JPH11170085A - Bond flux for submerged arc welding and submerged arc welding method using the same - Google Patents

Bond flux for submerged arc welding and submerged arc welding method using the same

Info

Publication number
JPH11170085A
JPH11170085A JP34338097A JP34338097A JPH11170085A JP H11170085 A JPH11170085 A JP H11170085A JP 34338097 A JP34338097 A JP 34338097A JP 34338097 A JP34338097 A JP 34338097A JP H11170085 A JPH11170085 A JP H11170085A
Authority
JP
Japan
Prior art keywords
weight
submerged arc
arc welding
toughness
flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34338097A
Other languages
Japanese (ja)
Inventor
Minoru Otsu
穣 大津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP34338097A priority Critical patent/JPH11170085A/en
Publication of JPH11170085A publication Critical patent/JPH11170085A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bond flux for submerged arc welding with which sufficient strength and toughness of a TMCP steel of a 490 to 520 N/mm<2> class and the steel products of the same class not added with one or both of Nb and V may be obtained. SOLUTION: This bonded flux contains 10 to 25 wt.% (hereafter wt.% is omitted) SiO2 , 10 to 20 Al2 O3 , 3 to 12 TiO2 , 10 to 20 MgO, 7 to 15 CaCO3 , total 0.5 to 8 Mn, 15 to 35 iron powder, 1.5 to 7.0 CaF2 , 0.3 to 0.8 B2 O3 , 0.4 to 1.5 Ti as metallic powder and 0.4 to 1.75 Mo. Submerged arc welding is executed by using this bond flux and combining the same with a wire of <=0.12 C, <=0.10 Si and 1.5 to 2.4 Mn, by which the weld metal of the compsn. contg. 0.01 to 0.02 Ti, 0.004 to 0.008 B and 0.1 to 0.45 Mo is obtd.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、490乃至520
N/mm2級のTMCP鋼又はNb及びVの一方又は双
方が添加されていない490乃至520N/mm2級鋼
用として好適のサブマージアーク溶接用ボンドフラック
ス及びそれを使用したサブマージアーク溶接方法に関す
る。
BACKGROUND OF THE INVENTION The present invention relates to 490 to 520
The present invention relates to a bond flux for submerged arc welding suitable for N / mm 2 grade TMCP steel or 490 to 520 N / mm 2 grade steel to which one or both of Nb and V are not added, and a submerged arc welding method using the same.

【0002】[0002]

【従来の技術】阪神淡路大震災以降、溶接継手の品質向
上への要求はより厳しくなる傾向にある。一方、大空間
を有する建築構造物が増え、より肉厚が厚い板でボック
ス柱を製作するケースが増加している。このような状況
下で、厚板ボックス柱角継手の大入熱サブマージアーク
溶接の技術分野においては、強度及び靭性がいずれも従
来の溶接材料に比較して高いレベルで安定する材料の開
発が要望されている。
2. Description of the Related Art Since the Great Hanshin-Awaji Earthquake, demands for improving the quality of welded joints have tended to become more severe. On the other hand, the number of architectural structures having a large space is increasing, and the number of cases in which box pillars are made of thicker plates is increasing. Under these circumstances, in the technical field of large heat input submerged arc welding of thick box box column joints, there is a demand for the development of a material whose strength and toughness are both at a higher level than conventional welding materials. Have been.

【0003】特に最近、厚板のボックス柱に多く適用さ
れ始めているTMCP鋼は、Mo、Nb及びV等の合金
成分の添加なしで従来鋼と同一強度の鋼板を製造するこ
とを可能にしたため、化学成分に着目すると、下記表1
に一例を示すように、TMCP鋼は従来鋼に比較して合
成成分の含有量が少なめになっている。また、TMCP
鋼以外の通常鋼の中にも、Nb及びVを含まないものが
存在するようになっており、靭性が十分に得られないよ
うな場合も生じてきている。
[0003] In particular, TMCP steel, which has recently begun to be widely applied to thick box columns, has made it possible to produce steel sheets having the same strength as conventional steel without the addition of alloying components such as Mo, Nb and V. Focusing on chemical components, Table 1 below
As shown in FIG. 1, TMCP steel has a lower content of synthetic components than conventional steel. Also, TMCP
Some ordinary steels other than steel do not contain Nb and V, and in some cases, sufficient toughness cannot be obtained.

