JPH11185835A - Cylindrical electrode and air zinc battery using it - Google Patents

Cylindrical electrode and air zinc battery using it

Info

Publication number
JPH11185835A
JPH11185835A JP9349314A JP34931497A JPH11185835A JP H11185835 A JPH11185835 A JP H11185835A JP 9349314 A JP9349314 A JP 9349314A JP 34931497 A JP34931497 A JP 34931497A JP H11185835 A JPH11185835 A JP H11185835A
Authority
JP
Japan
Prior art keywords
electrode
sealing member
metal sealing
cylindrical
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9349314A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Honda
一良 本田
Kazuhiro Hashimoto
和宏 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9349314A priority Critical patent/JPH11185835A/en
Publication of JPH11185835A publication Critical patent/JPH11185835A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical air zinc battery that comprises a cylindrical electrode excellent in mechanical strength, has an excellent electrolyte leakage- resistant property and discharging characteristic, has high discharging capacity and also has small dispersion of current collection. SOLUTION: A cylindrical electrode 50 is composed of: a disc-like metal sealing member 21 having a cylindrical hollow electrode comprised of a reaction layer 1 having oxidation-reduction capability, a metal collector 2 and a water repellent gas passing film 3 and a annular groove; and an annular metal sealing 22 having an annular groove; and is formed by inserting one open end of the electrode into the groove of the disc-like metal sealing member 21 and crimping it, and inserting the other open end of the electrode into the groove of the annular metal sealing member 22 and crimping it. A cylindrical air zinc battery is structured by using the cylindrical electrode 50.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は耐漏液特性、放電特
性に優れた円筒形電極と、これを用いた空気亜鉛電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical electrode having excellent leakage resistance and discharge characteristics, and an air zinc battery using the same.

【0002】[0002]

【従来の技術】近年の携帯形電子機器の発達に伴い、そ
の電源である電池に対して、より大きな電流が取り出
せ、且つ長時間の使用が可能であることの要望がますま
す高まってきている。さらに最近では地球環境の保護や
資源の有効利用に大きな関心が集まっており、これらの
要望に対しても答えることが社会的要請となってきてい
る。
2. Description of the Related Art With the development of portable electronic devices in recent years, there has been an increasing demand for a battery which is a power source thereof to be able to take out a larger current and to be usable for a long time. . Furthermore, recently, there has been great interest in protecting the global environment and effectively using resources, and it has become a social demand to respond to these demands.

【0003】これらの要望に答える有力な電池系とし
て、酸素を正極活物質として使用する燃料電池や空気亜
鉛電池等が知られている。これらの電池系は他の電池系
と比較して、正極活物質が酸素であるため環境に対する
影響が小さく、さらに取り出される電気容量の点でも優
れている。特に空気亜鉛電池は体積当たりのエネルギー
密度が優れているため、将来の携帯用電源として大きな
期待がもたれている。
[0003] As a promising battery system which meets these demands, a fuel cell using oxygen as a positive electrode active material, an air zinc battery and the like are known. These battery systems have less influence on the environment because the positive electrode active material is oxygen, and are superior in the electric capacity to be taken out, as compared with other battery systems. In particular, zinc-air batteries have excellent energy density per volume, and thus have great promise as portable power sources in the future.

【0004】ところで、空気亜鉛電池はボタン形状、コ
イン形状の小型のものが補聴器用、ページャー用等の電
源として流通しているのが現状である。しかしながら、
これらの小形電池では用途が限定されるため、より広範
囲な用途に対応可能な円筒形の空気亜鉛電池が望まれて
いるところである。
At present, small zinc-air batteries having a button shape or a coin shape are distributed as power sources for hearing aids, pagers, and the like. However,
Since the use of these small batteries is limited, there is a demand for a cylindrical zinc-air battery that can be used in a wider range of applications.

【0005】さて、この空気亜鉛電池は正極活物質とし
て酸素を、負極活物質として亜鉛を使用し、さらに電解
液として強アルカリ水溶液を用いる。従って、この型の
電池は電解液の漏出に対して十分な防止対策がとられて
いなければならない。
The zinc-air battery uses oxygen as a positive electrode active material, zinc as a negative electrode active material, and a strong alkaline aqueous solution as an electrolyte. Therefore, this type of battery must be sufficiently protected against electrolyte leakage.

【0006】つぎに従来より提案されている円筒形の空
気亜鉛電池について図6および図7を参照して説明す
る。ここで図6は従来より提案されている円筒形電極の
構造であって、同図(a)はその一部断面を示す図であ
り、同図(b)は(a)のP2で示す部位の拡大図であ
る。また、図7は従来より提案されている円筒形の空気
亜鉛電池の構造を示す図である。
Next, a conventionally proposed cylindrical zinc-air battery will be described with reference to FIGS. 6 and 7. FIG. A Here, FIG. 6 is a cylindrical structure electrodes have been proposed, FIG (a) is a diagram showing a part of cross-section, (b) shows over P 2 of (a) It is an enlarged view of a part. FIG. 7 is a view showing the structure of a conventionally proposed cylindrical zinc-air battery.

【0007】従来の円筒形電極60は図6(a)に示す
ように中空円筒状であって、同図(b)に示すように酸
素還元能を有する反応層1と、金属集電体2と、撥水性
の気体透過膜3から構成されている。
The conventional cylindrical electrode 60 has a hollow cylindrical shape as shown in FIG. 6A, and has a reaction layer 1 having an oxygen reducing ability and a metal current collector 2 as shown in FIG. And a water-repellent gas permeable film 3.

