JPH11179198A - Oil adsorbent - Google Patents

Oil adsorbent

Info

Publication number
JPH11179198A
JPH11179198A JP35704897A JP35704897A JPH11179198A JP H11179198 A JPH11179198 A JP H11179198A JP 35704897 A JP35704897 A JP 35704897A JP 35704897 A JP35704897 A JP 35704897A JP H11179198 A JPH11179198 A JP H11179198A
Authority
JP
Japan
Prior art keywords
oil
surface area
specific surface
mixture
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP35704897A
Other languages
Japanese (ja)
Inventor
Satoshi Watanabe
聡志 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Momentive Performance Materials Japan LLC
Original Assignee
Toshiba Silicone Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Silicone Co Ltd filed Critical Toshiba Silicone Co Ltd
Priority to JP35704897A priority Critical patent/JPH11179198A/en
Publication of JPH11179198A publication Critical patent/JPH11179198A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Removal Of Floating Material (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To extremely efficiently recover a spilt and scattered oil by using a carbon material having a specific surface area of a specified value or higher as an adsorbent component of an oil adsorbent. SOLUTION: Carbon black having a specific surface area of 300 (m<2> /g) by BET method and a cotton filament (an un-stranded product) before processed to be a spun fiber are mixed in 10:1 ratio by weight in a closed type mixing apparatus and poly(vinyl alcohol) is added to the resultant mixture to make the mixture in compounded state. The obtained mixture is processed to be a sheet-like shape with a size of 50 (cm)×50 (cm)×1 (cm), dried for 20 minutes in a chamber at 70 deg.C, and shaped. The resultant material is floated on a soy bean oil tank set at 25 deg.C, taken out after 10 minutes, spread on a horizontally set wire gauze with 30 meshes immediate after being taken out of the oil, kept still for 1 hour to make no oil drip out of the material. After that, the total weight of the resultant material is measured to calculate the amount of the absorbed soy bean oil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の技術分野】本発明は流出・飛散した油を効果的
に回収するための油吸着体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil adsorbent for effectively recovering spilled and scattered oil.

【0002】[0002]

【発明の技術的背景とその問題点】タンカーの座礁・衝
突などによる海上への原油流出から、道路上におけるタ
ンクローリー車の衝突などによる石油系油の流出、はた
また家庭においての食用油などの漏出など、人間生活に
おいて油を意図しない場所へ流出・飛散させてしまうこ
とは避け難い事実となっている。油の中には、危険性
(引火性・毒性)をはらんでいるものも有り、無視でき
ない事態を引き起こすことも多々ある。この油を早期に
回収する方法として、その流出量が小さければ、布、紙
等に吸着させることが可能であるが、路上・海上の大規
模流出では、乳化剤(中和剤)の散布で無害化させるこ
とや、人的に容器に集めるといった方法が一般的となっ
ていた。油吸着体という製品も開発されている。これ
は、フェルト等による細孔物理吸着現象を利用したり、
吸油能の高い粉体(ポリエチリデンノルボーネンなど)
を直接散布しゲル状物に変えるという方法が主なもので
ある。前述の油吸着体のうち、物理吸着現象を利用した
ものは吸油能が低く、また比較的高粘度のものには効果
が期待できなかった。一方、高吸油能粉体は価格が高く
経済的負担が大きくなり、また高分子で構成される粉体
の場合、冬の海域などの低温環境下では吸着が生じにく
いという欠陥を抱えていた。このため、海上ではオイル
フェンスを張り、油分をすくい取ったり、陸上では砂な
どを散布して、それを回収したりといった非効率作業が
続けられていた。
[Technical Background and Problems of the Invention] From oil spill to the sea due to tanker grounding / collision, petroleum oil spill due to tank lorry collision on road, etc. It is an unavoidable fact that oil leaks and scatters to unintended places in human life such as leakage. Some oils can be dangerous (flammable and toxic) and can often cause significant consequences. As a method of recovering this oil at an early stage, it is possible to adsorb it on cloth, paper, etc. if the spill amount is small, but for large-scale spills on the road or sea, it is harmless by spraying an emulsifier (neutralizing agent) It has been common practice to make them into a container or collect them manually in a container. A product called an oil adsorbent has also been developed. This uses the pore physical adsorption phenomenon by felt or the like,
Powders with high oil absorption (polyethylidene norbornene, etc.)
The main method is to spray the gel directly into a gel. Among the above oil adsorbents, those utilizing the physical adsorption phenomenon have low oil absorbing ability, and the effect cannot be expected for those having a relatively high viscosity. On the other hand, the high oil-absorbing powder has a disadvantage that the price is high and the economic burden is large, and the powder composed of the polymer is hardly adsorbed in a low-temperature environment such as a sea area in winter. For this reason, inefficient work such as installing an oil fence on the sea to scoop up oil, and spraying sand and the like on land to collect it has been continued.

