤
Kiyoshi Fukaya
清 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute filed Critical Japan Atomic Energy Research Institute
Priority to JP9360223A priority Critical patent/JPH11190787A/en
Publication of JPH11190787A publication Critical patent/JPH11190787A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PROBLEM TO BE SOLVED: To enhance uniformity at joint and joint efficiency by composing the cooling passage of a fusion reactor of a copper alloy having high thermal conductivity and composing a cooling plate of tungsten. SOLUTION: A fusion reactor comprises a vacuum vessel, a coil generating a field for confining a hydrogen isotope plasma and a cooling passage 1 for passing coolant arranged in the vacuum vessel, and a cooling plate having a material facing plasma. A member having the cooling passage 1 is composed of a copper alloy 2 having high thermal conductivity and the cooling plate is composed of tungsten 3 having high melting point. The copper alloy 2 and tungsten 3 are jointed directly through an HIP(high pressure isotropic pressure) joint face 4 without using any brazing material. Direct jointing is performed under temperature of 900-1,100 deg.C by applying a high pressure of 50-200 MP isotropically for 0.15-4 hours.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ロウ材を使用する
ことなく、焼結タングステンなどの高融点材料と銅合金
などの高熱伝導率を有する材料とを高温高圧処理により
直接接合した高温強度を有する耐熱性接合構造体及びそ
の製造方法に関するものであり、超高温エンジンや発電
機器の構造体材料として、また原子力をはじめ民生、宇
宙航空分野での構造体としての利用が可能である。
BACKGROUND OF THE INVENTION The present invention relates to a high-temperature high-pressure joint made of a high-melting material such as sintered tungsten and a material having a high thermal conductivity such as a copper alloy without using a brazing material. The present invention relates to a heat-resistant joint structure having the same and a method for manufacturing the same, and can be used as a structural material for an ultra-high-temperature engine or a power generator, or as a structure in the fields of nuclear power, civil engineering, and aerospace.

【0002】[0002]

【従来の技術】従来、核融合炉炉内の高温プラズマに直
接接触するダイバータ構造体では、超耐熱アーマータイ
ルを冷却構造体で保護する設計となっているが、超耐熱
アーマータイルの高融点材料と冷却構造体の高熱伝導性
の銅合金との接合は、従来ロウ材を介した接合が行われ
てきた。
2. Description of the Related Art Conventionally, in a divertor structure that is in direct contact with high-temperature plasma in a fusion reactor, a superheat-resistant armor tile is designed to be protected by a cooling structure. Conventionally, the joining between the cooling structure and the copper alloy having high thermal conductivity has been performed through a brazing material.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来行われて
いたロウ材を介した高融点材料と銅合金との接合では、
次のような問題点があった。
However, in the conventional joining of a high melting point material and a copper alloy via a brazing material,
There were the following problems.

【0004】 高融点材料と銅合金間にロウ材接合に
よる異種材料が形成され、材料特性の劣化の原因とな
る。 接合面でのロウ接合効率が悪く、接合欠陥を多く含
む。 接合部の非破壊検査を行う際に高融点材料/ロウ材
/銅合金間の区別が難しく、接合健全性評価が行えな
い。
[0004] A different kind of material is formed between the high melting point material and the copper alloy by joining the brazing material, which causes deterioration of material characteristics. The brazing efficiency at the joining surface is poor and contains many joining defects. When performing a nondestructive inspection of a joint, it is difficult to distinguish between a high melting point material / a brazing material / a copper alloy, and it is not possible to evaluate joint integrity.

【0005】そこで、本発明は、これらの問題点を解決
するために提供されたものある。
Accordingly, the present invention has been provided to solve these problems.