【0008】この円筒形電極60を用いた空気亜鉛電池
61の構造は図7に示すように、円筒形電極60がその
正極であって、この円筒形電極60の正極端子側の開口
端は、ガスケット10、正極端子板14、ガスケット1
1の所定の位置に配設され、また、金属集電体2と正極
端子板14はリード線9を介して電気的接続をとってい
る。また、気体透過膜3の外側には空気拡散層4が設け
られ、反応層1の内壁には不織布等からなる有底円筒状
のセパレータ5が、その底部を正極端子板14側にして
装着されている。このセパレータ5の内部に粒状亜鉛、
水酸化カリウム水溶液、増粘材等からなるゲル状の負極
合剤6が配設されている。
As shown in FIG. 7, the structure of an air zinc battery 61 using this cylindrical electrode 60 is such that the cylindrical electrode 60 is the positive electrode, and the opening end of the cylindrical electrode 60 on the positive electrode terminal side is Gasket 10, positive electrode terminal plate 14, gasket 1
1, the metal current collector 2 and the positive electrode terminal plate 14 are electrically connected via the lead wire 9. An air diffusion layer 4 is provided outside the gas permeable membrane 3, and a bottomed cylindrical separator 5 made of a nonwoven fabric or the like is mounted on the inner wall of the reaction layer 1, with the bottom of the separator 5 facing the positive electrode terminal plate 14. ing. Inside the separator 5, granular zinc,
A gel-like negative electrode mixture 6 made of a potassium hydroxide aqueous solution, a thickener, or the like is provided.

【0009】また、円筒形電極60の負極端子側の開口
端は、ガスケット8が所定の位置に配置され、さらに負
極端子板13を配置してから空気孔16を有する外装缶
12を被せ、絞り加工によるくびれ部15と外装缶12
の開口部を内側に屈曲させることによって電池内部の構
成部材を封入している。尚、負極の集電は負極合剤6中
に挿入される釘状の負極集電ピン7と負極端子板13と
を電気的に接続して行われる。また、空気電池は使用時
まで空気孔16を塞いでおく必要があるが、このための
シール部材の図示は省略している。
At the opening end of the cylindrical electrode 60 on the side of the negative electrode terminal, the gasket 8 is disposed at a predetermined position, the negative electrode terminal plate 13 is disposed, and then the outer can 12 having the air hole 16 is covered. Constricted part 15 and outer can 12 by processing
Are bent inward to encapsulate the components inside the battery. The current collection of the negative electrode is performed by electrically connecting the nail-shaped negative electrode current collecting pin 7 inserted into the negative electrode mixture 6 to the negative electrode terminal plate 13. In addition, the air cell needs to close the air hole 16 until use, but a seal member for this purpose is not shown.

【0010】しかしながら上述した構成の円筒形電極6
0では、反応層1、金属集電体2、気体透過膜3の3つ
の構成部材の機械的強度が低いため外的な応力に対して
極めて弱い。従って、開口端を負極端子板13側のガス
ケット8へ埋設することと、外装缶12にくびれ部15
を設けるくびれ加工と、屈曲封口に伴うガスケット8の
圧縮とによるだけでは強固な封口状態が得にくい欠点を
有していた。このため電池の放電が進行して負極合剤6
の体積が膨張するに伴い、電池の内圧が上昇して正極の
固定部位からの電解液漏出が認められることがあった。
また、電解液の漏出に伴い電池内部の電解液が不足し、
電池の放電持続時間を低下させるという欠点があった。
However, the cylindrical electrode 6 having the above-described structure is used.
At 0, the mechanical strength of the three constituent members of the reaction layer 1, the metal current collector 2, and the gas permeable membrane 3 is low, so that they are extremely weak against external stress. Therefore, the opening end is buried in the gasket 8 on the negative electrode terminal plate 13 side, and
However, there is a disadvantage that it is difficult to obtain a strong sealing state only by the constriction processing of providing the gasket 8 and the compression of the gasket 8 accompanying the bending sealing. As a result, the battery discharge proceeds, and the negative electrode mixture 6
As the volume of the battery expanded, the internal pressure of the battery increased, and electrolyte leakage from the fixing portion of the positive electrode was sometimes observed.
In addition, the electrolyte inside the battery runs short due to the leakage of the electrolyte,
There is a disadvantage that the discharge duration of the battery is reduced.

【0011】さらに、リード線9を用いた正極の集電
は、そのリード線9の接続が技術的に難しく、また、接
続部の接触抵抗のバラツキが大きいため、放電特性が一
定にならず、不良の発生が起こりやすいものであった。
尚、放電の進行により電池の内圧が上昇する理由は、負
極の亜鉛粉が電池の放電反応に伴って酸化亜鉛に変化
し、負極中の固形成分の体積が膨張するためである。
Further, in the current collection of the positive electrode using the lead wire 9, the connection of the lead wire 9 is technically difficult, and the variation in the contact resistance of the connection portion is large. Failure was likely to occur.
The reason why the internal pressure of the battery increases with the progress of the discharge is that the zinc powder of the negative electrode changes to zinc oxide with the discharge reaction of the battery, and the volume of the solid component in the negative electrode expands.