【0003】[0003]

【発明の目的】本発明は上記従来技術の問題点に鑑み案
出されたものであり、極めて効率的に流出・飛散した油
の回収を行うことのできる油吸着体を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been devised in view of the above-mentioned problems of the prior art, and has as its object to provide an oil adsorbent capable of extremely efficiently recovering spilled and scattered oil. I do.

【0004】[0004]

【発明の構成】本発明者は上記目的を達成すべく鋭意検
討した結果、比表面積が200 〔m2/g〕以上である炭素
材料、特にその中でも気相成長法で製造された材料の油
吸着能が極めて高く、油の粘度や温度に対する吸着能変
化が少ないことを見出し、本発明を完成するに到った。
即ち本発明は、比表面積が200 〔m2/g〕以上である炭
素材料を吸着成分とする油吸着体である。
The present inventors have conducted intensive studies to achieve the above object, and have found that carbon materials having a specific surface area of 200 [m 2 / g] or more, especially oils of materials produced by a vapor phase growth method. It has been found that the adsorptivity is extremely high, and the adsorptivity changes little with respect to the viscosity and temperature of the oil, and the present invention has been completed.
That is, the present invention is an oil adsorbent comprising a carbon material having a specific surface area of 200 [m 2 / g] or more as an adsorbing component.

【0005】[0005]

【発明の実施の形態】以下本発明を詳細に説明する。本
発明の油吸着体は、炭素材料のまま油に散布しても良
く、フェルトや布等に担持させても良い。その際に担体
と炭素材料の間に接着剤等を用いても差し支えない。本
発明で言う炭素材料とは、まずベンゼン分子が2次元状
に連接したポリベンゼン平面と、この平面が2段以上重
なったグラファイト状の結晶部をその構造中に有する材
料が該当し、具体的にはカーボンブラック、黒鉛、備長
炭を代表とする白炭、ガラス状カーボン、カーボンファ
イバー、グラファイトファイバー、気相成長法カーボン
ファイバー、キッシュグラファイトなどや、直接肉眼で
認知することが困難であるC60 やC70 に代表されるフラ
ーレン類や分子性同素体であるカーボンナノチューブ、
カルビン酸、クムレン、ポリインなどが挙げられる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. The oil adsorbent of the present invention may be sprayed on oil as a carbon material, or may be supported on felt or cloth. At that time, an adhesive or the like may be used between the carrier and the carbon material. The carbon material referred to in the present invention corresponds to a material having, in its structure, a polybenzene plane in which benzene molecules are connected two-dimensionally, and a graphite-like crystal part in which this plane overlaps two or more steps. the representative carbon black, graphite, charcoal for hard charcoal, glassy carbon, carbon fibers, graphite fibers, vapor deposition carbon fiber, or the like quiche graphite, C 60 Ya is difficult to recognize with naked eyes carbon nanotubes are fullerene and molecular allotrope represented by C 70,
Carbamic acid, cumulene, polyyne and the like.

