JPH11176419A - Lithium secondary battery and manufacture thereof - Google Patents

Lithium secondary battery and manufacture thereof

Info

Publication number
JPH11176419A
JPH11176419A JP9344923A JP34492397A JPH11176419A JP H11176419 A JPH11176419 A JP H11176419A JP 9344923 A JP9344923 A JP 9344923A JP 34492397 A JP34492397 A JP 34492397A JP H11176419 A JPH11176419 A JP H11176419A
Authority
JP
Japan
Prior art keywords
separator
electrode
current collector
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9344923A
Other languages
Japanese (ja)
Inventor
Makoto Furubayashi
眞 古林
Hiroshi Yamaoka
宏 山岡
Satoru Maruyama
哲 丸山
Takeshi Iijima
剛 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP9344923A priority Critical patent/JPH11176419A/en
Publication of JPH11176419A publication Critical patent/JPH11176419A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To eliminate the generation of short circuit between electrodes, and to optimize the quantity of the active material to be contained in a positive electrode and a negative electrode by coating both surface of a separator with the coating for electrode film, while providing a non-coated part, providing collectors thereon, and thereafter, cutting the separator at the non-coated part. SOLUTION: Both surfaces of a separator 1 having a binder is made to intrude which is compatible with the binder for electrode film are coated with the coating for electrode film with a mask, while providing a non-coated part. Electrodes 21, 22 having a positive electrode active material of the lithium compound and a negative electrode active material of the carbon material and collectors 31, 32 are printed on both the surfaces of the separator 1, so as to form the layered structure while providing a non-coated part. After drying it, the separator 1 is cut at the position of the non-coated part. Since the electrodes 21, 22 and the collectors 31, 32 are not cut directly, the generation of peeling of the electrode coating and sagging and burring of the collectors 31, 32 are prevented thus the insulating property of the separator 1 is secured. The separator 1 is preferably formed of a nonwoven fabric or an organic porous film having thickness at 20-200 μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】リチウムイオンを出し入れで
きる正極および負極からなるリチウム二次電池のシート
形電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sheet-type battery of a lithium secondary battery comprising a positive electrode and a negative electrode capable of taking lithium ions in and out.

【0002】[0002]

【従来の技術】近年、生活習慣の変化により戸外での活
動にさまざまな電子機器が用いられるようになってき
た。これに伴い、軽くかつ放電容量の大きな携帯用電源
としての電池が求められてきた。
2. Description of the Related Art In recent years, various electronic devices have been used for outdoor activities due to changes in lifestyle. Accordingly, a battery as a portable power source that is light and has a large discharge capacity has been demanded.

【0003】その結果、例えば特開昭55−13613
1号に代表されるような正極にコバルト酸リチウム(L
iCoO2)、ニッケル酸リチウム(LiNiO2)等
を用いたリチウム二次電池が提案された。
As a result, for example, Japanese Patent Application Laid-Open No. 55-13613
Lithium cobaltate (L
A lithium secondary battery using iCoO2), lithium nickel oxide (LiNiO2), or the like has been proposed.

【0004】その後、種々な改良が加えられ、負極に炭
素系材料を用いて、リチウムのデンドライト析出の無い
安全なリチウム二次電池に発展し、ビデオテープレコー
ダ、ノートパソコン、携帯電話等に広く使われるように
なった。
After that, various improvements were made, and a carbon-based material was used for the negative electrode to develop a safe lithium secondary battery free of lithium dendrite deposition, which was widely used in video tape recorders, notebook computers, mobile phones, and the like. Came to be.

【0005】また、使用機器の種類が増えるに従い、種
々の形状寸法のものが必要となり、近年では、形状の自
由度が高いシート形リチウム二次電池(ポリマーリチウ
ム電池)に注目が集まっている。
In addition, as the types of equipment used increase, various shapes and sizes are required. In recent years, attention has been paid to a sheet-type lithium secondary battery (polymer lithium battery) having a high degree of freedom in shape.

【0006】しかしながら、広く実用化されているポリ
マーリチウム電池では正極、負極および電解液を含んだ
非電子伝導性多孔質有機膜(以後セパレータと呼ぶ)は
機械的に接触しているだけである。このため、リチウム
イオンの出入りに伴う電極活物質の体積変化の影響を軽
減する目的で、一定のテンションを加えながら巻き付け
る方法、あるいはバネ等により、物理的な力で圧接する
方法などの工夫が施されている。
However, in a polymer lithium battery which has been widely put into practical use, a non-electroconductive porous organic film (hereinafter referred to as a separator) containing a positive electrode, a negative electrode, and an electrolyte is only in mechanical contact. For this reason, in order to reduce the influence of the volume change of the electrode active material due to the entrance and exit of lithium ions, a method of winding while applying a certain tension or a method of pressing with physical force by a spring or the like has been devised. Have been.

【0007】以上より、シート形あるいはカード形とい
った薄い短冊形状に電池を仕上げることは困難であっ
た。
As described above, it has been difficult to finish a battery in a thin strip shape such as a sheet shape or a card shape.

【0008】また、別のポリマーリチウム電池を作製す
る方法としては、特表平9−500485に開示された
金属メッシュ、電極およびセパレータを所定の寸法に打
ち抜き、それぞれを積層した後、熱圧着し、電池を得る
方法、または特開平8−250110に開示された転写
技術を応用し、積層し、電池を得る方法等が提案されて
いる。
As another method for producing a polymer lithium battery, a metal mesh, an electrode, and a separator disclosed in Japanese Patent Application Laid-Open No. 9-500485 are punched out to predetermined dimensions, each is laminated, and then thermocompression-bonded. A method of obtaining a battery or a method of obtaining a battery by stacking and applying the transfer technique disclosed in Japanese Patent Application Laid-Open No. 8-250110 has been proposed.

【0009】しかし、いずれの開示技術においても、優
れたポリマーリチウム電池を容易に製造することは困難
である。
However, it is difficult to easily produce an excellent polymer lithium battery by any of the disclosed techniques.

【0010】[0010]

【発明が解決しようとする課題】本発明はこのような事
情に鑑みてなされたものであり、ポリマーリチウム電池
を容易に製造し、本電池を安価に供給することを目的と
する。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has as its object to easily produce a polymer lithium battery and supply the battery at low cost.

【0011】[0011]

【課題を解決するための手段】本発明の目的は下記
(1)〜(6)の方法により達成できる。
The object of the present invention can be achieved by the following methods (1) to (6).