【0012】また、上述した円筒形の空気亜鉛電池の課
題に対して、米国特許第5,518,834等に示され
ているように、円筒形電極の開口端を封止する部材を一
部金属製にするなどして改良が試みられているが、十分
な信頼性が得られるに至っていないのが実情である。
To solve the above-mentioned problem of the cylindrical zinc-air battery, as shown in US Pat. No. 5,518,834, a member for sealing the open end of the cylindrical electrode is partially provided. Improvements have been attempted, for example, by using metal, but in reality, sufficient reliability has not been obtained.

【0013】[0013]

【発明が解決しようとする課題】従って本発明の課題
は、外的応力が加わっても変形等が生じない機械的強度
に優れた円筒形電極を構成すると共に、耐漏液特性、放
電特性に優れ、また放電容量が大きく、且つ正極の集電
の信頼性が高く、集電のバラツキの少ない円筒形の空気
亜鉛電池を提供する。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a cylindrical electrode having excellent mechanical strength which does not undergo deformation or the like even when an external stress is applied, and which has excellent leakage resistance and discharge characteristics. Further, the present invention provides a cylindrical air-zinc battery having a large discharge capacity, high reliability of positive electrode current collection, and little variation in current collection.

【0014】[0014]

【課題を解決するための手段】本発明は上記課題に鑑み
成されたものであり、請求項1に記載の発明は、少なく
とも、酸素還元能を有する反応層と、金属集電体と、撥
水性の気体透過膜とから構成される中空円筒の電極と、
環状の溝部を有する、環状の金属封止部材と、環状の溝
部を有する、円盤状の金属封止部材とからなり、前記電
極の一方の開口端を前記環状の金属封止部材の溝部に挿
入して圧着し、前記電極の他方の開口端を前記円盤状の
金属封止部材の溝部に挿入して圧着する構成の円筒形電
極を形成する。
Means for Solving the Problems The present invention has been made in view of the above problems, and the invention according to claim 1 has at least a reaction layer having an oxygen reducing ability, a metal current collector, and a repellent material. A hollow cylindrical electrode composed of an aqueous gas permeable membrane,
An annular metal sealing member having an annular groove, and a disk-shaped metal sealing member having an annular groove, wherein one open end of the electrode is inserted into the groove of the annular metal sealing member. To form a cylindrical electrode having a configuration in which the other open end of the electrode is inserted into the groove of the disk-shaped metal sealing member and crimped.

【0015】また、請求項2に記載の発明は、前記円盤
状の金属封止部材の円盤中央部を電極の円筒部より外部
に突出した形状とする。
Further, in the invention according to claim 2, the central portion of the disk of the disk-shaped metal sealing member has a shape protruding outside from the cylindrical portion of the electrode.

【0016】また、請求項3に記載の発明は、前記環状
の金属封止部材の溝部の深さ、および前記円盤状の金属
封止部材の溝部の深さを、電極の円筒部の長さに対して
2.5%以上、20%以下の範囲に形成する。
According to a third aspect of the present invention, the depth of the groove of the annular metal sealing member and the depth of the groove of the disk-shaped metal sealing member are determined by the length of the cylindrical portion of the electrode. Is formed in the range of 2.5% or more and 20% or less.

【0017】また、請求項4に記載の発明は、前記環状
の金属封止部材、および前記円盤状の金属封止部材は金
属板から加工形成する。
According to a fourth aspect of the present invention, the annular metal sealing member and the disk-shaped metal sealing member are formed from a metal plate.

【0018】また、請求項5に記載の発明は、前記環状
の金属封止部材、および前記円盤状の金属封止部材の溝
部外壁を、電極の開口端が挿入された後、環状のプロジ
ェクション加工を施すこととする。
According to a fifth aspect of the present invention, the annular metal sealing member and the annular outer wall of the disk-shaped metal sealing member are formed in an annular projection shape after the opening end of the electrode is inserted. Shall be applied.

【0019】さらに、請求項6に記載の発明は、請求項
1ないし請求項5に記載の円筒形電極の、円盤状の金属
封止部材により密封された側を、正極端子を兼ねる有底
円筒状の正極ケースの底側に向けて挿入して密着させ、
正極側の集電を行う円筒形の空気亜鉛電池を構成して上
記課題を解決する。
Further, according to a sixth aspect of the present invention, the side of the cylindrical electrode according to the first to fifth aspects, which is sealed by the disk-shaped metal sealing member, has a bottomed cylinder which also serves as a positive electrode terminal. Insert it into the bottom of the positive electrode case,
The above object is achieved by constructing a cylindrical zinc-air battery that collects electricity on the positive electrode side.

【0020】請求項1に記載の発明によると、円筒形電
極の両端の開口端を、この開口端を挟み込む溝構造を有
する円盤状の金属封止部材と環状の金属封止部材により
強固に固定するので金属集電体と金属封止部材とが圧接
して、安定した電気的接続が得られ、集電のバラツキが
低減すると共に、反応層と気体透過膜とも圧縮されてと
められるため電極の機械的強度が向上することになり、
外的応力に対しても変形等が生じることはなく、従って
電解液の密封状態を確保することができて耐漏液特性が
向上する。
According to the first aspect of the invention, the open ends at both ends of the cylindrical electrode are firmly fixed by the disk-shaped metal sealing member and the annular metal sealing member having a groove structure sandwiching the open ends. As a result, the metal current collector and the metal sealing member are brought into pressure contact with each other to obtain a stable electrical connection, reduce variations in current collection, and compress the reaction layer and the gas permeable membrane to stop the electrode. The mechanical strength will be improved,
No deformation or the like is caused even by an external stress. Therefore, the sealed state of the electrolyte can be ensured, and the leakage resistance is improved.