【0006】[0006]

【課題を解決するための手段】本発明は、高融点材料と
銅合金の接合面を高温高圧で均一に直接接合することに
より、接合部の均一性ならびに接合効率の向上を図ると
ともに、非破壊検査による検査精度を向上することがで
きるものである。また、本発明によれば、高融点材料と
銅合金の直接接合が可能となるので、高強度を有する大
型の耐熱性接合構造体を製作する際に、その低コスト化
が実現できる。
SUMMARY OF THE INVENTION The present invention aims to improve the uniformity of the joining portion and the joining efficiency by directly joining the joining surface of the high melting point material and the copper alloy uniformly at a high temperature and a high pressure. The inspection accuracy by the inspection can be improved. Further, according to the present invention, direct joining of the high melting point material and the copper alloy becomes possible, so that when manufacturing a large heat resistant joint structure having high strength, cost reduction can be realized.

【0007】本発明は、核融合炉真空容器と、該真空容
器内の所定位置に水素同位体プラズマを保持する閉じこ
め磁場発生用コイルと、真空容器内に配設され、かつ内
部に真空容器冷却系からの冷媒を流通させる冷却通路を
有すると共に、内部にプラズマ対向材を有する冷却板と
を備えた核融合炉において、図1に示されるように、冷
却通路1を有する部材が高熱伝導率を有する銅合金2か
らなり、冷却板が高融点のタングステン3からなり、そ
の冷却通路を構成する銅合金2と冷却板を構成するタン
グステン3とがロウ材を使用せずに直接接合されてHI
P接合面を介して結合されることを特徴とする高温強度
を有する耐熱性接合構造体である。
The present invention provides a vacuum vessel for a fusion reactor, a confined magnetic field generating coil for holding a hydrogen isotope plasma at a predetermined position in the vacuum vessel, a vacuum vessel provided inside the vacuum vessel, and having a vacuum vessel cooling inside. As shown in FIG. 1, in a fusion reactor having a cooling passage through which a refrigerant from the system flows and a cooling plate having a plasma facing material therein, the member having the cooling passage 1 has a high thermal conductivity. The cooling plate is made of tungsten 3 having a high melting point, and the copper alloy 2 forming the cooling passage and the tungsten 3 forming the cooling plate are directly joined to each other without using a brazing material.
It is a heat-resistant joining structure having high-temperature strength, which is joined via a P joining surface.

【0008】また、本発明においては、ロウ材を使用せ
ずに、高熱伝導率を有する銅合金からなる冷却通路部材
と高融点材料からなる冷却板とが高温高圧で直接接合さ
れる。
In the present invention, a cooling passage member made of a copper alloy having a high thermal conductivity and a cooling plate made of a high melting point material are directly joined at a high temperature and a high pressure without using a brazing material.

【0009】更にまた、本発明は、ロウ材を使用するこ
となく、900℃〜1100℃の温度において、等方的
に50〜200MPaの高圧を0.15時間〜4時間付
与することにより、冷却板を構成する高融点タングステ
ン材料と冷却板用の高伝導率を有する銅合金材料とを直
接接合することからなる高温強度を有する耐熱性接合構
造体の製造方法である。以下、本発明を実施例に基づい
て具体的に説明する。
Still further, the present invention provides a cooling method by applying a high pressure of 50 to 200 MPa isotropically at a temperature of 900 to 1100 ° C. for 0.15 to 4 hours without using a brazing material. This is a method for manufacturing a heat-resistant joint structure having high-temperature strength, which comprises directly joining a high-melting-point tungsten material constituting a plate and a copper alloy material having a high conductivity for a cooling plate. Hereinafter, the present invention will be specifically described based on examples.

【0010】[0010]

【実施例】ロウ材を使用することなく、焼結タングステ
ン材と無酸素銅合金またはアルミナ分散銅合金との直接
接合を下記の高温高圧条件下で実施した。
EXAMPLES Direct joining of a sintered tungsten material to an oxygen-free copper alloy or an alumina-dispersed copper alloy was performed without using a brazing material under the following conditions of high temperature and high pressure.