【0012】(1)電極膜のバインダと相溶性を有する
バインダを含浸させたセパレータの両面に正極の活物質
がリチウム化合物、負極の活物質が炭素材料からなる電
極膜を設け、さらにこれらの上に集電体を設け、電解質
を含浸させたリチウム二次電池であって、電極膜が未塗
布部を設けて印刷されていることを特徴とするリチウム
二次電池。
(1) On both surfaces of a separator impregnated with a binder compatible with the binder of the electrode film, an electrode film made of a lithium compound as a positive electrode active material and a carbon material as a negative electrode active material is provided. A lithium secondary battery in which a current collector is provided and an electrolyte is impregnated, wherein the electrode film is printed with an uncoated portion.

【0013】(2)前記セパレータが厚さ20〜200
μmの不織布または有機多孔膜であることを特徴とする
(1)記載のリチウム二次電池。
(2) The separator has a thickness of 20 to 200.
The lithium secondary battery according to (1), wherein the lithium secondary battery is a nonwoven fabric or an organic porous film of μm.

【0014】(3)前記集電体が導電体材料を含む塗料
で印刷されていることを特徴とする(1)または(2)
記載のリチウム二次電池。
(3) The current collector is printed with a paint containing a conductive material (1) or (2).
The lithium secondary battery according to the above.

【0015】(4)正極に使用する前記集電体の塗料を
構成する導電体材料がAl、Tiあるいはこれらを主成
分とする合金、ステンレス、炭素材料もしくはこれらの
混合物であり、負極に使用する前記集電体の塗料を構成
する導電体材料がTi、Cu、Niあるいはこれらを主
成分とする合金、ステンレス、炭素材料もしくはこれら
の混合物であることを特徴とする(1)〜(3)記載の
リチウム二次電池。
(4) The conductive material constituting the paint for the current collector used for the positive electrode is Al, Ti or an alloy containing these as a main component, stainless steel, a carbon material or a mixture thereof, and is used for the negative electrode. (1) to (3), wherein the conductive material constituting the paint for the current collector is Ti, Cu, Ni, an alloy containing these as a main component, stainless steel, a carbon material, or a mixture thereof. Lithium secondary battery.

【0016】(5)前記炭素材料がグラファイトであっ
て、正極および負極の集電体はグラファイトと樹脂の体
積比率が75:25〜80:20であることを特徴とす
る(1)〜(4)記載のリチウム二次電池。
(5) The carbon material is graphite, and the current collectors of the positive electrode and the negative electrode have a volume ratio of graphite to resin of 75:25 to 80:20. ).

【0017】(6)セパレータに電極膜のバインダと相
溶性を有するバインダを含浸させ、乾燥した後、セパレ
ータの両面に電極膜用塗料を印刷法により、未塗布部を
設けて形成し、さらにこれらの上に集電体を設け、積層
体とし、未塗布部を切断した後、電解質を含浸させるこ
とを特徴とする(1)〜(5)記載のリチウム二次電池
の製造方法。
(6) The separator is impregnated with a binder having compatibility with the binder of the electrode film, and after drying, the coating for the electrode film is formed on both surfaces of the separator by a printing method to form an uncoated portion. The method for producing a lithium secondary battery according to any one of (1) to (5), wherein a current collector is provided on the substrate, a laminate is formed, an uncoated portion is cut, and then an electrolyte is impregnated.

【0018】[0018]

【発明の実施の形態】本発明はリチウムを含む金属酸化
物を主体とする正極、およびリチウムイオンを取り込む
負極の両者を、電子絶縁性であり、かつ、リチウムイオ
ン透過性のセパレータの両面にそれぞれ固定することに
よって達成できる。
BEST MODE FOR CARRYING OUT THE INVENTION According to the present invention, both a positive electrode mainly composed of a metal oxide containing lithium and a negative electrode taking in lithium ions are provided on both sides of an electronically insulating and lithium ion permeable separator. This can be achieved by fixing.

【0019】正極電極膜に使用する活物質としては、コ
バルト酸リチウム(LiCoO2)、ニッケル酸リチウ
ム(LiNiO2)およびマンガン酸リチウム(LiM
nO2、LiMn24)、負極電極膜の活物質としては
金属リチウム、金属リチウム合金、炭素材料および酸化
錫が有効である。
The active materials used for the positive electrode film include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ) and lithium manganate (LiMnO 2 ).
nO 2 , LiMn 2 O 4 ) and lithium metal, a metal lithium alloy, a carbon material and tin oxide are effective as an active material of the negative electrode film.

【0020】炭素材料としてはグラファイト、カーボン
ブラック、メソフェーズカーボンマイクロビーズ(MC
MB)および炭素繊維が挙げられる。
As the carbon material, graphite, carbon black, mesophase carbon microbeads (MC
MB) and carbon fibers.

【0021】また、これらの活物質を結合するためのバ
インダとしては、ポリフッ化ビニリデン(PVDF)、
ポリフッ化ビニリデンと6フッ化プロピレンの共重合体
〔P(VDF/HFP)〕、ポリテトラフルオロエチレ
ン(PTFE)およびフッ素ゴム等が有効である。さら
に、セパレータとしては、有機多孔膜および不織布が有
効である。
As a binder for binding these active materials, polyvinylidene fluoride (PVDF),
Copolymers of polyvinylidene fluoride and propylene hexafluoride [P (VDF / HFP)], polytetrafluoroethylene (PTFE), fluorine rubber and the like are effective. Further, as the separator, an organic porous film and a nonwoven fabric are effective.

【0022】本発明を具体的に述べると、電極膜のバイ
ンダと相溶性のあるバインダを含む塗料、またはゲル電
解質をセパレータに塗布または含浸させた後、正極電極
膜および負極電極膜をそれぞれセパレータの両面に形成
する方法に着目した。
More specifically, the present invention describes a method in which a separator containing a paint or a gel electrolyte containing a binder compatible with the binder of the electrode film is applied to or impregnated with the separator, and then the positive electrode film and the negative electrode film are respectively formed on the separator. We focused on the method of forming on both sides.

【0023】しかし、この方法では、バインダを含浸さ
せたセパレータの両側に正極および負極の電極膜を作製
し、集電体を積層した後、所望の寸法に切断するため、
電極塗膜の粉落ちまたは集電体金属のダレまたはバリに
よりセパレータの絶縁性が劣化し、電流のショート不良
が発生する場合がある。
However, in this method, positive and negative electrode films are formed on both sides of a separator impregnated with a binder, a current collector is laminated, and then cut into desired dimensions.
Insulation of the separator may be degraded due to powder dropping of the electrode coating film or sagging or burr of the current collector metal, and a short circuit current may occur.