【0021】また、請求項2に記載の発明によると、円
盤状の金属封止部材の中央部を円筒形電極の外側に突出
させることにより、放電容量の向上を図ることができ
る。
According to the second aspect of the present invention, the discharge capacity can be improved by projecting the center of the disk-shaped metal sealing member outside the cylindrical electrode.

【0022】また、請求項3に記載の発明によると、円
盤状の金属封止部材および環状の金属封止部材の、円筒
形電極の開口部を挿入する溝部の深さを最適化すること
により、さらなる耐漏液性の向上と、放電容量の向上を
図ることができる。
According to the third aspect of the present invention, the depth of the groove for inserting the opening of the cylindrical electrode in the disk-shaped metal sealing member and the annular metal sealing member is optimized. Further, the liquid leakage resistance and the discharge capacity can be further improved.

【0023】また、請求項4に記載の発明によると、円
盤状の金属封止部材および環状の金属封止部材を板状の
金属材料からしぼり加工等によって形成するので、生産
性とコストに優れる。
According to the fourth aspect of the present invention, since the disk-shaped metal sealing member and the annular metal sealing member are formed from a plate-shaped metal material by squeezing or the like, productivity and cost are excellent. .

【0024】また、請求項5に記載の発明によると、円
盤状の金属封止部材および環状の金属封止部材の溝部外
壁を、電極の開口端を挿入した後、環状のプロジェクシ
ョン加工を施すので、耐漏液特性と集電特性がさらに向
上する。
According to the fifth aspect of the present invention, since the disk-shaped metal sealing member and the groove outer wall of the annular metal sealing member are subjected to annular projection after the opening end of the electrode is inserted. In addition, the leakage resistance and current collection characteristics are further improved.

【0025】また、請求項6に記載の発明によると、電
池の内部抵抗の抑制と抵抗値のバラツキが低減し、放電
特性に優れ、且つ耐漏液特性に優れた円筒形の空気亜鉛
電池を提供することができる。
According to the sixth aspect of the present invention, there is provided a cylindrical zinc-air battery having a reduced internal resistance of the battery and a reduced variation in resistance value, excellent discharge characteristics, and excellent leakage resistance characteristics. can do.

【0026】[0026]

【発明の実施の形態】本発明の実施の形態について図1
ないし図5を参照して説明する。図1は本発明にかかわ
る円筒形電極の実施例であって、同図(a)はその一部
断面図であり、同図(b)は(a)のP1 で示す部位の
拡大図である。また、図2は図1に示す円筒形電極を用
いた空気亜鉛電池の構造を示す図である。さらに、図3
〜図5は本発明にかかわる円筒形電極の他の実施例であ
る。
FIG. 1 shows an embodiment of the present invention.
This will be described with reference to FIG. Figure 1 is an embodiment of a cylindrical electrode according to the present invention, FIG. (A) is a partial sectional view, and (b) shows an enlarged view of the portion indicated by P 1 in (a) is there. FIG. 2 is a view showing the structure of a zinc-air battery using the cylindrical electrode shown in FIG. Further, FIG.
5 to 5 show another embodiment of the cylindrical electrode according to the present invention.

【0027】実施例1 まず、円筒形電極について図1を参照して説明する。酸
素還元能を有する触媒としてマンガン酸化物とカーボン
ブラック、さらに固形分60%のポリテトラフルオロエ
チレンの水性分散液を各々の固形比で20:50:30
になるように混合し、ペースト状の反応層混合物を得
た。この反応層混合物を、表面にニッケルメッキを施し
た中空の円筒形ステンレスネットの金属集電体2に塗着
し、これを乾燥後プレスロール工程を経て、厚さが0.
8mmの円筒形の反応層1を作製した。その後、反応層
1を撥水機能を有する厚さ0.1mmの円筒状の気体透
過膜3に挿入し、プレスロール工程を用いて、気体透過
膜3と反応層1とを密着させ円筒形の電極を作製した。
Embodiment 1 First, a cylindrical electrode will be described with reference to FIG. An aqueous dispersion of manganese oxide and carbon black as a catalyst having an oxygen reducing ability, and further a polytetrafluoroethylene having a solid content of 60% were used at a solid ratio of 20:50:30.
To obtain a paste-like reaction layer mixture. The reaction layer mixture is applied to a metal current collector 2 of a hollow cylindrical stainless steel net having a surface plated with nickel, dried, and then subjected to a press roll process to obtain a thickness of 0.1 mm.
An 8 mm cylindrical reaction layer 1 was produced. Thereafter, the reaction layer 1 is inserted into a cylindrical gas-permeable film 3 having a water-repellent function and having a thickness of 0.1 mm, and the gas-permeable film 3 and the reaction layer 1 are brought into close contact with each other by a press roll process to form a cylindrical shape. An electrode was prepared.

【0028】つぎに、上述したようにして作製された円
筒形の電極の両開口端に、この開口端を挟み込む溝部を
有する金属封止部材21、22を装着し、全円周方向に
沿って径方向に圧縮して円筒形電極50を構成する。こ
のとき開口端部分での金属集電体2と金属封止部材2
1、22とが圧接され、電気的接続が得られる。また同
時に反応層1と気体透過膜3も共に径方向に圧縮され強
度が増大する。このとき金属封止部材21は円盤状であ
り、金属封止部材22は環状である。
Next, metal sealing members 21 and 22 having grooves for sandwiching the open ends are attached to both open ends of the cylindrical electrode manufactured as described above, and are arranged along the entire circumferential direction. The cylindrical electrode 50 is formed by being compressed in the radial direction. At this time, the metal current collector 2 and the metal sealing member 2 at the open end portion
1 and 22 are pressed against each other to obtain an electrical connection. At the same time, the reaction layer 1 and the gas permeable membrane 3 are both compressed in the radial direction, and the strength increases. At this time, the metal sealing member 21 has a disk shape, and the metal sealing member 22 has a ring shape.