【0011】実際の接合材料としては、焼結タングステ
ン(東京タングステン製)、無酸素銅合金〔日立電線
(株)〕、及びアルミナ分散銅合金〔グリッドコップ社
製(アルミナ添加量)(5〜25wt%)〕を使用し
た。接合材料であるタングステン/銅合金のHIP(高
温等方加圧)処理を行う際に、HIP処理中のガス圧力
を接合材料に均一に伝達するために、図6に示される接
合材料全体を覆う軟鋼製のキャプセル容器が使用され
た。
As actual joining materials, sintered tungsten (manufactured by Tokyo Tungsten), oxygen-free copper alloy (Hitachi Cable Co., Ltd.), and alumina-dispersed copper alloy [manufactured by Gridcop (alumina addition amount) (5 to 25 wt. %)〕It was used. In order to uniformly transmit the gas pressure during the HIP processing to the bonding material when performing the HIP (high-temperature isostatic pressing) processing of the bonding material tungsten / copper alloy, the entire bonding material shown in FIG. 6 is covered. Mild steel capsule containers were used.

【0012】 HIP処理条件;昇温速度 500〜1500℃/時間 降温度速度 100〜1000℃/時間 最高温度 900〜1100℃ 最高圧力 50〜200MPa 最高加圧時間 10分〜5時間 昇圧速度 10〜100MPa/時間HIP treatment conditions; heating rate 500 to 1500 ° C./hour Cooling rate 100 to 1000 ° C./hour Maximum temperature 900 to 1100 ° C. Maximum pressure 50 to 200 MPa Maximum pressurization time 10 minutes to 5 hours Pressure increase rate 10 to 100 MPa /time

【0013】以下に、得られた接合材についての高温強
度、破断伸び等に関する結果を示す。
The results regarding the high temperature strength, elongation at break and the like of the obtained joining material are shown below.

【0014】図2に、900℃、950℃又は1000
℃の温度において98MPaの圧力を2時間付与したH
IP(高温等方加圧)処理により加圧接合された焼結タ
ングステン/銅合金からなる接合材の室温、200℃、
400℃又は600℃における高温強度(破断強度)及
び破断伸び(破断変位)の関係が示されている。この関
係から、この接合材は、周囲温度が900℃以上の高温
になるに従って焼結タングステン/銅合金の接合強度が
高くなる傾向があり、また、その際の伸びも処理温度が
高温化するに従って改善されていることが示されてい
る。
FIG. 2 shows that 900 ° C., 950 ° C. or 1000 ° C.
H at which a pressure of 98 MPa was applied at a temperature of 2 ° C. for 2 hours
Room temperature, 200 ° C., of a bonding material made of a sintered tungsten / copper alloy pressure-bonded by IP (high temperature isostatic pressing) processing
The relationship between the high-temperature strength (rupture strength) and the elongation at break (rupture displacement) at 400 ° C. or 600 ° C. is shown. From this relationship, this bonding material tends to have a higher bonding strength of the sintered tungsten / copper alloy as the ambient temperature becomes higher than 900 ° C., and the elongation at that time also increases as the processing temperature increases. It has been shown to be improved.

【0015】図3に、1000℃の温度において98M
Paの圧力を0.15時間、2時間又は4時間付与した
HIP(高温等方加圧)処理により加圧接合された焼結
タングステン/銅合金からなる接合材の室温、200
℃、400℃又は600℃における高温強度(破断強
度)及び破断伸び(破断変位)の関係が示されている。
この関係から、この接合材は、HIP処理時間が2時間
で最高温度となるが、一方、2時間以上の処理材では強
度と伸びが減少することが示されている。
FIG. 3 shows that 98M at a temperature of 1000 ° C.
Room temperature of a bonding material made of a sintered tungsten / copper alloy pressure-bonded by a HIP (high-temperature isostatic pressing) process in which a pressure of Pa is applied for 0.15 hours, 2 hours or 4 hours, 200
The relationship between the high-temperature strength (breaking strength) and the breaking elongation (breaking displacement) at 400C or 600C is shown.
From this relationship, it is shown that the bonding material reaches the maximum temperature when the HIP processing time is 2 hours, but the strength and elongation are reduced with the processing material longer than 2 hours.