【0024】このため、本発明はこれに更に改良を加え
たもので、切断箇所に塗膜を形成することなく、正極お
よび負極の電極膜を印刷技術により形成するため、電極
膜を直接切断することなく、所定の寸法に切断すること
ができる。
Therefore, the present invention is a further improvement of the present invention, in which the electrode films of the positive electrode and the negative electrode are formed by a printing technique without forming a coating film at the cut portion, so that the electrode films are directly cut. Without cutting, it can be cut to a predetermined size.

【0025】一方、集電体に使用する金属メッシュまた
は金属箔に直接電極塗料を塗布し、電極膜を形成した
後、セパレータの上下に積層し、切断し、ポリマーリチ
ウム電池を得る方法も可能であるが、一般に使用される
セパレータは20μm未満と薄く、引張り強度も弱いた
め、積層工程でセパレータが切れるという問題があり、
また、最終的には電極膜および集電体を切断する必要が
あり、切断時に電極膜の脱落または集電体のバリが発生
し、完全にはセパレータの絶縁性を確保することが難し
く、電極間のショート不具合を回避できない。
On the other hand, a method is also possible in which an electrode paint is applied directly to a metal mesh or a metal foil used for the current collector to form an electrode film, and then laminated and cut above and below a separator to obtain a polymer lithium battery. However, there is a problem that a commonly used separator is thin, less than 20 μm, and has a low tensile strength.
In addition, it is necessary to finally cut the electrode film and the current collector, and the cutting off of the electrode film or burrs of the current collector occurs at the time of cutting, and it is difficult to completely secure the insulation of the separator. Inability to avoid short circuit failure between

【0026】これに対し、本発明はセパレータとして比
較的厚い不織布または有機多孔膜を選択できるため、セ
パレータの破断という問題点は解決できる。このセパレ
ータの厚みは20〜200μmが好ましく、さらに50
〜100μmがより好ましい。セパレータの厚みが20
μm未満の場合は印刷時にセパレータが破断し、印刷が
不可能となる。また、200μmを超えると電池の内部
抵抗が高くなり、ポリマーリチウム電池に占めるセパレ
ータの割合が増加することにより放電容量が減少する。
On the other hand, in the present invention, a relatively thick nonwoven fabric or an organic porous membrane can be selected as the separator, so that the problem of breakage of the separator can be solved. The thickness of this separator is preferably 20 to 200 μm, and more preferably 50 to 200 μm.
-100 μm is more preferable. Separator thickness is 20
If it is less than μm, the separator breaks during printing, making printing impossible. On the other hand, when the thickness exceeds 200 μm, the internal resistance of the battery increases, and the ratio of the separator in the polymer lithium battery increases, so that the discharge capacity decreases.

【0027】また、電極塗料の粘度、印刷に使用するマ
スクの面積等を調整し、正極膜および負極膜に含まれる
活物質の量を合わせることにより、最適なセルバランス
を保つことができる。このことにより、金属リチウムの
デンドライト生成の恐れもなく、特性のそろった高品質
なポリマーリチウム電池の量産が可能となる。
Further, by adjusting the viscosity of the electrode paint, the area of the mask used for printing, and the like, and adjusting the amounts of the active materials contained in the positive electrode film and the negative electrode film, an optimum cell balance can be maintained. This allows mass production of high quality polymer lithium batteries with uniform characteristics without fear of dendrite formation of lithium metal.

【0028】本発明に使用する正極の集電体はアルミニ
ウムのメッシュまたは箔が一般的であり、負極の集電体
は銅のメッシュまたは箔一般的に用いられる。この集電
体は印刷した電極膜にそれぞれ位置決めし、熱圧着す
る。
The current collector of the positive electrode used in the present invention is generally an aluminum mesh or foil, and the current collector of the negative electrode is generally a copper mesh or foil. The current collector is positioned on each of the printed electrode films, and is thermocompression-bonded.

【0029】さらに、導電物質を含む塗料を印刷技術に
より、印刷した電極表面に塗布することにより、メッシ
ュまたは箔を使用しないで、集電体を作成できる。
Further, by applying a paint containing a conductive substance to the printed electrode surface by a printing technique, a current collector can be formed without using a mesh or a foil.

【0030】正極の集電体を印刷する塗料に使用する導
電材料はAl、Tiあるいはこれらを主成分とする合
金、ステンレス、炭素材料またはこれらの混合物が挙げ
られるが、炭素材料の中ではグラファイトが特に好まし
い。
The conductive material used for the paint for printing the current collector of the positive electrode includes Al, Ti or an alloy containing these as a main component, stainless steel, a carbon material or a mixture thereof. Among the carbon materials, graphite is used. Particularly preferred.

【0031】また、負極の集電体を印刷する塗料に使用
する導電物質は−40〜+80℃でリチウムと合金を作
らない金属、合金および炭素材料等が好ましく、Ti、
Cu、Niあるいはこれらを主成分とする合金、ステン
レス、炭素材料またはこれらの混合物がより好ましく、
炭素材料の中ではグラファイトが特に好ましい。
The conductive material used in the paint for printing the current collector of the negative electrode is preferably a metal, alloy, carbon material, or the like that does not form an alloy with lithium at -40 to + 80 ° C.
Cu, Ni or an alloy containing these as a main component, stainless steel, carbon material or a mixture thereof is more preferable,
Among carbon materials, graphite is particularly preferred.

【0032】図1は本発明により作製したポリマーリチ
ウム電池用積層体の断面図であり、セパレータ1の両面
に電極21、22および集電体31、32が所定の未塗
布部を設けて印刷される。乾燥後、未塗布部の位置で切
断することにより、直接電極および集電体を切断しない
ために、電極塗膜の脱落や集電体金属のダレやバリの発
生がなく、セパレータの絶縁性が確保できる。また、正
極および負極の印刷面積をコントロールすることによ
り、セルバランスの取れたシート形電池を作製すること
ができる。
FIG. 1 is a cross-sectional view of a laminate for a polymer lithium battery produced according to the present invention. Electrodes 21 and 22 and current collectors 31 and 32 are printed on both sides of a separator 1 by providing predetermined uncoated portions. You. After drying, the electrode and current collector are not cut directly by cutting at the position of the uncoated portion.Therefore, there is no drop of the electrode coating, no dripping or burrs of the current collector metal, and the insulation of the separator is reduced. Can be secured. In addition, by controlling the printing area of the positive electrode and the negative electrode, a sheet-type battery with good cell balance can be manufactured.