【0029】また、このときの圧縮手段は、図1(b)
に示す外径φAを小さくする方法、または内径φBを大
きくする方法、またはその両方の方法で行うことが可能
である。尚、金属封止部材21、22の材質にはスチー
ルまたはSUSにNiメッキを施したもの、銅、黄銅等
が用いられる。さらに、銅、黄銅の場合には錫メッキを
施した物が好ましい。
The compression means at this time is as shown in FIG.
The method can be carried out by a method of reducing the outer diameter φA, a method of increasing the inner diameter φB, or both. The metal sealing members 21 and 22 may be made of steel or SUS plated with Ni, copper, brass, or the like. Further, in the case of copper or brass, a tin-plated product is preferable.

【0030】上述したように作製された円筒形電極50
を用いた空気亜鉛電池51の構成は図2に示すように、
円筒形電極50の気体透過膜3の外側に不織布等からな
る空気拡散層4を装着し、これを正極端子を兼ねる正極
ケース23に挿入する。また、正極端子を兼ねる正極ケ
ース23は側面に空気を取り入れる空気孔16を有して
いる。つぎに、円筒形電極50の内面に沿って環状の金
属封止部材22側の開口部から天然パルプ材の不織布よ
りなる有底円筒状のセパレータ5を、反応層1に当接す
るように挿入し、さらにこのセパレータ5の内側に粒状
亜鉛、水酸化カリウム水溶液、増粘材等からなるゲル状
の負極合剤6を充填する。
The cylindrical electrode 50 manufactured as described above
As shown in FIG. 2, the configuration of an air zinc battery 51 using
The air diffusion layer 4 made of a nonwoven fabric or the like is attached to the outside of the gas permeable membrane 3 of the cylindrical electrode 50, and this is inserted into the positive electrode case 23 also serving as a positive electrode terminal. The positive electrode case 23 also serving as a positive electrode terminal has an air hole 16 on a side surface for taking in air. Next, along the inner surface of the cylindrical electrode 50, a bottomed cylindrical separator 5 made of a nonwoven fabric of natural pulp material is inserted from the opening on the side of the annular metal sealing member 22 so as to be in contact with the reaction layer 1. Further, the inside of the separator 5 is filled with a gelled negative electrode mixture 6 composed of granular zinc, an aqueous solution of potassium hydroxide, a thickener, and the like.

【0031】つぎに、ガスケット8を正極ケース23の
開口部に挿入する。ガスケット8は金属封止部材22の
内側と負極合剤6との接触防止を目的とする。これは負
極合剤6中の粒状亜鉛は金属封止部材22と接触すると
局部電池を構成し、負極活物質である亜鉛の放電容量が
低下するためである。また、ガスケット8の中央には釘
状の負極集電ピン7が貫通され、負極合剤6に達してい
る。
Next, the gasket 8 is inserted into the opening of the positive electrode case 23. The gasket 8 is intended to prevent contact between the inside of the metal sealing member 22 and the negative electrode mixture 6. This is because when the particulate zinc in the negative electrode mixture 6 comes into contact with the metal sealing member 22, a local battery is formed, and the discharge capacity of zinc as the negative electrode active material is reduced. In the center of the gasket 8, a nail-shaped negative electrode current collector pin 7 penetrates and reaches the negative electrode mixture 6.

【0032】つぎに、正極ケース23の開口部を機械的
に内側に屈曲させてカシメ封口し、外径が14mm、高
さが50mmの円筒形の空気亜鉛電池51を作製した。
このとき、正極端子を兼ねる正極ケース23と円筒形電
極50の集電は、円筒形電極50に装着されている金属
封止部材21、22とが正極ケース23の内面に強く圧
接されて確保される。即ち、円筒形電極50の金属集電
体2は金属封止部材21、22を介して正極ケース23
に低接触抵抗で接続される。一方、負極の集電は釘状の
負極集電ピン7がガスケット8の中央部に圧入され、ガ
スケット8を貫通して負極合剤6に達し、他方は負極端
子板13に接続することで確保される。
Next, the opening of the positive electrode case 23 was bent mechanically inward and sealed by caulking to produce a cylindrical air zinc battery 51 having an outer diameter of 14 mm and a height of 50 mm.
At this time, the current collection between the positive electrode case 23 also serving as the positive electrode terminal and the cylindrical electrode 50 is ensured by the metal sealing members 21 and 22 attached to the cylindrical electrode 50 being strongly pressed against the inner surface of the positive electrode case 23. You. That is, the metal current collector 2 of the cylindrical electrode 50 is connected to the positive electrode case 23 through the metal sealing members 21 and 22.
Is connected with low contact resistance. On the other hand, the current collection of the negative electrode is ensured by inserting the nail-shaped negative electrode current collector pin 7 into the center of the gasket 8, penetrating the gasket 8 and reaching the negative electrode mixture 6, and connecting the other to the negative electrode terminal plate 13. Is done.