【0016】図4に、1000℃の温度において約50
MPa、約100MPa、約150MPa又は約200
MPaの圧力を2時間付与したHIP(高温等方加圧)
処理により加圧接合された焼結タングステン/銅合金か
らなる接合材の室温、200℃、400℃又は600℃
における高温強度(破断強度)及び破断伸び(破断変
位)の関係が示されている。この関係から、この接合材
は、その加圧接合処理圧力が100MPa前後で最高強
度及び伸びが得られることが示されている。
FIG. 4 shows that at a temperature of 1000.degree.
MPa, about 100 MPa, about 150 MPa or about 200
HIP (High-temperature isostatic pressing) applied with MPa pressure for 2 hours
Room temperature, 200 ° C, 400 ° C or 600 ° C of bonding material made of sintered tungsten / copper alloy which is pressure bonded by processing
The relationship between the high temperature strength (rupture strength) and the elongation at break (displacement at break) is shown in FIG. From this relation, it is shown that the maximum strength and elongation of this joining material can be obtained when the pressure joining treatment pressure is around 100 MPa.

【0017】図5は、銅合金母材と対比したHIP処理
された焼結タングステン/銅合金接合材の高温強度(破
断強度)と試験温度との関係を示す図である。即ち、
(1)1000℃で98MPaの圧力を2時間付与して
加圧接合した接合材、(2)1000℃で147MPa
の圧力を2時間付与して加圧接合した接合材、または
(3)銅合金母材の各試験温度に対する高温強度(破断
強度)が示されている。その結果は、図5に示されると
おり、上記条件下でHIP接合された接合材(−△ー及
び〇ーで示される)は、母材(銅合金)(−□−で示さ
れる)以上の強度を有していた。即ち、この接合材の実
際上の使用温度である約400−500℃(接合面)に
おいて100Mpa以上の十分な強度を有していること
が示されている。なお、通常、接合材の接合強度は40
0−500℃で100Mpaであれば良いとされてい
る。
FIG. 5 is a diagram showing the relationship between the high-temperature strength (rupture strength) and the test temperature of the sintered tungsten / copper alloy joint material subjected to the HIP treatment as compared with the copper alloy base material. That is,
(1) A bonding material that is pressure-bonded by applying a pressure of 98 MPa at 1000 ° C. for 2 hours, and (2) 147 MPa at 1000 ° C.
And (3) the high-temperature strength (rupture strength) at each test temperature of the joining material subjected to pressure bonding by applying the pressure of 2 hours. As a result, as shown in FIG. 5, the joining material (indicated by-△ and 〇) which was HIP-joined under the above-mentioned conditions was more than the base material (copper alloy) (indicated by-□-). Had strength. That is, it is shown that the bonding material has a sufficient strength of 100 Mpa or more at about 400-500 ° C. (bonding surface), which is the actual use temperature of the bonding material. In general, the bonding strength of the bonding material is 40.
It is said that 100 Mpa at 0-500 ° C. is sufficient.

【0018】[0018]

【発明の効果】本発明により、核融合炉炉内構造物、特
にダイバータ構造体に使用するアーマタイルは数万枚の
膨大な数が要求されているが、これらアーマタイルの個
々の接合を高精度で行えるととに、製作性において短時
間で大量に処理できることから、本発明は、ダイバータ
製作コストの削減ならびに構造信頼性の向上を図ること
ができる効果が生ずる。
According to the present invention, an enormous number of tens of thousands of armatures to be used for a nuclear reactor internal structure, particularly a diverter structure, are required. If it can be performed, it can be processed in a large amount in a short time in terms of manufacturability, so that the present invention has the effect of reducing the divertor manufacturing cost and improving the structural reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 ロウ材を使用することなしに、冷却通路を有
する高熱伝導率の銅合金部材を高融点タングステン製の
冷却板に接合した耐熱性接合構造体を示す図ある。
FIG. 1 is a view showing a heat-resistant joining structure in which a copper alloy member having a high thermal conductivity having a cooling passage is joined to a high-melting-point tungsten cooling plate without using a brazing material.