【0033】図2は切断後の電極を示す断面図である。FIG. 2 is a sectional view showing the electrode after cutting.

【0034】一方、従来方法で作製したポリマーリチウ
ム電池用の積層体は連続した電極および集電体をからな
るため、この積層体を所望の寸法に切断し、電解液を含
浸させ、製品とする場合、この切断時に電極塗膜の脱落
や集電体金属のダレやバリが発生し、セパレータの絶縁
特性が劣化し、最悪の場合、電極間がショートすること
もある。
On the other hand, since the laminate for a polymer lithium battery produced by a conventional method comprises a continuous electrode and a current collector, this laminate is cut into a desired size and impregnated with an electrolyte to obtain a product. In this case, at the time of this cutting, the electrode coating film may fall off, the metal of the current collector may be sagged or burred, and the insulating properties of the separator may be degraded. In the worst case, the electrodes may be short-circuited.

【0035】また、同時に切断するため、切断して得ら
れる正極および負極の面積が常に等しく、セルバランス
を取ることが困難になることもある。
In addition, since the cutting is performed at the same time, the areas of the positive electrode and the negative electrode obtained by the cutting are always equal, and it may be difficult to maintain the cell balance.

【0036】[0036]

【実施例】[実施例1] 1)正極印刷用塗料の作製 正極活物質としてLiCoO2、導電助剤としてアセチ
レンブラック、バインダとしてP(VDF/HFP)を
83:6:11の重量比で配合し、溶媒としてDMF
(ジメチルホルムアミド)とアセトンを加え、混合分散
し、粘度が約100Pa.s(100000cps)に
なるように調整して正極塗料とした。
[Example 1] 1) Preparation of paint for positive electrode printing LiCoO2 as a positive electrode active material, acetylene black as a conductive assistant, and P (VDF / HFP) as a binder were blended in a weight ratio of 83: 6: 11. , DMF as solvent
(Dimethylformamide) and acetone were added, mixed and dispersed, and had a viscosity of about 100 Pa.s. s (100,000 cps) to obtain a positive electrode paint.

【0037】2)負極印刷用塗料の作製 負極活物質としてグラファイト、バインダとしてP(V
DF/HFP)を85:15の重量比で 配合し、溶媒
としてDMFとアセトンを加え、混合分散し、粘度が約
100Pa.sになるように調整して塗料とした。
2) Preparation of paint for negative electrode printing Graphite as a negative electrode active material and P (V) as a binder
DF / HFP) at a weight ratio of 85:15, DMF and acetone were added as solvents, mixed and dispersed, and had a viscosity of about 100 Pa.s. s to give a paint.

【0038】4)電池の作製 厚さ約90μmの不織布をP(VDF/HFP)のアセ
トン溶液(37.5重量%)中を通過させ、 P(VD
F/HFP)溶液を含浸させ、乾燥した。
4) Preparation of Battery A non-woven fabric having a thickness of about 90 μm was passed through an acetone solution (37.5% by weight) of P (VDF / HFP), and P (VD
F / HFP) solution and dried.

【0039】この不織布にメタルマスクを用いて、正極
塗料を一定の間隔で未塗布部を作りながら印刷し、乾燥
した。 次に、反対側に負極塗料を同様の手法により印
刷し、乾燥した。
Using a metal mask, the non-woven fabric was printed with a positive electrode paint at regular intervals to form uncoated portions, and dried. Next, the negative electrode paint was printed on the opposite side by the same method and dried.

【0040】正極および負極の膜厚はそれぞれ150μ
mおよび120μmであった。
The thickness of each of the positive electrode and the negative electrode was 150 μm.
m and 120 μm.

【0041】印刷した正極の電極膜にAlメッシュ、負
極の電極膜にCuメッシュをそれぞれ位置決めし、熱圧
着し、積層した。得られた積層体を未塗布部の位置で切
断した。
An Al mesh was positioned on the printed positive electrode film and a Cu mesh was positioned on the negative electrode film, and were thermocompression bonded and laminated. The obtained laminate was cut at the position of the uncoated portion.

【0042】切断した積層体に1Mの 過塩素酸リチウ
ム(LiClO4)のプロピレンカーボネート溶液を真
空含浸することにより、ポリマーリチウム電池とした。
The cut laminate was vacuum impregnated with a 1 M solution of lithium perchlorate (LiClO4) in propylene carbonate to obtain a polymer lithium battery.

【0043】得られた電池を用いて充放電試験をおこな
ったところ、ショートによる不具合は50個中一つも見
出されなかった。
When a charge / discharge test was performed using the obtained battery, no defect due to a short circuit was found in any one of the 50 batteries.

【0044】また、作製した電池の断面を観察したとこ
ろ、セパレータ(不織布)と電極界面には剥離は見いだ
されず、相溶性バインダをセパレータに含浸した効果が
みられた。
When the cross section of the manufactured battery was observed, no separation was found at the interface between the separator (nonwoven fabric) and the electrode, and the effect of impregnating the separator with a compatible binder was observed.

【0045】[実施例2]セパレータに使用する不織布
の厚みを15〜250μmの範囲で変えて、実施例1と
同様の手法により、電池を作成し、それぞれについて正
極活物質単位重量当たりの放電容量を測定した。この結
果を表1にまとめる。
Example 2 A battery was prepared in the same manner as in Example 1 except that the thickness of the nonwoven fabric used for the separator was changed in the range of 15 to 250 μm, and the discharge capacity per unit weight of the positive electrode active material was obtained for each battery. Was measured. Table 1 summarizes the results.

【0046】[0046]

【表1】 [Table 1]

【0047】表1の*印は本発明をより明確に説明する
ために、範囲外の厚みのセパレータを使用した比較例で
ある。この表からセパレータとして使用する不織布の厚
みは20〜200μmが好ましいが、さらに好ましくは
50〜100μmである。
The mark * in Table 1 is a comparative example in which a separator having a thickness outside the range is used in order to more clearly explain the present invention. From this table, the thickness of the nonwoven fabric used as the separator is preferably from 20 to 200 μm, more preferably from 50 to 100 μm.