【0006】また、グラファイト状結晶部の存在が明確
でないあるいは存在しない材料として活性炭、木炭類、
石炭粉なども比表面積の条件を満たせば用いることが出
来る。この中でも気相成長法による炭素材料は油吸着能
が極めて高く、油吸着材料としてより好ましい。これは
ベンゼンの気相熱分解により製造されるもので、ベンゼ
ン蒸気を1000℃程度に保った電気炉内に送り、触媒を用
い基板上に成長させることで製造される。特徴としてフ
ァイバーが中空になることが知られ、これをカーボンナ
ノチューブと呼ぶこともある。これらも比表面積の条件
を満たせば、形状等に関する制約はない。
Activated carbon, charcoal, and the like are materials for which the existence of graphite-like crystal parts is not clear or does not exist.
Coal powder or the like can be used as long as it satisfies the condition of the specific surface area. Among them, the carbon material obtained by the vapor phase growth method has a very high oil adsorbing ability, and is more preferable as the oil adsorbing material. This is produced by gas phase thermal decomposition of benzene, and is produced by sending benzene vapor into an electric furnace maintained at about 1000 ° C. and growing it on a substrate using a catalyst. It is known that the fiber becomes hollow as a feature, and this is sometimes called a carbon nanotube. There is no restriction on the shape or the like as long as these also satisfy the condition of the specific surface area.

【0007】これらの炭素材料のほとんどが微細粉体と
なる。したがって効率的なハンドリングを考えた場合、
布や紙等を利用した担持体が回収作業を容易にする。こ
れらは回収する環境に応じて適宜選択される。たとえ
ば、海や河川ではポリビニルアルコールや澱粉の如き水
溶性高分子を賦形剤として用いれば、水分に接した後効
果的に炭素材料が離散し、油回収効率が増加する。また
路面や一般家庭では、フェルト等に含浸させたり、炭素
カルシウム等の安価かつ無毒性の粉体と混合して水を用
い粒状化させるなどの処理を施すことが考えられる。
Most of these carbon materials become fine powder. Therefore, considering efficient handling,
A carrier using cloth, paper, or the like facilitates the collection operation. These are appropriately selected according to the environment to be recovered. For example, in the sea or river, if a water-soluble polymer such as polyvinyl alcohol or starch is used as an excipient, the carbon material is effectively separated after contact with water, and the oil recovery efficiency increases. On the road surface or in general homes, it is conceivable to perform a treatment such as impregnation with felt or the like, or mixing with inexpensive and non-toxic powder such as carbon calcium and granulation using water.

【0008】本発明で規定する比表面積とは、ISO 4652
に定められている方法に準拠し、BET法を用い窒素分
子を多層吸着させて得られる値で表示するものである。
この他にも比表面積の測定方法は多数提案されている
が、微細孔までを計測できるこの方法が油吸着能力と関
係することを見出した。何故、本発明の炭素材料が特異
的に油吸着能力が高いのかは定かでないが、高比表面積
がもたらす物理的な吸着能力とは別に、グラファイト結
晶部端面に存在する豊富な官能基群(たとえば活性水
素、カルボキシル基、キノン基、ヒドロキシル基)によ
り、油層との濡れが容易かつ迅速に達成させられると考
える。
[0008] The specific surface area defined in the present invention is ISO 4652.
In accordance with the method defined in the above, the nitrogen molecule is represented by a value obtained by multilayer adsorption of nitrogen molecules using the BET method.
Many other methods for measuring the specific surface area have been proposed, and it has been found that this method capable of measuring even fine pores is related to the oil adsorption capacity. It is unclear why the carbon material of the present invention has a specific high oil adsorption ability, but apart from the physical adsorption ability provided by the high specific surface area, abundant functional groups (for example, It is considered that active hydrogen, a carboxyl group, a quinone group, and a hydroxyl group) can easily and quickly achieve wetting with an oil layer.