【図2】 900℃、950℃又は1000℃の温度に
おいて98MPaの圧力を2時間付与したHIP(高温
等方加圧)処理により加圧接合された焼結タングステン
/銅合金からなる接合材の室温、200℃、400℃又
は600℃における高温強度(破断強度)及び破断伸び
(破断変位)の関係を示す図である。HIP処理温度と
焼結タングステン/銅合金の高温強度及び破断伸びとの
関係を示す図である。
FIG. 2 is a room temperature of a bonding material made of a sintered tungsten / copper alloy that is pressure-bonded by a HIP (high-temperature isostatic pressing) process in which a pressure of 98 MPa is applied for 2 hours at a temperature of 900 ° C., 950 ° C., or 1000 ° C. It is a figure which shows the relationship between high temperature strength (rupture strength) and elongation at break (breaking displacement) at 200, 400, or 600 ° C. It is a figure which shows the relationship between HIP processing temperature, the high temperature strength of sintered tungsten / copper alloy, and elongation at break.

【図3】 1000℃の温度において98MPaの圧力
を0.15時間、2時間又は4時間付与したHIP(高
温等方加圧)処理により加圧接合された焼結タングステ
ン/銅合金からなる接合材の室温、200℃、400℃
又は600℃における高温強度(破断強度)及び破断伸
び(破断変位)の関係を示す図である。
FIG. 3 is a bonding material made of a sintered tungsten / copper alloy which is pressure-bonded by a HIP (high-temperature isostatic pressing) process in which a pressure of 98 MPa is applied at a temperature of 1000 ° C. for 0.15 hours, 2 hours or 4 hours. Room temperature, 200 ℃, 400 ℃
Alternatively, it is a diagram showing the relationship between high-temperature strength (breaking strength) and breaking elongation (breaking displacement) at 600 ° C.

【図4】 1000℃の温度において約50MPa、約
100MPa、約150MPa又は約200MPaの圧
力を2時間付与したHIP(高温等方加圧)処理により
加圧接合された焼結タングステン/銅合金からなる接合
材の室温、200℃、400℃又は600℃における高
温強度(破断強度)及び破断伸び(破断変位)の関係を
示す図である。
FIG. 4 is made of a sintered tungsten / copper alloy that is pressure-bonded by a HIP (high-temperature isostatic pressing) process in which a pressure of about 50 MPa, about 100 MPa, about 150 MPa, or about 200 MPa is applied at a temperature of 1000 ° C. for 2 hours. It is a figure which shows the relationship of the high temperature strength (breaking strength) and breaking elongation (breaking displacement) at room temperature, 200 degreeC, 400 degreeC, or 600 degreeC of a joining material.

【図5】 銅合金母材と対比したHIP処理された焼結
タングステン/銅合金接合材の高温強度(破断強度)と
試験温度との関係を示す図である。
FIG. 5 is a diagram showing a relationship between a high-temperature strength (rupture strength) and a test temperature of a sintered tungsten / copper alloy bonding material that has been subjected to HIP processing and a copper alloy base material.

【図6】 接合材料全体を覆う軟鋼製のキャプセル容器
を示す図である。
FIG. 6 is a view showing a capsule container made of mild steel covering the entire joining material.