【0048】また、作製した電池の断面を観察したとこ
ろセパレータ(不織布)と電極界面には剥離はみいださ
れず、相溶性バインダを塗布又は含浸した効果がみられ
た。
When the cross section of the manufactured battery was observed, no separation was found at the interface between the separator (nonwoven fabric) and the electrode, and the effect of applying or impregnating a compatible binder was observed.

【0049】[実施例3]実施例1において、集電体に
使用する金属メッシュの代わりに導電性塗料を正極およ
び負極の電極面に印刷し、積層体とした。その後は実施
例1と同様の手法により、ポリマーリチウム電池を得
た。集電体の導電塗料に使用した導電体材料は表2に示
す。
Example 3 In Example 1, a conductive paint was printed on the electrode surfaces of the positive electrode and the negative electrode in place of the metal mesh used for the current collector to obtain a laminate. Thereafter, a polymer lithium battery was obtained in the same manner as in Example 1. The conductive materials used for the conductive paint of the current collector are shown in Table 2.

【0050】なお、導電塗料は導電体材料の80体積部
とP(VDF/HFP)の20体積部をDMF−アセト
ン混合液に分散し、粘度を約100Pa.sになるよう
に調整した。
The conductive paint was prepared by dispersing 80 parts by volume of a conductive material and 20 parts by volume of P (VDF / HFP) in a DMF-acetone mixed solution, and having a viscosity of about 100 Pa.s. s.

【0051】[0051]

【表2】 [Table 2]

【0052】表2に示す8種類の組み合わせについて、
それぞれ50個サンプルを作製し、それぞれについて、
充放電試験をおこなったところ、ショートによる不具合
は50個中一つも見出されなかった。
For the eight combinations shown in Table 2,
We made 50 samples each, and for each,
When a charge / discharge test was performed, no failure due to short circuit was found out of 50.

【0053】また、作製した電池の断面を観察したとこ
ろ、セパレータ(不織布)と電極界面には剥離は見いだ
されず、相溶性バインダをセパレータに含浸した効果が
みられた。
When the cross section of the fabricated battery was observed, no separation was found at the interface between the separator (nonwoven fabric) and the electrode, and the effect of impregnating the separator with a compatible binder was observed.

【0054】[実施例4]導電材料およびP(VDF/
HFP)を表3の配合率でDMF−アセトン混合溶液に
分散し、粘度を約100Pa.sになるように調整し、
導電塗料を作製した。
[Embodiment 4] A conductive material and P (VDF /
HFP) was dispersed in a DMF-acetone mixed solution at the compounding ratio shown in Table 3, and the viscosity was about 100 Pa.s. s
A conductive paint was prepared.

【0055】この導電塗料を用い実施例3と同様の手法
により、ポリマーリチウム電池を得た。
Using this conductive paint, a polymer lithium battery was obtained in the same manner as in Example 3.

【0056】[0056]

【表3】 [Table 3]

【0057】表3の*印は本発明をより正確に説明する
ために、範囲外の組成で作製した比較例である。
The symbol * in Table 3 is a comparative example prepared with a composition outside the range in order to more accurately explain the present invention.

【0058】得られた実験番号3−2および3−3の電
池を用いて、充放電試験をおこなったところ、ショート
による不具合はそれぞれ50個中一つも見出されなかっ
た。
When a charge / discharge test was performed using the batteries of Experiment Nos. 3-2 and 3-3, no failure due to short circuit was found in each of the 50 batteries.

【0059】また、作製した電池の断面を観察したとこ
ろ、セパレータ(不織布)と電極界面には剥離は見いだ
されず、相溶性バインダをセパレータに含浸した効果が
みられた。
When the cross section of the manufactured battery was observed, no separation was found at the interface between the separator (nonwoven fabric) and the electrode, and the effect of impregnating the separator with a compatible binder was observed.

【0060】また、実験番号*3−1は比電気抵抗が高
く、集電体の機能を発揮しない。また、実験番号*3−
4は集電体の印刷ができず、電池として評価しなかっ
た。
Experiment No. * 3-1 has a high specific electric resistance and does not exhibit the function of a current collector. Experiment No. * 3-
In No. 4, the current collector could not be printed, and the battery was not evaluated.

【0061】[比較例1] 1)電解質溶液の作製 P(VDF/HFP)を3重量部、1Mの LiClO
4のプロピレンカーボネート溶液を7重量部およびアセ
トンを5重量部とを混合し、電解質溶液とした。
Comparative Example 1 1) Preparation of Electrolyte Solution 3 parts by weight of P (VDF / HFP), 1M LiClO
7 parts by weight of the propylene carbonate solution of No. 4 and 5 parts by weight of acetone were mixed to prepare an electrolyte solution.

【0062】2)正極塗料の作製 活物質としてLiCoO2を7.5重量部、導電助剤と
してアセチレンブラックを1.2重量部および電解質溶
液を2重量部を混合分散し、正極塗料とした。
2) Preparation of Positive Electrode Paint Positive electrode paint was prepared by mixing and dispersing 7.5 parts by weight of LiCoO 2 as an active material, 1.2 parts by weight of acetylene black as a conductive additive, and 2 parts by weight of an electrolyte solution.

【0063】3)負極塗料の作製 電解質溶液を2重量部および負極活物質としてグラファ
イトを1重量部とを混合分散し、負極塗料とした。
3) Preparation of negative electrode paint A negative electrode paint was prepared by mixing and dispersing 2 parts by weight of an electrolyte solution and 1 part by weight of graphite as a negative electrode active material.

【0064】4)電池の作製 厚さ約90μmの不織布を電解質溶液中を通して、電解
質溶液を充分含浸した後、アセトンを蒸発除去した。
4) Preparation of Battery A nonwoven fabric having a thickness of about 90 μm was passed through the electrolyte solution to sufficiently impregnate the electrolyte solution, and then acetone was removed by evaporation.

【0065】別途、Al箔上に正極塗料をドクターブレ
ード法により塗布しアセトンを蒸発除去した。また、C
u箔上にも負極塗料を同様に塗布しアセトンを蒸発除去
した。 正極、負極の膜厚はそれぞれ150μmおよび
120μmであった。
Separately, a cathode paint was applied on an Al foil by a doctor blade method, and acetone was removed by evaporation. Also, C
The negative electrode paint was similarly applied on the u foil, and acetone was removed by evaporation. The thicknesses of the positive electrode and the negative electrode were 150 μm and 120 μm, respectively.

【0066】これらを積層した後、切断してポリマーリ
チウム電池とした。
After laminating these, it was cut to obtain a polymer lithium battery.