【0009】本発明において担体を用いる場合に、炭素
材料でないシリカ粉やモンモリロナイト系鉱物のような
油吸着材料や、炭素材料であっても比表面積が200 〔m2
/g〕に満たないカーボンブラックや炭素繊維等を併用
することは何ら差し支えない。また、油臭対策としての
防臭剤、脱臭剤、固形化を促進するためのベントナイト
系鉱物やポルノルボーネン系高分子化合物等を適宜単一
あるいは複数選択して併用することは何ら差し支えな
い。
When a carrier is used in the present invention, an oil-adsorbing material such as silica powder or montmorillonite-based mineral which is not a carbon material, or a carbon material having a specific surface area of 200 [m 2
/ G] may be used in combination. In addition, a deodorant, a deodorant, a bentonite-based mineral, a pornourbonene-based polymer compound, or the like for promoting solidification may be appropriately used alone or in combination as an oil odor countermeasure.

【0010】[0010]

【実施例】以下、本発明を実施例・比較例により更に詳
細に説明する。 実施例1 BET法による比表面積が300 〔m2/g〕であるカーボ
ンブラック「Printex90」(Degussa 社製)とスフ系に
加工する前の綿単繊維(無より品)を重量比10:1で密
閉型混合機で攪拌しこれにポリビニルアルコール(クラ
レ社製)を加え、コンパウンド状にする。これを50〔c
m〕×50〔cm〕×1〔cm〕のシートに加工し、70℃のチ
ャンバーに20分乾燥させ、賦形した。25℃にセットされ
た大豆油槽にこれを浮かべて10分後に引き上げ直後30me
shの水平に置かれた金網上にこれを拡げ1時間放置し
て、油のしずくが垂れない状態としてから、全重量を測
定し吸着された大豆油分を算出した。この結果を表1に
示した。
The present invention will be described below in more detail with reference to Examples and Comparative Examples. Example 1 A carbon black “Printex90” (manufactured by Degussa) having a specific surface area of 300 [m 2 / g] as measured by the BET method and a cotton single fiber (non-twisted product) before being processed into a swoof-based 10:10 weight ratio Then, the mixture is stirred with a closed mixer, and polyvinyl alcohol (manufactured by Kuraray Co., Ltd.) is added to the mixture to form a compound. This is 50 [c
m] × 50 [cm] × 1 [cm], processed into a 70 ° C. chamber for 20 minutes, and shaped. Float this in a soybean oil tank set at 25 ° C and raise it 10 minutes later, then 30me
This was spread on a wire net placed horizontally on the sh and left for 1 hour to make the oil drips not drop. Then, the total weight was measured and the adsorbed soybean oil was calculated. The results are shown in Table 1.

【0011】比較例1 同様に比表面積が120 〔m2/g〕であるカーボンブラッ
ク「Printex P 」(Degussa 社製)を用いた他は実施例
1と同様に処理したものを調製し、同様に吸着大豆油分
を算出した。この結果を表1に示した。
COMPARATIVE EXAMPLE 1 Similarly, a treatment was performed in the same manner as in Example 1 except that carbon black "Printex P" (manufactured by Degussa) having a specific surface area of 120 [m 2 / g] was used. The soybean oil content was calculated. The results are shown in Table 1.