【0004】[0004]

【表1】 [Table 1]

【0005】[0005]

【発明が解決しようとする課題】しかしながら、ボック
ス柱角継手の大入熱サブマージアーク溶接では一般に母
材希釈が多く、これらTMCP鋼等を溶接した場合、溶
接金属の十分な強度及び靭性を確保するために必要な合
金成分が不足し、従来鋼を溶接した場合と比較して溶接
金属の引張強度及び靭性が低めになる場合があった。
However, large heat input submerged arc welding of box column corner joints generally involves a large amount of base metal dilution, and when these TMCP steels and the like are welded, sufficient strength and toughness of the weld metal are ensured. As a result, the required alloying components are insufficient, and the tensile strength and toughness of the weld metal may be lower than in the case where conventional steel is welded.

【0006】本発明はかかる問題点に鑑みてなされたも
のであって、490乃至520N/mm2級のTMCP
鋼又はNb及びVの一方又は双方が添加されていない4
90乃至520N/mm2級鋼という広い範囲にわたっ
て適用可能で、それらの鋼材の化学成分が多少異なる場
合でも、十分な強度を得ることができ、SM490C及
びSM520C鋼の母材スペックである47Jを上回る
靭性を得ることができるサブマージアーク溶接用ボンド
フラックスを提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a TMCP of 490 to 520 N / mm 2 class.
Steel or one or both of Nb and V not added 4
Applicable over a wide range of 90 to 520 N / mm 2 grade steel, sufficient strength can be obtained even if the chemical composition of these steel materials is slightly different, exceeding the base metal specification of SM490C and SM520C steel of 47 J An object of the present invention is to provide a bond flux for submerged arc welding capable of obtaining toughness.

【0007】[0007]

【課題を解決するための手段】本発明に係るサブマージ
アーク溶接用ボンドフラックスは、SiO2:10乃至
25重量%、Al23:10乃至20重量%、Ti
2:3乃至12重量%、MgO:10乃至20重量
%、CaCO3:7乃至15重量%、total M
n:0.5乃至8重量%、鉄粉:15乃至35重量%、
CaF2:1.5乃至7.0重量%、B23:0.3乃
至0.8重量%、金属粉としてのTi:0.40乃至
1.50重量%、Mo:0.40乃至1.75重量%を
含有することを特徴とする。
The bond flux for submerged arc welding according to the present invention comprises: SiO 2 : 10 to 25% by weight; Al 2 O 3 : 10 to 20% by weight;
O 2 : 3 to 12% by weight, MgO: 10 to 20% by weight, CaCO 3 : 7 to 15% by weight, total M
n: 0.5 to 8% by weight, iron powder: 15 to 35% by weight,
CaF 2 : 1.5 to 7.0% by weight, B 2 O 3 : 0.3 to 0.8% by weight, Ti as metal powder: 0.40 to 1.50% by weight, Mo: 0.40 to 0.4% by weight It is characterized by containing 1.75% by weight.

【0008】このサブマージアーク溶接用ボンドフラッ
クスは、490乃至520N/mm2級のTMCP鋼並
びにNb及びVの一方又は双方が添加されていない49
0乃至520N/mm2級鋼の溶接に使用されることが
好ましい。
This bond flux for submerged arc welding does not contain 490 to 520 N / mm 2 class TMCP steel and one or both of Nb and V49.
It is preferably used for welding 0 to 520 N / mm 2 grade steel.

【0009】また、本発明に係るサブマージアーク溶接
方法は、上記組成のボンドフラックスを使用し、C:
0.12重量%以下、Si:0.10重量%以下、M
n:1.5乃至2.4重量%のワイヤと組合せてサブマ
ージアーク溶接し、Ti:0.010乃至0.020重
量%、B:0.0040乃至0.0080重量%及びM
o:0.10乃至0.45重量%を含有する組成の溶接
金属を得ることを特徴とする。
Further, a submerged arc welding method according to the present invention uses a bond flux having the above composition,
0.12% by weight or less, Si: 0.10% by weight or less, M
Submerged arc welding in combination with a wire of n: 1.5 to 2.4% by weight, Ti: 0.010 to 0.020% by weight, B: 0.0040 to 0.0080% by weight and M
o: A weld metal having a composition containing 0.10 to 0.45% by weight is obtained.