【0033】上述した方法により作製された空気亜鉛電
池51と、従来例において示した空気亜鉛電池61とを
同一サイズで作製し、つぎに示す特性の測定を行った。 (1)放電容量:10Ω負荷、終止電圧0.9Vにおけ
る放電容量 (2)漏 液:10Ω負荷、終止電圧0.9Vまで放
電させた後、100時間経過後における漏液発生個数 その結果を表1に示す。
The zinc-air battery 51 manufactured by the above-described method and the zinc-air battery 61 shown in the conventional example were manufactured in the same size, and the following characteristics were measured. (1) Discharge capacity: Discharge capacity at 10Ω load, cut-off voltage 0.9V (2) Leakage: Number of leaked liquids after 100 hours after discharge to 10Ω load, cut-off voltage 0.9V It is shown in FIG.

【0034】[0034]

【表1】 [Table 1]

【0035】表1から分かるように、実施例1の空気亜
鉛電池51は従来より提案されている構造の空気亜鉛電
池61に比して放電容量が増大し、また、放電後の漏液
発生も認められない。
As can be seen from Table 1, the discharge capacity of the zinc-air battery 51 of the first embodiment is greater than that of the zinc-air battery 61 of the conventionally proposed structure. unacceptable.

【0036】実施例2 図3に示すように円盤状の金属封止部材21の中央部を
電極の円筒部よりも外部に突出させたこと以外は実施例
1と同様にして空気亜鉛電池51を作製し、同様の測定
を行った。測定結果を前掲の表1に示す。尚、図3に示
す金属封止部材21の突出部と金属封止部材22の電極
挟み込み部間の長さCは、金属封止部材21、22の電
極挟み込み部間の長さDより長いことが望ましい。
Embodiment 2 As shown in FIG. 3, an air-zinc battery 51 was prepared in the same manner as in Embodiment 1, except that the center of the disk-shaped metal sealing member 21 was projected outside the cylindrical portion of the electrode. It was fabricated and subjected to the same measurement. Table 1 shows the measurement results. Note that the length C between the protruding portion of the metal sealing member 21 and the electrode sandwiching portion of the metal sealing member 22 shown in FIG. 3 is longer than the length D between the electrode sandwiching portions of the metal sealing members 21 and 22. Is desirable.

【0037】表1から分かるように、実施例2の空気亜
鉛電池51は実施例1よりも放電容量が増大し、また、
放電後の漏液発生も認められない。
As can be seen from Table 1, the zinc-air battery 51 of the second embodiment has a larger discharge capacity than that of the first embodiment.
No liquid leakage is observed after discharge.

【0038】実施例3 図4に示すように、電極の周辺部を挿入する金属封止部
材21、22の溝部の深さをそれぞれE1 、E2 とし、
電極の長さをFとした場合、このE1 、E2 をFに対し
て1.0%〜30%の範囲で変化させたこと(この場
合、E1 =E2 とした)、および金属封止部材21の中
央部を電極の円筒部よりも外部に突出させたこと以外は
実施例1と同様にして空気亜鉛電池51を作製し、同様
の測定を行った。その測定結果を表2に示す。
Embodiment 3 As shown in FIG. 4, the depths of the grooves of the metal sealing members 21 and 22 into which the peripheral portions of the electrodes are inserted are E 1 and E 2 , respectively.
If the length of the electrode was F, to the E 1, E 2 was changed in the range of 1.0% to 30% with respect to F (in this case, set to E 1 = E 2), and metal A zinc-air battery 51 was produced in the same manner as in Example 1, except that the center of the sealing member 21 was projected outside the cylindrical portion of the electrode, and the same measurement was performed. Table 2 shows the measurement results.

【0039】[0039]

【表2】 [Table 2]

【0040】表2から分かるように、E1 /F、E2
Fが2.0%以下になると耐漏液特性が低下する。E1
/F、E2 /Fが2.5%以上では漏液の発生は零であ
り、耐漏液特性に効果がある。一方、E1 /F、E2
Fが25.0%以上では反応面積、および、負極剤量が
減少し放電容量が低下する。従って、E1 /F、E2
Fが2.5%以上、20.0%以下が好ましい。また、
この条件は共に満足することが必要である。即ち、E1
/F、E2 /Fの一方が上記の条件から外れていると効
果は低減することが確認されている。
As can be seen from Table 2, E 1 / F, E 2 /
When the F content is 2.0% or less, the liquid leakage resistance decreases. E 1
When / F and E 2 / F are 2.5% or more, the generation of liquid leakage is zero, which is effective for the liquid leakage resistance. On the other hand, E 1 / F, E 2 /
When F is 25.0% or more, the reaction area and the amount of the negative electrode agent decrease, and the discharge capacity decreases. Therefore, E 1 / F, E 2 /
F is preferably 2.5% or more and 20.0% or less. Also,
This condition must be satisfied. That is, E 1
It has been confirmed that the effect is reduced when one of / F and E 2 / F is out of the above conditions.

【0041】実施例4 図5に示すように、電極の周辺部を金属封止部材21、
22の溝部に挿入後、環状の溝Gで示すようにプロジェ
クション加工を施したこと以外は実施例1と同様にして
空気亜鉛電池51を作製した。この実施例4と前述の実
施例1、および従来例の電池のそれぞれ20個につい
て、満充電で終止電圧0.9Vまで放電させた後、10
0時間経過後の漏液発生数と、500時間経過後の漏液
発生数を調べた。その結果を表3に示す。
Embodiment 4 As shown in FIG.
After insertion into the groove of No. 22, a zinc-air battery 51 was produced in the same manner as in Example 1 except that the projection processing was performed as shown by the annular groove G. After discharging each of the batteries of the fourth embodiment, the first embodiment, and the conventional battery to a final voltage of 0.9 V by full charge, 10 batteries were obtained.
The number of leaks after 0 hours and the number of leaks after 500 hours were examined. Table 3 shows the results.