【0012】実施例2 実験プラントで製造した、BET法による比表面積が25
0 〔m2/g〕の中空繊維状黒鉛(直径範囲50〜300 Å、
繊維長範囲1〜100 〔μm 〕)と重質炭酸カルシウム
「SS#80」日東粉化工業社製及び水道水を重量比1:
20:5の割合でニーダーを用い混練し、コンパウンドを
得た。これを造粒機を用いて直径5〔mm〕、長さ5〔m
m〕の粒とし、70℃のオーブンで約30分間、互いの粒が
ブロッキングを起こさない程度に乾燥させた。これを三
重県浜島町沖の入江に1m四方の木枠を浮かべ、A重油
18リットルを木枠内に注入した。この入江は大きな波は
来ないものの恒常的に上下振幅10cm程度の幅で海面が変
動している。木枠内に先の造粒品を1kg、手で均一にな
る様散布し、その状態で24時間放置後、 150meshの網で
粒とその周辺に付着した重油をすくい取り、 105℃のチ
ャンバーに24時間放置し、水分を蒸発させた後、全重量
を測定し塩分などの目的外吸着物はあるものの、おおよ
そのA重油吸着量を算出した。結果を表1に示した。
Example 2 A specific surface area produced by an experimental plant and measured by the BET method was 25.
0 [m 2 / g] hollow fibrous graphite (50-300 mm in diameter,
Fiber length range 1 to 100 [μm]) and heavy calcium carbonate “SS # 80” manufactured by Nitto Powder Chemical Co., Ltd. and tap water in a weight ratio of 1:
The mixture was kneaded using a kneader at a ratio of 20: 5 to obtain a compound. Using a granulator, this is 5 mm in diameter and 5 m in length.
m], and dried in an oven at 70 ° C. for about 30 minutes to such an extent that the particles do not block each other. A 1m square wooden frame was floated on the bay off Hamajima-cho, Mie Prefecture.
18 liters were poured into the crate. Although there are no large waves in this cove, the sea surface constantly fluctuates with a width of about 10 cm in vertical amplitude. Spray 1 kg of the above granulated product by hand in a wooden frame to make it uniform, leave it for 24 hours in that state, scoop up the grains and heavy oil attached to the surrounding area with a 150 mesh net, and place it in a 105 ° C chamber. After allowing to stand for 24 hours to evaporate the water, the total weight was measured, and although there were undesired adsorbed substances such as salt content, the approximate adsorption amount of heavy fuel oil A was calculated. The results are shown in Table 1.

【0013】比較例2 油吸着材料として公知のポリポリノルボーネン粉体「ノ
ーソレックス(商品名日本ゼオン社製)」を中空繊維状
黒鉛に代えて用いた他は実施例2と同様に処理したもの
を調製し、同様にA重油吸着量を算出し、結果を表1に
示した。
Comparative Example 2 A polypolynorbornene powder known as an oil-adsorbing material "NOSOLEX (trade name, manufactured by Zeon Corporation)" was treated in the same manner as in Example 2 except that hollow fiber graphite was used instead. Was prepared, and the amount of A fuel oil adsorption was calculated in the same manner. The results are shown in Table 1.

【0014】比較例3 やはり実験プラントで製造した、BET法による比表面
積が125 〔m2/g〕の非中空繊維状黒鉛( 200〜400
〔Å〕、繊維長範囲50〜120 〔μm 〕)を中空繊維状黒
鉛に代えて用いた他は実施例2と同様に処理したものを
調製し、同様にA重油吸着量を算出し結果を表1に示し
た。
Comparative Example 3 Non-hollow fibrous graphite (200 to 400) having a specific surface area of 125 [m 2 / g], also manufactured by an experimental plant, having a specific surface area of 125 [m 2 / g].
[Å], except that the fiber length range of 50 to 120 [μm]) was used in place of the hollow fibrous graphite, prepared in the same manner as in Example 2, and the A fuel oil adsorption amount was calculated in the same manner. The results are shown in Table 1.

【0015】比較例4 中空繊維状黒鉛を用いず、重質炭酸カルシウム「SS#
80」と水道水を21:5の割合でコンパンドとした他は実
施例2と同様に処理したものを調製し、同様にA重油吸
着量を算出し結果を表1に示した。
Comparative Example 4 Heavy calcium carbonate "SS #" was used without using hollow fiber graphite.
The same treatment as in Example 2 was prepared except that tap water was compounded at a ratio of 21: 5 to tap water, and the A fuel oil adsorption amount was calculated in the same manner. The results are shown in Table 1.

【0016】[0016]

【表1】 [Table 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 比表面積が200 〔m2/g〕以上である炭
素材料を吸着成分とする油吸着体。
1. An oil adsorbent comprising a carbon material having a specific surface area of 200 [m 2 / g] or more as an adsorbing component.
【請求項2】 炭素材料が気相成長法によって製造され
たことを特徴とする請求項1記載の油吸着体。
2. The oil adsorbent according to claim 1, wherein the carbon material is produced by a vapor phase growth method.
JP35704897A 1997-12-25 1997-12-25 Oil adsorbent Withdrawn JPH11179198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35704897A JPH11179198A (en) 1997-12-25 1997-12-25 Oil adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35704897A JPH11179198A (en) 1997-12-25 1997-12-25 Oil adsorbent