【0010】[0010]

【発明の実施の形態】本発明者等は、前述の課題を解決
すべく種々実験研究した結果、焼き入れ性改善のため良
く使われるC及びMn等の成分系を調整しても、母材の
種類又は溶接条件の変動により歩留りが安定せず、その
結果、得られた溶接金属には安定して高いレベルの靱性
を得ることができないことが判明した。そこで、母材の
希釈の影響等を受けにくいTi、B及びMoに着目し、
各元素を単独に添加してみたが、衝撃値:47J以上の
値を安定して得るには至らなかった。そこで、本発明者
等は、Ti、B及びMoを複合添加していったところ、
それぞれの添加量がある一定の範囲でのみ所望の性能を
得ることができることを知見した。
BEST MODE FOR CARRYING OUT THE INVENTION As a result of various experiments and researches to solve the above-mentioned problems, the present inventors have found that even if the components such as C and Mn which are often used for improving the hardenability are adjusted, the base material is not changed. It has been found that the yield is not stable due to the variation of the type of welding or the welding conditions, and as a result, the obtained weld metal cannot be stably provided with a high level of toughness. Therefore, paying attention to Ti, B and Mo, which are hardly affected by the dilution of the base material,
When each element was added alone, it was not possible to stably obtain an impact value of 47 J or more. Therefore, the present inventors have added Ti, B and Mo in a composite manner.
It has been found that the desired performance can be obtained only within a certain range of each addition amount.

【0011】即ち、本発明にて規定したボンドフラック
スの組成範囲が上記所望の性能を得ることができるもの
である。以下、この本発明に係るボンドフラックスの成
分添加理由及び組成限定理由について説明する。
That is, the composition range of the bond flux specified in the present invention can obtain the above-mentioned desired performance. Hereinafter, the reasons for adding the components of the bond flux according to the present invention and the reasons for limiting the composition will be described.

【0012】SiO2:10乃至25重量% SiO2はスラグの粘性を調整するのに必須の成分であ
るが、10重量%未満ではスラグの粘性が不十分とな
り、ビード幅が不安定又は不均一となる。また、SiO
2が少ないと、ビード形状が凸となると共に、スラグ生
成量も増すため、好ましくない。一方、SiO2が25
重量%を超えると、スラグの粘性が過剰となり、ビード
の広がりが悪くなる。このため、SiO2は10乃至2
5重量%とする。
SiO 2 : 10 to 25% by weight SiO 2 is an essential component for adjusting the viscosity of the slag, but if it is less than 10% by weight, the viscosity of the slag becomes insufficient and the bead width becomes unstable or uneven. Becomes In addition, SiO
If the number is small, the bead shape becomes convex and the amount of slag generated increases, which is not preferable. On the other hand, when SiO 2 is 25
If the amount exceeds the weight percentage, the viscosity of the slag becomes excessive, and the spread of the bead becomes poor. For this reason, SiO 2 is 10 to 2
5% by weight.

【0013】Al23:10乃至20重量% Al23はスラグの粘性及び凝固温度を調整するのに有
効な成分である。しかし、Al23が10重量%未満で
はスラグの粘性及び凝固温度が低くなり、ビード幅が不
均一になったり、ビード形状が凸形になるため好ましく
ない。一方、Al23が20重量%を超えると、スラグ
の凝固温度が高くなりすぎるため、ビードの広がりが不
十分となり、又はビードが蛇行しやすい。このため、A
23は10乃至20重量%とする。
Al 2 O 3 : 10 to 20% by weight Al 2 O 3 is a component effective for adjusting the viscosity and solidification temperature of slag. However, when the content of Al 2 O 3 is less than 10% by weight, the viscosity and solidification temperature of the slag become low, and the bead width becomes uneven and the bead shape becomes unpreferable. On the other hand, when the content of Al 2 O 3 exceeds 20% by weight, the solidification temperature of the slag becomes too high, so that the spread of the bead becomes insufficient, or the bead tends to meander. Therefore, A
l 2 O 3 is 10 to 20% by weight.

【0014】TiO2:3乃至12重量% TiO2はスラグの融点及び粘性調整材として有効な成
分である。しかし、TiO2の総量が3重量%未満で
は、アンダーカットが発生しやすいため好ましくない。
一方、12重量%を超えると、スラグ剥離性が急激に劣
化し、スラグ生成量も増大する。このため、TiO2
3乃至12重量%とする。
TiO 2 : 3 to 12% by weight TiO 2 is a component effective as a material for adjusting the melting point and viscosity of slag. However, if the total amount of TiO 2 is less than 3% by weight, an undercut is likely to occur, which is not preferable.
On the other hand, when the content exceeds 12% by weight, the slag removability is rapidly deteriorated, and the amount of slag generated also increases. Therefore, the content of TiO 2 is set to 3 to 12% by weight.