【0067】作製した電池の放電容量は正極活物質基準
で115mAh/gであり、充放電試験において、切断
に起因すると思われる弱いショートが50個中1個見出
された。
The discharge capacity of the produced battery was 115 mAh / g based on the positive electrode active material, and in a charge / discharge test, one short circuit out of 50 was considered to be caused by disconnection.

【0068】[比較例2]比較例1において、電解質溶
液に使用する高分子マトリックス材をP(VDF/HF
P)の代わりに主鎖がフッ化ビニリデンと塩化フッ化エ
チレンの共重合体からなり、側鎖がポリフッ化ビニリデ
ンからなる熱可塑性弗素樹脂(商品名セフラルソフト
セントラル硝子社製)を用いて電解質溶液を作製した。
Comparative Example 2 In Comparative Example 1, the polymer matrix material used for the electrolyte solution was P (VDF / HF).
Instead of P), a thermoplastic fluororesin whose main chain consists of a copolymer of vinylidene fluoride and chlorofluoroethylene and whose side chain consists of polyvinylidene fluoride
(Central Glass Co., Ltd.) to prepare an electrolyte solution.

【0069】使用する電解質溶液以外は比較例1と同様
にポリマーリチウム電池を作製した。
A polymer lithium battery was prepared in the same manner as in Comparative Example 1 except for the electrolyte solution used.

【0070】作製した電池の放電容量は正極活物質基準
で115mAh/gであり、充放電試験において、具体
的には切断に起因すると思われる弱いショートが50個
中1個見出された。
The discharge capacity of the produced battery was 115 mAh / g based on the positive electrode active material. In the charge / discharge test, one out of 50 short-circuits that could be attributed to disconnection was found.

【0071】[比較例3] 1)P(VDF/HFP)のアセトン溶液の作製 P(VDF/HFP)を3重量部およびアセトンを5重
量部とを混合し、P(VDF/HFP)のアセトン溶液
とした。
[Comparative Example 3] 1) Preparation of acetone solution of P (VDF / HFP) 3 parts by weight of P (VDF / HFP) and 5 parts by weight of acetone were mixed, and acetone of P (VDF / HFP) was mixed. The solution was used.

【0072】2)正極塗料の作製 正極活物質としてLiCoO2を83重量部、導電助剤
としてアセチレンブラックを6重量部およびバインダと
してP(VDF/HFP)を11重量部をアセトンに混
合分散し、正極塗料とした。
2) Preparation of Positive Electrode Coating 83 parts by weight of LiCoO 2 as a positive electrode active material, 6 parts by weight of acetylene black as a conductive additive, and 11 parts by weight of P (VDF / HFP) as a binder were mixed and dispersed in acetone. Paint.

【0073】2)負極塗料の作製 負極活物質としてグラファイトを85重量部およびバイ
ンダとしてP(VDF/HFP)を15重量部を溶媒と
してのアセトンに混合分散し、負極塗料とした。
2) Preparation of negative electrode paint A negative electrode paint was prepared by mixing and dispersing 85 parts by weight of graphite as a negative electrode active material and 15 parts by weight of P (VDF / HFP) as a binder in acetone as a solvent.

【0074】3)電池の作製 厚さ約90μmの不織布をP(VDF/HFP)溶液中
に通して、 P(VDF/HFP)溶液を含浸させた
後、アセトンを蒸発除去した。
3) Preparation of Battery A non-woven fabric having a thickness of about 90 μm was passed through a P (VDF / HFP) solution to impregnate the P (VDF / HFP) solution, and then acetone was removed by evaporation.

【0075】別途、Alメッシュ箔上に正極塗料をドク
ターブレード法により塗布しアセトンを蒸発除去した。
また、Cuメッシュ箔上にも負極塗料を同様の手法によ
り塗布し、アセトンを蒸発除去した。 正極、負極の膜
厚はそれぞれ150μmおよび120μmであった。
Separately, a cathode paint was applied on an Al mesh foil by a doctor blade method, and acetone was removed by evaporation.
Also, a negative electrode paint was applied on the Cu mesh foil in the same manner, and acetone was removed by evaporation. The thicknesses of the positive electrode and the negative electrode were 150 μm and 120 μm, respectively.

【0076】これらを熱圧着にて積層した後、所望の長
さに切断した。
After laminating these by thermocompression bonding, they were cut to a desired length.

【0077】切断した積層品に1MのLiClO4のプ
ロピレンカーボネート溶液を真空含浸することにより、
ポリマーリチウム電池とした。
By vacuum impregnating the cut laminate with a 1 M LiClO 4 propylene carbonate solution,
This was a polymer lithium battery.

【0078】得られた電池の放電容量は正極活物質基準
で115mAh/gであった。また、充放電試験におい
て、ショートによる不具合が50個中2個見出された。
The discharge capacity of the obtained battery was 115 mAh / g based on the positive electrode active material. In the charge / discharge test, two out of 50 defects due to short circuits were found.

【0079】本発明の実施例では活物質、バインダおよ
び導電材料等の特定した材料について示したが、これら
に限定されることはなく、既知のリチウム二次電池に使
われる材料であればいずれも使用可能である。
In the embodiments of the present invention, specific materials such as an active material, a binder, and a conductive material have been described. However, the present invention is not limited to these materials, and any material used for a known lithium secondary battery can be used. Can be used.

【0080】特に記載しなかったが、取り扱いを容易に
するため、電極塗料に可塑剤を添加し、電極膜に可塑性
を持たせることも何等制限を受けることはない。
Although not particularly described, there is no limitation on adding a plasticizer to the electrode paint to make the electrode film plastic to facilitate handling.

【0081】また、塗料の組成も特に限定されるもので
はなく、製造設備を最適な物理特性値にコントロールす
るために変更してもよく、このことは、本発明の優位性
を損なうものではない。
The composition of the paint is not particularly limited, and may be changed in order to control the production equipment at the optimum physical property value. This does not impair the superiority of the present invention. .

【0082】[0082]

【発明の効果】以上より、本発明は印刷技術により、ギ
ャップを設けて電極膜を作製することにより、所望の寸
法に積層体を切断して、ポリマーリチウム電池とする場
合に発生する電極間のショート不良を改善できる。さら
に、電極膜の印刷面積をコントールすることにより、正
極および負極に含まれる活物質の量を最適化でき、セル
バランスの取れた電池を得ることができる。
As described above, the present invention provides a polymer lithium battery by cutting a laminate to a desired size by forming an electrode film with a gap by a printing technique. Short defects can be improved. Further, by controlling the printing area of the electrode film, the amount of the active material contained in the positive electrode and the negative electrode can be optimized, and a battery having a well-balanced cell can be obtained.