【符号の説明】[Explanation of symbols]

1:冷却通路、2:銅合金、3:タングステン、4:接
合面
1: cooling passage, 2: copper alloy, 3: tungsten, 4: bonding surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 核融合炉真空容器と、該真空容器内の所
定位置に水素同位体プラズマを保持する閉じこめ磁場発
生用コイルと、真空容器内に配設され、かつ内部に真空
容器冷却系からの冷媒を流通させる冷却通路を有すると
ともに、内部にプラズマ対向材を有する冷却板とを備え
た核融合炉において、前記冷却通路は高熱伝導率を有す
る銅合金からなり、冷却板は高融点のタングステンから
なることを特徴とする高温強度を有する耐熱性接合構造
体。
1. A fusion reactor vacuum vessel, a confined magnetic field generating coil for holding hydrogen isotope plasma at a predetermined position in the vacuum vessel, and a vacuum vessel cooling system disposed in the vacuum vessel And a cooling plate having a plasma facing material therein, wherein the cooling passage is made of a copper alloy having high thermal conductivity, and the cooling plate is made of tungsten having a high melting point. A heat-resistant joint structure having high-temperature strength, comprising:
【請求項2】 ロウ材を使用せずに、高熱伝導率を有す
る銅合金からなる冷却通路部材と高融点のタングステン
からなる冷却板部材とを高温高圧で直接接合した請求項
1に記載の高温強度を有する耐熱性接合構造体。
2. A high-temperature, high-temperature, high-temperature, high-pressure joining member comprising a cooling passage member made of a copper alloy having a high thermal conductivity and a cooling plate member made of a high-melting-point tungsten without using a brazing material. A heat-resistant joint structure having strength.
【請求項3】 ロウ材を使用することなく、900℃〜
1100℃の温度において、等方的に50〜200MP
aの高圧を0.15時間〜4時間付与することにより、
高融点材料と高伝導率を有する材料とを直接接合するこ
とからなる高温強度を有する耐熱性接合構造体の製造方
法。
3. A temperature of 900 ° C. or less without using brazing material.
50-200MP isotropically at a temperature of 1100 ° C
By applying the high pressure of a for 0.15 hours to 4 hours,
A method for manufacturing a heat-resistant bonded structure having high-temperature strength, comprising directly bonding a high-melting-point material and a material having a high conductivity.
JP9360223A 1997-12-26 1997-12-26 Heat resistant direct joint structure of high melting point material and high thermal conductivity material or jointing method therefor Pending JPH11190787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9360223A JPH11190787A (en) 1997-12-26 1997-12-26 Heat resistant direct joint structure of high melting point material and high thermal conductivity material or jointing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9360223A JPH11190787A (en) 1997-12-26 1997-12-26 Heat resistant direct joint structure of high melting point material and high thermal conductivity material or jointing method therefor

Publications (1)

Publication Number Publication Date
JPH11190787A true JPH11190787A (en) 1999-07-13

Family

ID=18468449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9360223A Pending JPH11190787A (en) 1997-12-26 1997-12-26 Heat resistant direct joint structure of high melting point material and high thermal conductivity material or jointing method therefor

Country Status (1)

Country Link
JP (1) JPH11190787A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005014052A (en) * 2003-06-26 2005-01-20 Japan Atom Energy Res Inst Nonfused joining method of different kind of material
JP2005144510A (en) * 2003-11-18 2005-06-09 Japan Atom Energy Res Inst High temperature isostatic pressure-joining method of high melting point combined metal material
US7128980B2 (en) 2003-04-02 2006-10-31 Plansee Se Composite component for fusion reactors
JP2007061911A (en) * 2005-08-29 2007-03-15 Plansee Se Composite member having structured tungsten element
DE102007016375A1 (en) 2007-03-31 2008-10-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Components for heat sinks
US7482740B2 (en) 2005-05-20 2009-01-27 Ushio Denki Kabushiki Kaisha Electrode unit of extreme ultraviolet generator
CN102610285A (en) * 2012-03-16 2012-07-25 中国科学院等离子体物理研究所 Structure utilizing metal tungsten as first wall material of magnetic confinement reactor
US8249210B2 (en) 2004-10-27 2012-08-21 Plansee Se Monobloc cooling device component
CN108615563A (en) * 2018-04-02 2018-10-02 西安交通大学 Fusion facility divertor water cooling module and its divertor cooled target harden structure of application
CN111805068A (en) * 2020-07-30 2020-10-23 合肥工业大学 Discharge plasma diffusion bonding method for porous ODS tungsten and copper