【0015】MgO:10乃至20重量% MgOは粘性調整剤としての作用を有している。しか
し、MgOが10重量%未満ではビードが蛇行しやす
く、アンダーカットが発生する。一方、MgOが20重
量%を超えると、スラグ焼き付きが増すと共に、ポック
マークが発生しやすい。更に、MgOが多いと、スラグ
生成量も増大するため好ましくない。このため、MgO
は10乃至20重量%とする。
MgO: 10 to 20% by weight MgO has a function as a viscosity modifier. However, when the content of MgO is less than 10% by weight, the bead tends to meander, and undercut occurs. On the other hand, when the content of MgO exceeds 20% by weight, slag seizure increases and pock marks are easily generated. Further, a large amount of MgO is not preferable because the amount of slag generated increases. For this reason, MgO
Is 10 to 20% by weight.

【0016】CaCO3:7乃至15重量% CaCO3は溶接中にCaOとCO2とに分解され、CO
2ガスによって溶接部を外気からシールドするととも
に、不純物ガス(H2又はN2等)の分圧を低下させ、溶
接金属中への侵入を防止するのに有効な成分である。し
かし、CaCO3が7重量%未満ではCO2ガスによるシ
ールド効果が不十分であり、溶接金属中の水素及び窒素
量が増大し、低温割れ及び靱性の低下が生じやすい。一
方、CaCO3が15重量%を超えると、CO2ガスの発
生量が過剰になり、ガスが均一に抜けずに溶接中の吹上
減少がきわめて多くなり、ビード外観が劣化しやすい。
このため、CaCO3は7乃至15重量%とする。
CaCO 3 : 7 to 15% by weight CaCO 3 is decomposed into CaO and CO 2 during welding,
While shielding the weld from the outside air by 2 gas, lowering the partial pressure of the impurity gas (H 2 or N 2, etc.), it is an effective ingredient to prevent entry into the weld metal. However, if the content of CaCO 3 is less than 7% by weight, the shielding effect by the CO 2 gas is insufficient, the amounts of hydrogen and nitrogen in the weld metal increase, and low-temperature cracking and a decrease in toughness are likely to occur. On the other hand, when the content of CaCO 3 exceeds 15% by weight, the amount of generated CO 2 gas becomes excessive, the gas does not escape uniformly, and the blow-up during welding becomes extremely large, so that the bead appearance tends to deteriorate.
Therefore, the content of CaCO 3 is set to 7 to 15% by weight.

【0017】total Mn:0.5乃至8重量% Mnはスラグの粘性及び凝固温度を調整するのに有効な
成分であるだけでなく、溶接金属中のMn量を調整し、
引張性能、衝撃性能を確保するために必須の成分であ
る。しかし、Mnが0.5重量%未満では、アンダーカ
ット及びスラグ焼き付きが発生しやすく好ましくない。
一方、Mnが8重量%を超えると、ビードが蛇行しやす
く、かつフラックス消費量が増大するため好ましくな
い。
Total Mn: 0.5 to 8% by weight Mn is not only an effective component for adjusting the viscosity and solidification temperature of the slag, but also adjusts the Mn content in the weld metal.
It is an essential component for ensuring tensile performance and impact performance. However, when Mn is less than 0.5% by weight, undercut and slag seizure tend to occur, which is not preferable.
On the other hand, if Mn exceeds 8% by weight, the bead tends to meander and the amount of flux consumption increases, which is not preferable.

【0018】なお、Mn成分は、金属Mn及びFe−M
nなどの化合物並びにMnO、MnO2などの酸化物の
形でフラックス中に添加されるが、上記本発明の範囲は
Mnの総量としてtotal Mnで規定するものであ
る。従って、total Mn量が0.5乃至8重量%
の範囲とする。
The Mn component includes metal Mn and Fe-M
The compound is added to the flux in the form of a compound such as n or an oxide such as MnO or MnO 2, and the scope of the present invention is defined as the total amount of Mn by total Mn. Therefore, the total Mn content is 0.5 to 8% by weight.
Range.

【0019】鉄粉:15乃至35重量% フラックス中に鉄粉を添加すると、鉄粉は溶接中に溶融
池へ移行し、消費量が増加する。これにより、溶接能率
の向上と溶接入熱の低下を図ることが可能である。しか
し、鉄粉が15重量%未満ではこの効果が少なく、大入
熱溶接時の吹上も増加し、また溶込み深さも浅くなり、
溶込み不足が生じやすいので好ましくない。一方、鉄粉
が35重量%を超えると、ビードの広がりが悪くなった
り、スラグ巻込みが発生しやすくなる。
Iron powder: When iron powder is added to the 15 to 35% by weight flux, the iron powder moves to the molten pool during welding and the consumption increases. Thereby, it is possible to improve welding efficiency and reduce welding heat input. However, when the iron powder is less than 15% by weight, this effect is small, the blow-up during large heat input welding increases, and the penetration depth becomes shallow,
It is not preferable because insufficient penetration easily occurs. On the other hand, if the iron powder exceeds 35% by weight, the spread of the beads becomes poor, and slag entrainment is likely to occur.