【0083】また、集電体を印刷技術を用いて積層する
ことにより、さらに簡便にポリマーリチウム電池を作製
することができる。
Further, by laminating the current collectors by using a printing technique, a polymer lithium battery can be manufactured more easily.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるポリマーリチウム電池用積層体の
断面図。
FIG. 1 is a sectional view of a laminate for a polymer lithium battery according to the present invention.

【図2】本発明によるポリマーリチウム電池用積層体を
個々に切断した後の断面図。
FIG. 2 is a cross-sectional view after the polymer lithium battery laminate according to the present invention is individually cut.

【符号の説明】[Explanation of symbols]

1 セパレータ 21、22 電極 31、32 集電体 DESCRIPTION OF SYMBOLS 1 Separator 21, 22 Electrode 31, 32 Current collector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯島 剛 東京都中央区日本橋一丁目13番1号ティー ディーケイ株式会社内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Tsuyoshi Iijima 1-13-1 Nihonbashi, Chuo-ku, Tokyo Inside TDK Corporation

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】電極膜のバインダと相溶性を有するバイン
ダを含浸させたセパレータの両面に正極の活物質がリチ
ウム化合物、負極の活物質が炭素材料からなる電極膜を
設け、さらにこれらの上に集電体を設け、電解質を含浸
させたリチウム二次電池であって、電極膜が未塗布部を
設けて印刷されていることを特徴とするリチウム二次電
池。
1. An electrode film comprising a lithium compound as an active material of a positive electrode and a carbon material as an active material of a negative electrode is provided on both surfaces of a separator impregnated with a binder compatible with a binder of an electrode film. A lithium secondary battery provided with a current collector and impregnated with an electrolyte, wherein the electrode film is printed with an uncoated portion.
【請求項2】前記セパレータが厚さ20〜200μmの
不織布または有機多孔膜であることを特徴とする請求項
1記載のリチウム二次電池。
2. The lithium secondary battery according to claim 1, wherein the separator is a nonwoven fabric or an organic porous film having a thickness of 20 to 200 μm.
【請求項3】前記集電体が導電体材料を含む塗料で印刷
されていることを特徴とする請求項1または2記載のリ
チウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the current collector is printed with a paint containing a conductive material.
【請求項4】正極に使用する前記集電体の塗料を構成す
る導電体材料がAl、Tiあるいはこれらを主成分とす
る合金、ステンレス、炭素材料もしくはこれらの混合物
であり、負極に使用する前記集電体の塗料を構成する導
電体材料がTi、Cu、Niあるいはこれらを主成分と
する合金、ステンレス、炭素材料もしくはこれらの混合
物であることを特徴とする請求項1〜3記載のリチウム
二次電池。
4. A conductive material constituting a paint for the current collector used for the positive electrode is Al, Ti or an alloy containing these as a main component, stainless steel, a carbon material or a mixture thereof, and the conductive material used for the negative electrode is 4. The lithium secondary battery according to claim 1, wherein the conductive material constituting the paint for the current collector is Ti, Cu, Ni, an alloy containing these as a main component, stainless steel, a carbon material, or a mixture thereof. Next battery.
【請求項5】前記炭素材料がグラファイトであって、正
極および負極の集電体はグラファイトと樹脂の体積比率
が75:25〜80:20であることを特徴とする請求
項1〜4記載のリチウム二次電池。
5. The method according to claim 1, wherein the carbon material is graphite, and the current collectors of the positive electrode and the negative electrode have a volume ratio of graphite to resin of 75:25 to 80:20. Lithium secondary battery.
【請求項6】セパレータに電極膜のバインダと相溶性を
有するバインダを含浸させ、乾燥した後、セパレータの
両面に電極膜用塗料を印刷法により、未塗布部を設けて
形成し、さらにこれらの上に集電体を設け、積層体と
し、未塗布部を切断した後、電解質を含浸させることを
特徴とする請求項1〜5記載のリチウム二次電池の製造
方法。
6. The separator is impregnated with a binder having compatibility with the binder of the electrode film, and after drying, a coating for an electrode film is formed on both surfaces of the separator by a printing method to form an uncoated portion. The method for producing a lithium secondary battery according to any one of claims 1 to 5, wherein a current collector is provided thereon to form a laminate, and an uncoated portion is cut and then impregnated with an electrolyte.
JP9344923A 1997-12-15 1997-12-15 Lithium secondary battery and manufacture thereof Withdrawn JPH11176419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9344923A JPH11176419A (en) 1997-12-15 1997-12-15 Lithium secondary battery and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9344923A JPH11176419A (en) 1997-12-15 1997-12-15 Lithium secondary battery and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11176419A true JPH11176419A (en) 1999-07-02

Family

ID=18373056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9344923A Withdrawn JPH11176419A (en) 1997-12-15 1997-12-15 Lithium secondary battery and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11176419A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002166218A (en) * 2000-09-22 2002-06-11 Teijin Ltd Simultaneous coating method of both sides
KR100445792B1 (en) * 2001-06-09 2004-08-25 한국과학기술연구원 United lithium electrode with a separator and lithium batteries comprising it
KR100449765B1 (en) * 2002-10-12 2004-09-22 삼성에스디아이 주식회사 Lithium metal anode for lithium battery
DE10336380A1 (en) * 2003-08-06 2005-03-10 Freudenberg Carl Kg Ultra-thin, porous and mechanically stable nonwoven, process for its preparation and its use
KR100590096B1 (en) * 2004-04-29 2006-06-14 삼성에스디아이 주식회사 Rechargeable lithium battery
KR100882493B1 (en) 2006-07-18 2009-02-06 주식회사 엘지화학 Lithium Ion Polymer Battery Using Photosensitive Polymer As Separator
JP2010153224A (en) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd Electrode and manufacturing method for the same
JP2010170832A (en) * 2009-01-22 2010-08-05 Nissan Motor Co Ltd Electrode containing polymer blended film
WO2011039576A1 (en) * 2009-09-29 2011-04-07 Faculdade De Ciências E Tecnologia Da Universidade Nova De Lisboa Energy generation and/or storage device based on fibres and thin films
WO2012133233A1 (en) * 2011-03-25 2012-10-04 株式会社Gsユアサ Cylindrical battery and electrode structure for battery
US8778524B2 (en) 2010-10-05 2014-07-15 Lg Chem, Ltd. Electrochemical device with improved cycle characteristics
JP2014197551A (en) * 2013-03-04 2014-10-16 積水化学工業株式会社 Particulate-flake graphite composite, negative electrode material for lithium ion secondary battery and production method therefor and lithium ion secondary battery
WO2014199002A1 (en) * 2013-06-12 2014-12-18 Heikki Suonsivu Rechargeable battery cell
WO2016204465A1 (en) * 2015-06-18 2016-12-22 주식회사 루트제이드 Separation membrane secondary battery
CN109346737A (en) * 2018-10-08 2019-02-15 深圳新源柔性科技有限公司 A kind of flexible thin-film battery
JP2019075278A (en) * 2017-10-16 2019-05-16 株式会社豊田中央研究所 Laminated structure, lithium secondary battery and method of manufacturing laminated structure
CN110556567A (en) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
CN113764676A (en) * 2021-08-19 2021-12-07 深圳市西盟特电子有限公司 Preparation method of current collector and pole piece