Publications (1)

Publication Number Publication Date
JPH11179198A true JPH11179198A (en) 1999-07-06

Family

ID=18452119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35704897A Withdrawn JPH11179198A (en) 1997-12-25 1997-12-25 Oil adsorbent

Country Status (1)

Country Link
JP (1) JPH11179198A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186056A (en) * 2003-12-05 2005-07-14 Mitsui Eng & Shipbuild Co Ltd Cleaning method for contaminated soil
CN102417215A (en) * 2010-09-28 2012-04-18 广东标美硅氟新材料有限公司 Method for recovering spilled oil in water area

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005186056A (en) * 2003-12-05 2005-07-14 Mitsui Eng & Shipbuild Co Ltd Cleaning method for contaminated soil
CN102417215A (en) * 2010-09-28 2012-04-18 广东标美硅氟新材料有限公司 Method for recovering spilled oil in water area

Similar Documents

Publication Publication Date Title
Xiong et al. Adsorption of tetracycline antibiotics from aqueous solutions on nanocomposite multi-walled carbon nanotube functionalized MIL-53 (Fe) as new adsorbent
Bo et al. Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr (IV) from water
Adebajo et al. Porous materials for oil spill cleanup: a review of synthesis and absorbing properties
Singh et al. A review on the synthesis and applications of nanoporous carbons for the removal of complex chemical contaminants
Tan et al. Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies
US20060191835A1 (en) Compositions and methods of remediation devices with nanostructured sorbent
Pourmand et al. Fabrication of nanoporous graphene by chemical vapor deposition (CVD) and its application in oil spill removal as a recyclable nanosorbent
Mohammadi et al. Alginate/calix [4] arenes modified graphene oxide nanocomposite beads: Preparation, characterization, and dye adsorption studies
US20040259729A1 (en) Structured adsorbent media for purifying contaminated air
CN110102267A (en) A kind of aluminium base MOFs/ chitosan compound microsphere and its preparation method and application
Jacob et al. Adsorptive decontamination of organophosphate pesticide chlorpyrifos from aqueous systems using bagasse-derived biochar alginate beads: thermodynamic, equilibrium, and kinetic studies
Bina et al. Water and wastewater treatment from BTEX by carbon nanotubes and Nano-Fe
CN101234331A (en) Preparation and using method for biological carbonaceous adsorption agent
Rahmani et al. Synthesis of MIL-101@ nanoporous graphene composites as hydrophobic adsorbents for oil removal
Pourmand et al. Preparation of nanoporous graphene via nanoporous zinc oxide and its application as a nanoadsorbent for benzene, toluene and xylenes removal
CN114177888B (en) Preparation of GO/COFs composite material and application of GO/COFs composite material in organic pollutant adsorption
Vunain et al. Adsorption, kinetics and equilibrium studies on removal of catechol and resorcinol from aqueous solution using low-cost activated carbon prepared from sunflower (Helianthus annuus) seed hull residues
JPH06218369A (en) Method of removing hydrocarbon substance from aqueous medium surface
CN110589821A (en) Porous biochar based on cattail derivation, preparation method and application thereof
US6056805A (en) Method and apparatus for the absorption of non-polar organic molecules on hydrocarbon block copolymers
Manna et al. Synthesis of graphene oxide nano-materials coated bio-char using carbonaceous industrial waste for phenol separation from water
Jiang et al. Fabrication and characterization of a hierarchical porous carbon from corn straw–derived hydrochar for atrazine removal: efficiency and interface mechanisms
Ejeromedoghene et al. Multifunctional metal-organic frameworks in oil spills and associated organic pollutant remediation
Song et al. N-doped Reduced Graphene Oxide nanocomposites encapsulated sodium alginate/polyvinyl alcohol microspheres for anthracene and its oxygenated-PAH removal in aqueous solution
Lyu et al. Functional materials contributing to the removal of chlorinated hydrocarbons from soil and groundwater: Classification and intrinsic chemical-biological removal mechanisms

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301