【0020】CaF2:1.5乃至7.0重量% CaF2は溶接金属中の[O]を低下させる効果がある
とともに、スラグの流動性を調整し、溶接中のスラグ−
メタル間の反応を促進させるために有効な成分である。
しかし、CaF2が1.5重量%未満では靱性向上に対
して効果が全くなく、粘性向上に対しても効果が少な
い。一方、CaF2が7.0重量%を超えると、スラグ
の流動性が増し、ビードの蛇行及びアンダーカットが発
生する。このため、CaF2は1.5乃至7.0重量%
とする。
CaF 2 : 1.5 to 7.0% by weight CaF 2 has the effect of lowering [O] in the weld metal, adjusts the fluidity of the slag, and reduces the slag during welding.
It is an effective component for promoting the reaction between metals.
However, if the content of CaF 2 is less than 1.5% by weight, there is no effect on the improvement of toughness, and there is little effect on the improvement of viscosity. On the other hand, if CaF 2 exceeds 7.0% by weight, the fluidity of the slag increases, and meandering of the bead and undercut occur. For this reason, CaF 2 is 1.5 to 7.0% by weight.
And

【0021】23:0.3乃至0.8重量%、金属粉
としてのTi:0.40乃至1.50重量%、Mo:
0.40乃至1.75重量% 従来これらの成分はいずれも靱性向上を図る場合に単独
で添加されている成分であるが、TMCP鋼並びにNb
及びVフリー鋼へ適用する場合には、各成分を単独で添
加しても47J超で安定した靱性を得ることが困難であ
る。しかし、本発明においては、Ti、B及びMoの全
てを組み合わせて添加する。これにより、個々の成分の
添加量を最小限に抑えつつ、所望の靱性を安定して得る
ことができることを見出した。また、これらの成分は一
定量を超えると急激に靱性が劣化しはじめ、直ちに期待
する靱性値を下回ってしまう。このように、B2O3、
Ti及びMoの全てを添加し、その含有量を適切に設定
することにより、靱性を著しく高めることができる。
B 2 O 3 : 0.3 to 0.8% by weight, metal powder
Ti: 0.40 to 1.50% by weight, Mo:
0.40 to 1.75% by weight Conventionally, all of these components have been added alone in order to improve toughness.
And when applied to V-free steel, it is difficult to obtain stable toughness exceeding 47 J even if each component is added alone. However, in the present invention, Ti, B and Mo are all added in combination. As a result, it has been found that desired toughness can be stably obtained while minimizing the amount of each component added. When these components exceed a certain amount, the toughness starts to rapidly deteriorate, and immediately falls below the expected toughness value. Thus, B2O3,
By adding all of Ti and Mo and appropriately setting the contents thereof, the toughness can be significantly increased.

【0022】図1乃至図5は、夫々Mo:0.35重量
%、Mo:0.45重量%、Mo:0.60重量%、M
o:1.69重量%、Mo:1.85重量%の場合のフ
ラックス中のB23添加量と衝撃値vE0℃(J)との
間系を、種々のTi添加量0.35乃至1.60重量%
について測定した結果を示す。この図1乃至5に示すよ
うに、いずれの図においても、B23が0.3乃至0.
8重量%の場合に、衝撃値が高く、0℃における靱性が
高い溶接金属を得ることができた。また、Moが0.4
0乃至1.75重量%の範囲に入る場合、即ち図2乃至
図4の場合に、その範囲から外れる図1及び図5の場合
よりも高い衝撃値が得られた。更に、これらの図2乃至
図4においても、Ti添加量が0.40乃至1.50重
量%の場合に、47J以上の高い衝撃値が得られた。
FIGS. 1 to 5 show Mo: 0.35% by weight, Mo: 0.45% by weight, Mo: 0.60% by weight, and M, respectively.
In the case of o: 1.69% by weight and Mo: 1.85% by weight, the system between the addition amount of B 2 O 3 in the flux and the impact value vE0 ° C. (J) was determined by changing the addition amount of Ti from 0.35 to 1.60% by weight
2 shows the results of measurement. As shown in FIGS. 1 to 5, in each of the figures, B 2 O 3 is 0.3 to 0.
When the content was 8% by weight, a weld metal having a high impact value and high toughness at 0 ° C. could be obtained. Mo is 0.4
In the range of 0 to 1.75% by weight, that is, in the case of FIGS. 2 to 4, higher impact values were obtained than in the case of FIGS. Further, in FIGS. 2 to 4, when the amount of Ti added was 0.40 to 1.50% by weight, a high impact value of 47 J or more was obtained.