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7128980B2 (en) 2003-04-02 2006-10-31 Plansee Se Composite component for fusion reactors
JP2005014052A (en) * 2003-06-26 2005-01-20 Japan Atom Energy Res Inst Nonfused joining method of different kind of material
JP4534008B2 (en) * 2003-06-26 2010-09-01 独立行政法人 日本原子力研究開発機構 Non-melting joining method for dissimilar materials
JP4533998B2 (en) * 2003-11-18 2010-09-01 独立行政法人 日本原子力研究開発機構 High-temperature isostatic pressing method for dissimilar metal materials with high melting points
JP2005144510A (en) * 2003-11-18 2005-06-09 Japan Atom Energy Res Inst High temperature isostatic pressure-joining method of high melting point combined metal material
US8249210B2 (en) 2004-10-27 2012-08-21 Plansee Se Monobloc cooling device component
US7482740B2 (en) 2005-05-20 2009-01-27 Ushio Denki Kabushiki Kaisha Electrode unit of extreme ultraviolet generator
JP2007061911A (en) * 2005-08-29 2007-03-15 Plansee Se Composite member having structured tungsten element
DE102007016375A1 (en) 2007-03-31 2008-10-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Components for heat sinks
CN102610285A (en) * 2012-03-16 2012-07-25 中国科学院等离子体物理研究所 Structure utilizing metal tungsten as first wall material of magnetic confinement reactor
CN108615563A (en) * 2018-04-02 2018-10-02 西安交通大学 Fusion facility divertor water cooling module and its divertor cooled target harden structure of application
CN108615563B (en) * 2018-04-02 2020-05-22 西安交通大学 Divertor water-cooling module of fusion device and divertor cooling target plate structure applied by divertor water-cooling module
CN111805068A (en) * 2020-07-30 2020-10-23 合肥工业大学 Discharge plasma diffusion bonding method for porous ODS tungsten and copper
CN111805068B (en) * 2020-07-30 2022-07-26 合肥工业大学 Discharge plasma diffusion bonding method for porous ODS tungsten and copper

Similar Documents

Publication Publication Date Title
JP5717779B2 (en) Monoblock cooling device components
JPH0233111B2 (en)
CN112008180B (en) High-performance brazing method of Ni3 Al-based single crystal alloy
JP2000243542A (en) Heater unit and manufacture thereof
JPH11190787A (en) Heat resistant direct joint structure of high melting point material and high thermal conductivity material or jointing method therefor
CN108247190B (en) Tungsten target material diffusion welding structure and tungsten target material diffusion welding method
JP2010503771A (en) Sputtering target assembly and method of manufacturing the same
Li et al. Development and application of W/Cu flat-type plasma facing components at ASIPP
WO1992001528A1 (en) Hot diffusion welding
JPH07218670A (en) Preparation of cooler
JPH09234826A (en) Metal-ceramic composite base plate and manufacture thereof
JP2001168252A (en) Semiconductor device and manufacturing method thereof
CN114887863A (en) Ultrasonic probe and preparation method thereof
JP6563581B1 (en) Dissimilar metal joint for divertor
JPS60170585A (en) Joining member for sintered hard alloy and steel and its production
JP2005032833A (en) Module type semiconductor device
JPH10180463A (en) Method and device for joining heat resistant alloy
JP4533998B2 (en) High-temperature isostatic pressing method for dissimilar metal materials with high melting points
US3898054A (en) Brazed assemblies
JPS62204936A (en) Composite material consisting of graphite and metal
JPH11342479A (en) High melting point metallic joined body, ion gun parts for ion jinection device, and manufacturing method therefor
JP2000286466A (en) Si-ge semiconductor device and manufacture of the same, and thermoelectric conversion module
WO1998003297A1 (en) Two-step brazing process for joining materials with different coefficients of thermal expansion
JP2001345402A (en) Module-type semiconductor device and its method
JP4746261B2 (en) Welding method for reactor materials that are susceptible to hot cracking