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712251B2 (en) * 2000-09-22 2011-06-29 帝人株式会社 Double-sided simultaneous coating method
JP2002166218A (en) * 2000-09-22 2002-06-11 Teijin Ltd Simultaneous coating method of both sides
KR100445792B1 (en) * 2001-06-09 2004-08-25 한국과학기술연구원 United lithium electrode with a separator and lithium batteries comprising it
KR100449765B1 (en) * 2002-10-12 2004-09-22 삼성에스디아이 주식회사 Lithium metal anode for lithium battery
DE10336380A1 (en) * 2003-08-06 2005-03-10 Freudenberg Carl Kg Ultra-thin, porous and mechanically stable nonwoven, process for its preparation and its use
DE10336380B4 (en) * 2003-08-06 2005-08-25 Carl Freudenberg Kg Ultrathin, porous and mechanically stable nonwoven fabric and its use
KR100590096B1 (en) * 2004-04-29 2006-06-14 삼성에스디아이 주식회사 Rechargeable lithium battery
KR100882493B1 (en) 2006-07-18 2009-02-06 주식회사 엘지화학 Lithium Ion Polymer Battery Using Photosensitive Polymer As Separator
JP2010153224A (en) * 2008-12-25 2010-07-08 Nissan Motor Co Ltd Electrode and manufacturing method for the same
JP2010170832A (en) * 2009-01-22 2010-08-05 Nissan Motor Co Ltd Electrode containing polymer blended film
WO2011039576A1 (en) * 2009-09-29 2011-04-07 Faculdade De Ciências E Tecnologia Da Universidade Nova De Lisboa Energy generation and/or storage device based on fibres and thin films
US9368777B2 (en) 2010-10-02 2016-06-14 Lg Chem, Ltd. Electrochemical device with improved cycle characteristics
US8778524B2 (en) 2010-10-05 2014-07-15 Lg Chem, Ltd. Electrochemical device with improved cycle characteristics
CN103443988A (en) * 2011-03-25 2013-12-11 株式会社杰士汤浅国际 Cylindrical battery and electrode structure for battery
WO2012133233A1 (en) * 2011-03-25 2012-10-04 株式会社Gsユアサ Cylindrical battery and electrode structure for battery
JP6020442B2 (en) * 2011-03-25 2016-11-02 株式会社Gsユアサ Cylindrical battery and battery electrode structure
US10243177B2 (en) 2011-03-25 2019-03-26 Gs Yuasa International Ltd. Cylindrical battery and battery electrode structure
JP2014197551A (en) * 2013-03-04 2014-10-16 積水化学工業株式会社 Particulate-flake graphite composite, negative electrode material for lithium ion secondary battery and production method therefor and lithium ion secondary battery
WO2014199002A1 (en) * 2013-06-12 2014-12-18 Heikki Suonsivu Rechargeable battery cell
WO2016204465A1 (en) * 2015-06-18 2016-12-22 주식회사 루트제이드 Separation membrane secondary battery
JP2019075278A (en) * 2017-10-16 2019-05-16 株式会社豊田中央研究所 Laminated structure, lithium secondary battery and method of manufacturing laminated structure
CN110556567A (en) * 2018-05-31 2019-12-10 松下知识产权经营株式会社 Lithium secondary battery
CN109346737A (en) * 2018-10-08 2019-02-15 深圳新源柔性科技有限公司 A kind of flexible thin-film battery
CN113764676A (en) * 2021-08-19 2021-12-07 深圳市西盟特电子有限公司 Preparation method of current collector and pole piece

Similar Documents

Publication Publication Date Title
JP4228541B2 (en) Method for producing non-aqueous gel electrolyte battery
US7651820B2 (en) Gel electrolyte and gel electrolyte battery
JP5768359B2 (en) Heat-resistant microporous membrane, battery separator, and lithium ion secondary battery
JP3225864B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP4075259B2 (en) Solid electrolyte secondary battery
US9831480B2 (en) Fiber-containing polymer film and method of manufacturing same, and electrochemical device and method of manufacturing same
JP2000123873A (en) Solid electrolyte battery
JPH11176419A (en) Lithium secondary battery and manufacture thereof
KR100367284B1 (en) Secondary Battery, and its Production Process
CN109478676B (en) Electrode assembly and method of manufacturing the same
JP2015181110A (en) Heat resistance microporous film, separator for lithium ion secondary batteries, and lithium ion secondary battery
CN109565069B (en) Electrode assembly and method of manufacturing the same
JP4992203B2 (en) Lithium ion secondary battery
JP2017073328A (en) Nonaqueous electrolyte secondary battery
JP4355970B2 (en) Solid electrolyte battery and manufacturing method thereof
JP2017073330A (en) Nonaqueous electrolyte secondary battery
CN111386616A (en) Method of manufacturing electrode for secondary battery and method of manufacturing secondary battery
JP4845245B2 (en) Lithium battery
JPH11135130A (en) Metal foil for secondary battery collector, manufacture thereof, and the secondary battery
JP2001313037A (en) Anode and nonaqueous electrolyte cell and manufacyuring method of the same
JP4830295B2 (en) Non-aqueous electrolyte secondary battery
JP4560851B2 (en) Method for producing solid electrolyte battery
JP2010205739A (en) Lithium battery
JP4422968B2 (en) Electrochemical element
JP4005789B2 (en) Secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301