【0023】即ち、B23:0.3重量%以上、Ti:
0.40重量%以上、Mo:0.40重量%以上を全て
満足する場合にのみ靱性が著しく向上し、B23:0.
8重量%、Ti:1.50重量%、Mo:1.75重量
%をいずれか一つの成分でも上回った場合に、強度の上
がりすぎによって、靱性は著しく劣化する。このため、
本発明においては、B23:0.3乃至0.8重量%、
金属粉としてのTi:0.40乃至1.50重量%、M
o:0.40乃至1.75重量%の全てを満足するもの
とする。
That is, B 2 O 3 : 0.3% by weight or more, Ti:
Only when all of 0.40% by weight or more and Mo: 0.40% by weight or more are satisfied, the toughness is remarkably improved, and B 2 O 3 : 0.
If any one component exceeds 8% by weight, Ti: 1.50% by weight, and Mo: 1.75% by weight, the toughness is remarkably deteriorated due to excessive increase in strength. For this reason,
In the present invention, B 2 O 3 : 0.3 to 0.8% by weight,
Ti as metal powder: 0.40 to 1.50% by weight, M
o: Satisfies all of 0.40 to 1.75% by weight.

【0024】次に、溶接ワイヤの組成について説明す
る。
Next, the composition of the welding wire will be described.

【0025】C:0.12重量%以下 厚板の溶接では、溶接金属は高温割れが発生しやすいこ
とが知られており、溶接金属中のC量を低くして高温割
れ防止を図る必要がある。また、溶接金属中のC量が多
い場合、焼き入れ性が上昇し、溶接金属の延性低下につ
ながる虞がある。以上の理由から、大入熱サブマージア
ーク溶接用ワイヤでは一般的にC:0.12重量%以下
を使用している。
C: 0.12% by weight or less It is known that high-temperature cracking is liable to occur in a weld metal when welding a thick plate, and it is necessary to reduce the amount of C in the weld metal to prevent high-temperature cracking. is there. Also, when the C content in the weld metal is large, the hardenability increases, which may lead to a decrease in the ductility of the weld metal. For the above reasons, C: 0.12% by weight or less is generally used in the wire for large heat input submerged arc welding.

【0026】Si:0.10重量%以下 Siは強力な脱酸剤であるが、溶接金属中のSiは靱性
を低下させるため、Si:0.10重量%以下とする。
Si: 0.10% by weight or less Si is a strong deoxidizing agent, but Si in the weld metal lowers toughness. Therefore, Si is made 0.10% by weight or less.

【0027】Mn:1.5乃至2.4重量% Mnは焼き入れ性向上に不可欠な元素であるが、2.4
重量%を超えて添加した場合は、強度が上がりすぎ、低
温割れが発生する虞がある。また、Mnが1.5重量%
未満では、焼き入れ性の効果が不足し、靱性が低下す
る。このため、溶接ワイヤ中のMnは1.5乃至2.4
重量%とする。
Mn: 1.5 to 2.4 wt% Mn is an element indispensable for improving hardenability, but is 2.4.
If it is added in excess of% by weight, the strength may be too high and low-temperature cracking may occur. Also, Mn is 1.5% by weight.
If it is less than the value, the effect of hardenability is insufficient, and the toughness is reduced. For this reason, Mn in the welding wire is 1.5 to 2.4.
% By weight.

【0028】次に、溶接金属の組成について説明する。Next, the composition of the weld metal will be described.

【0029】Ti:0.010乃至0.020重量% B:0.0040乃至0.0080重量% Mo:0.10乃至0.45重量% TMCP鋼及びNb、Vフリーの通常鋼については、そ
の成分系はミルメーカー、板厚により多少異なる。従っ
て従来のフラックスでは、それらの鋼種すべてで、安定
して高いレベルの靱性を得ることが困難であった。
Ti: 0.010 to 0.020 wt% B: 0.0040 to 0.0080 wt% Mo: 0.10 to 0.45 wt% For TMCP steel and Nb, V-free ordinary steel, Ingredients vary slightly depending on the mill maker and plate thickness. Therefore, it has been difficult to obtain a high level of toughness stably with all of these steel types using conventional fluxes.