【0042】[0042]

【表3】 [Table 3]

【0043】表3から分かるように、実施例4の電池は
より過酷な条件である500時間経過後においても漏液
の発生は認められない。従って、金属封止部材21、2
2の溝構成部にプロジェクション加工を施すことにより
耐漏液特性が向上することが分かる。
As can be seen from Table 3, no leakage was observed in the battery of Example 4 even after 500 hours, which was a more severe condition. Therefore, the metal sealing members 21, 2
It can be seen that the liquid leakage resistance is improved by performing projection processing on the groove forming portion of No. 2.

【0044】[0044]

【発明の効果】以上説明したように、本発明の円筒形電
極、およびこの円筒形電極を用いた空気亜鉛電池によれ
ば、耐漏液特性に優れ、且つ放電特性、放電容量に優れ
た電池が提供できる。また、正極端子を兼ねた正極ケー
スへの集電は強度の高い金属封止部材を介して行えるた
め、集電特性にバラツキの少ない電池が提供できる。
As described above, according to the cylindrical electrode of the present invention and the zinc-air battery using the cylindrical electrode, a battery excellent in leakage resistance, discharge characteristics and discharge capacity can be obtained. Can be provided. In addition, current collection to the positive electrode case also serving as the positive electrode terminal can be performed through a high-strength metal sealing member, so that a battery with small variations in current collection characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明にかかわる円筒形電極の実施例であっ
て、(a)はその一部断面を示す図であり、(b)はそ
の要部拡大図である。
FIG. 1 is an embodiment of a cylindrical electrode according to the present invention, in which (a) is a view showing a partial cross section and (b) is an enlarged view of a main part thereof.

【図2】 本発明にかかわる空気亜鉛電池の構造を示す
図である。
FIG. 2 is a diagram showing a structure of a zinc-air battery according to the present invention.

【図3】 本発明にかかわる円筒形電極の他の実施例で
ある。
FIG. 3 is another embodiment of the cylindrical electrode according to the present invention.

【図4】 本発明にかかわる円筒形電極の他の実施例で
ある。
FIG. 4 is another embodiment of the cylindrical electrode according to the present invention.

【図5】 本発明にかかわる円筒形電極の他の実施例で
ある。
FIG. 5 is another embodiment of the cylindrical electrode according to the present invention.

【図6】 従来の円筒形電極であって、(a)はその一
部断面を示す図であり、(b)はその要部拡大図であ
る。
6 (a) is a view showing a partial cross section of a conventional cylindrical electrode, and FIG. 6 (b) is an enlarged view of a main part thereof.

【図7】 従来の空気亜鉛電池の構造を示す図である。FIG. 7 is a view showing the structure of a conventional zinc-air battery.

【符号の説明】[Explanation of symbols]

1…反応層、2…金属集電体、3…気体透過膜、4…空
気拡散層、5…セパレータ、6…負極合剤、7…負極集
電ピン、8,10,11…ガスケット、9…リード線、
12…外装缶、13…負極端子板、14…正極端子板、
15…くびれ部、16…空気孔、21,22…金属封止
部材、23…正極ケース、50,60…円筒形電極、5
1,61…空気亜鉛電池
DESCRIPTION OF SYMBOLS 1 ... Reaction layer, 2 ... Metal current collector, 3 ... Gas permeable film, 4 ... Air diffusion layer, 5 ... Separator, 6 ... Negative electrode mixture, 7 ... Negative electrode current collecting pin, 8,10,11 ... Gasket, 9 …Lead,
12: outer can, 13: negative terminal plate, 14: positive terminal plate,
Reference numeral 15: constricted portion, 16: air hole, 21, 22, metal sealing member, 23: positive electrode case, 50, 60: cylindrical electrode, 5
1,61… Zinc air battery