【0030】そこで、Ti、B、Moを複合添加したフ
ラックスを種々試作し、溶接金属の靱性と化学成分の関
係を検討した結果、ある化学成分範囲の場合に47J以
上の靱性値を示すことを知見した。即ち、Ti:0.0
10重量%以上、B:0.0040重量%以上、Mo:
0.10重量%以上のすべてを満足する場合に安定して
高いレベルの靱性を得ることができる。
Therefore, various kinds of fluxes to which Ti, B, and Mo were added in a composite manner were manufactured, and the relationship between the toughness and the chemical composition of the weld metal was examined. As a result, it was found that a toughness of 47 J or more was exhibited in a certain chemical composition range. I learned. That is, Ti: 0.0
10% by weight or more, B: 0.0040% by weight or more, Mo:
When all of 0.10% by weight or more are satisfied, a high level of toughness can be stably obtained.

【0031】しかしながら、Ti,B,Moのいずれか
の成分が、Ti:0.020重量%、B:0.0080
重量%、Mo:0.45重量%を超えた場合、強度の上
がりすぎによる靱性低下により安定して47Jを得るこ
とができない。よって、溶接金属としては、Ti:0.
010乃至0.020重量%、B:0.0040乃至
0.0080重量%、Mo:0.10乃至0.45重量
%を満足するものとする。
However, any one of the components Ti, B and Mo contains 0.020% by weight of Ti and 0.0080% of B.
If it exceeds 0.45% by weight, 47J cannot be obtained stably due to a decrease in toughness due to an excessive increase in strength. Therefore, Ti: 0.
010 to 0.020% by weight, B: 0.0040 to 0.0080% by weight, Mo: 0.10 to 0.45% by weight.

【0032】[0032]

【実施例】次に、本発明の効果を実証するために、本発
明の範囲に入る実施例と本発明の範囲から外れる比較例
とについて、その特性を比較した結果について説明す
る。前記表1に示す板厚60mmのTMCP鋼板を使用
し、開先形状をY形、開先角度30゜、ルートフェース
2mmとして溶接試験した。また、下記表2に示す組成
のワイヤ径6.4mmの溶接用ワイヤを使用し、下記表
3に示すフラックスと組み合わせて溶接試験した。下記
表4は溶接条件を示し、溶接方法は2電極ワンランのサ
ブマージアーク溶接である。Ti、B、Mo以外のSi
2、Al23等の造滓成分は同じ成分にしたため、溶
接作業性、スラグ剥離及びビード外観等は特に差異が認
められなかった。
EXAMPLES Next, in order to demonstrate the effects of the present invention, the results of comparing the characteristics of an example falling within the scope of the present invention and a comparative example out of the scope of the present invention will be described. A TMCP steel sheet having a thickness of 60 mm shown in Table 1 above was used, and a welding test was performed with a groove shape of Y shape, a groove angle of 30 °, and a root face of 2 mm. A welding test was performed using a welding wire having a composition shown in Table 2 below and having a wire diameter of 6.4 mm in combination with a flux shown in Table 3 below. Table 4 below shows the welding conditions, and the welding method is a two-electrode one-run submerged arc welding. Si other than Ti, B, Mo
Since the same slag-making components as O 2 and Al 2 O 3 were used, there was no particular difference in welding workability, slag peeling, bead appearance, and the like.

【0033】溶接後、板厚中央部で機械試験片を採取
し、各種試験を行った。その結果を下記表5に示す。フ
ラックスA−4乃至A−6は本発明の実施例であるが、
いずれも47J以上の靱性値を得ることができた。これ
に対し、フラックスA−1乃至A−3は、夫々Ti、
B、Moが本発明の範囲より少ない比較例であるが、い
ずれも焼き入れ不足により靱性は47Jに達しなかっ
た。
After welding, mechanical test pieces were taken at the center of the sheet thickness and subjected to various tests. The results are shown in Table 5 below. Fluxes A-4 to A-6 are examples of the present invention,
In each case, a toughness value of 47 J or more could be obtained. On the other hand, fluxes A-1 to A-3 are Ti,
B and Mo are comparative examples with less than the range of the present invention, but the toughness did not reach 47 J due to insufficient quenching.

【0034】また、フラックスA−7乃至A−9は、夫
々Ti、B、Moが本発明の範囲より多いものである
が、いずれも強度が600N/mm2を超え、靱性は4
7J以下まで劣化している。
The fluxes A-7 to A-9 have Ti, B and Mo, respectively, which are larger than the range of the present invention, but all have a strength exceeding 600 N / mm 2 and a toughness of 4%.
It has deteriorated to 7J or less.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【表5】 [Table 5]