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも、 酸素還元能を有する反応層と、金属集電体と、撥水性の
気体透過膜とから構成される中空円筒の電極と、 環状の溝部を有する、環状の金属封止部材と、 環状の溝部を有する、円盤状の金属封止部材とからな
り、前記電極の一方の開口端を前記環状の金属封止部材
の溝部に挿入して圧着し、前記電極の他方の開口端を前
記円盤状の金属封止部材の溝部に挿入して圧着する構成
であることを特徴とする円筒形電極。
1. A hollow cylindrical electrode comprising at least a reaction layer having an oxygen reducing ability, a metal current collector, and a water-repellent gas permeable membrane; and an annular metal seal having an annular groove. A disk-shaped metal sealing member having a ring-shaped groove, wherein one opening end of the electrode is inserted into the groove of the ring-shaped metal sealing member and pressure-bonded, and the other opening of the electrode is formed. A cylindrical electrode having an end inserted into a groove of the disk-shaped metal sealing member and pressure-bonded.
【請求項2】 前記円盤状の金属封止部材の円盤中央部
は、電極の円筒部より外部に突出した形状であることを
特徴とする、請求項1に記載の円筒形電極。
2. The cylindrical electrode according to claim 1, wherein a central part of the disk of the disk-shaped metal sealing member has a shape protruding outside from a cylindrical part of the electrode.
【請求項3】 前記環状の金属封止部材の溝部の深さ、
および前記円盤状の金属封止部材の溝部の深さは、電極
の円筒部の長さに対して2.5%以上、20%以下であ
ることを特徴とする、請求項1に記載の円筒形電極。
3. A depth of a groove of the annular metal sealing member,
2. The cylinder according to claim 1, wherein the depth of the groove of the disc-shaped metal sealing member is not less than 2.5% and not more than 20% with respect to the length of the cylinder of the electrode. 3. Shaped electrode.
【請求項4】 前記環状の金属封止部材、および前記円
盤状の金属封止部材は金属板から加工形成されているこ
とを特徴とする、請求項1に記載の円筒形電極。
4. The cylindrical electrode according to claim 1, wherein the annular metal sealing member and the disk-shaped metal sealing member are formed by processing a metal plate.
【請求項5】 前記環状の金属封止部材、および前記円
盤状の金属封止部材の溝部外壁は、電極の開口端が挿入
された後、環状のプロジェクション加工が施されている
ことを特徴とする、請求項1に記載の円筒形電極。
5. The annular metal sealing member and the annular outer wall of the disk-shaped metal sealing member are subjected to an annular projection after the opening end of the electrode is inserted. The cylindrical electrode according to claim 1, wherein
【請求項6】 請求項1に記載の円筒形電極の、円盤状
の金属封止部材により密封された側を、正極端子を兼ね
る有底円筒状の正極ケースの底側に向けて挿入して密着
させ、正極側の集電を行うことを特徴とする空気亜鉛電
池。
6. The cylindrical electrode according to claim 1, wherein the side sealed by the disk-shaped metal sealing member is inserted toward the bottom side of a bottomed cylindrical positive electrode case also serving as a positive electrode terminal. An air-zinc battery, wherein the battery is brought into close contact to collect current on the positive electrode side.
JP9349314A 1997-12-18 1997-12-18 Cylindrical electrode and air zinc battery using it Pending JPH11185835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9349314A JPH11185835A (en) 1997-12-18 1997-12-18 Cylindrical electrode and air zinc battery using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9349314A JPH11185835A (en) 1997-12-18 1997-12-18 Cylindrical electrode and air zinc battery using it

Publications (1)

Publication Number Publication Date
JPH11185835A true JPH11185835A (en) 1999-07-09

Family

ID=18402941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9349314A Pending JPH11185835A (en) 1997-12-18 1997-12-18 Cylindrical electrode and air zinc battery using it

Country Status (1)

Country Link
JP (1) JPH11185835A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197445B1 (en) 1998-03-06 2001-03-06 Rayovac Corporation Air depolarized electrochemical cells
US6232007B1 (en) 1999-08-13 2001-05-15 The Gillette Company Metal-air battery container
US6261709B1 (en) 1998-03-06 2001-07-17 Rayovac Corporation Air depolarized electrochemical cell having mass-control chamber in anode
US6368738B1 (en) 1998-03-06 2002-04-09 Rayovac Corporation Air depolarized electrochemical cell
US6492046B1 (en) 1999-08-13 2002-12-10 The Gillette Company Metal-air battery
WO2021176765A1 (en) * 2020-03-03 2021-09-10 シャープ株式会社 Metal-air battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197445B1 (en) 1998-03-06 2001-03-06 Rayovac Corporation Air depolarized electrochemical cells
US6261709B1 (en) 1998-03-06 2001-07-17 Rayovac Corporation Air depolarized electrochemical cell having mass-control chamber in anode
US6368738B1 (en) 1998-03-06 2002-04-09 Rayovac Corporation Air depolarized electrochemical cell
US6436571B1 (en) 1998-03-06 2002-08-20 Rayovac Corporation Bottom seals in air depolarized electrochemical cells
US6232007B1 (en) 1999-08-13 2001-05-15 The Gillette Company Metal-air battery container
US6492046B1 (en) 1999-08-13 2002-12-10 The Gillette Company Metal-air battery
WO2021176765A1 (en) * 2020-03-03 2021-09-10 シャープ株式会社 Metal-air battery

Similar Documents

Publication Publication Date Title
RU2298264C2 (en) Bipolar electrochemical battery of stacked flat galvanic cells
US4121021A (en) Silver oxide primary cell
KR100710969B1 (en) Coin-shaped battery
US3746580A (en) Gas depolarizable galvanic cell
CA1165384A (en) Contact arrangement for a galvanic battery
US20070224500A1 (en) Zinc/air cell
WO2012042743A1 (en) Alkaline secondary battery
JP3475527B2 (en) Cylindrical air battery
JP2017183193A (en) Nickel-metal hydride storage battery
US7001689B2 (en) Zinc/air cell
JPH11185835A (en) Cylindrical electrode and air zinc battery using it
JP2010009841A (en) Cylindrical sealed battery
EP1629550B1 (en) Zinc/air cell assembly
EP3293797B1 (en) Cylindrical alkaline secondary battery
CN100456530C (en) Zinc/air cell
JPH1012288A (en) Cylindrical air battery and manufacture therefor
US20050019663A1 (en) Coin-shaped all solid battery
JP2000082503A (en) Air cell
JP4395899B2 (en) Air battery
JP2002373711A (en) Button type air-zinc battery and its method of manufacture
CN1332893A (en) Reduced leakage metal-air electrochemical cell
JP2000082504A (en) Air cell and its manufacture
JP3557860B2 (en) Air electrode for air battery and method of manufacturing the air electrode
JP3596954B2 (en) Method of manufacturing prismatic battery
JPS63131472A (en) Metal-hydrogen alkaline storage battery