【0039】この表5において、A−4、A−5、A−
6はフラックスが本発明の範囲に入る実施例であり、溶
接金属成分も本発明の請求項3を満足するため、溶接金
属の機械的性質(引張強度及び衝撃値)がいずれも優れ
ていた。これに対し、A−2,A−3はフラックス組成
が本発明の範囲から外れるものであり、また溶接金属組
成も本発明の請求項3から外れるため、引張強度及び靱
性がA−4,A−5,A−6より低いものであった。更
に、A−7,A−8,A−9は、フラックス組成が本発
明の範囲から外れるため、A−4、A−5、A−6より
引張強度が高いものの、靱性が劣るものであった。更に
また、A−1はフラックス組成は本発明の範囲内である
が、溶接金属組成が本発明の範囲から外れるため、引張
強度及び靱性が従来のものよりは高いが、A−4,A−
5,A−6よりは低いものであった。
In Table 5, A-4, A-5, A-
No. 6 is an example in which the flux falls within the scope of the present invention. Since the weld metal component also satisfies claim 3 of the present invention, the mechanical properties (tensile strength and impact value) of the weld metal were all excellent. On the other hand, A-2 and A-3 have a flux composition outside the scope of the present invention and a weld metal composition outside the scope of claim 3 of the present invention. -5, lower than A-6. Further, A-7, A-8, and A-9 have higher tensile strengths than A-4, A-5, and A-6, but are inferior in toughness because the flux composition is out of the range of the present invention. Was. Furthermore, although the flux composition of A-1 is within the range of the present invention, the tensile strength and toughness are higher than those of the conventional one because the weld metal composition is out of the range of the present invention.
5, lower than A-6.

【0040】[0040]

【発明の効果】以上説明したように、本発明に係るボン
ドフラックスは、B23:0.3乃至0.8重量%、金
属粉としてのTi:0.40乃至1.50重量%、M
o:0.40乃至1.75重量%の全てを満足するもの
であるから、引張強度及び衝撃値が高く、靱性が優れた
溶接金属を得ることができる。また、このボンドフラッ
クスを使用したサブマージアーク溶接方法は、所定の組
成の溶接ワイヤを使用し、所定の組成の溶接金属を得る
ものであるから、靱性が著しく高い溶接金属を得ること
ができる。
As described above, the bond flux according to the present invention comprises B 2 O 3 : 0.3 to 0.8% by weight, Ti as metal powder: 0.40 to 1.50% by weight, M
o: Since 0.40 to 1.75% by weight is satisfied, a weld metal having high tensile strength and impact value and excellent toughness can be obtained. Further, in the submerged arc welding method using this bond flux, a welding metal having a predetermined composition is used to obtain a welding metal having a predetermined composition. Therefore, a welding metal having extremely high toughness can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Mo、Ti及びB23量と、衝撃値との関係を
示すグラフ図である。
FIG. 1 is a graph showing the relationship between the amount of Mo, Ti, and B 2 O 3 and the impact value.

【図2】Mo、Ti及びB23量と、衝撃値との関係を
示すグラフ図である。
FIG. 2 is a graph showing the relationship between the amounts of Mo, Ti and B 2 O 3 and the impact value.

【図3】Mo、Ti及びB23量と、衝撃値との関係を
示すグラフ図である。
FIG. 3 is a graph showing the relationship between the amount of Mo, Ti and B 2 O 3 and the impact value.

【図4】Mo、Ti及びB23量と、衝撃値との関係を
示すグラフ図である。
FIG. 4 is a graph showing the relationship between the amount of Mo, Ti and B 2 O 3 and the impact value.

【図5】Mo、Ti及びB23量と、衝撃値との関係を
示すグラフ図である。
FIG. 5 is a graph showing the relationship between the amounts of Mo, Ti and B 2 O 3 and the impact value.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 SiO2:10乃至25重量%、Al2
3:10乃至20重量%、TiO2:3乃至12重量%、
MgO:10乃至20重量%、CaCO3:7乃至15
重量%、total Mn:0.5乃至8重量%、鉄
粉:15乃至35重量%、CaF2:1.5乃至7.0
重量%、B23:0.3乃至0.8重量%、金属粉とし
てのTi:0.40乃至1.50重量%、Mo:0.4
0乃至1.75重量%を含有することを特徴とするサブ
マージアーク溶接用ボンドフラックス。
1. SiO 2 : 10 to 25% by weight, Al 2 O
3 : 10 to 20% by weight, TiO 2 : 3 to 12% by weight,
MgO: 10 to 20% by weight, CaCO 3 : 7 to 15
% By weight, total Mn: 0.5 to 8% by weight, iron powder: 15 to 35% by weight, CaF 2 : 1.5 to 7.0%
Wt%, B 2 O 3: 0.3 to 0.8 wt%, Ti as a metal powder: 0.40 to 1.50 wt%, Mo: 0.4
A bond flux for submerged arc welding, comprising 0 to 1.75% by weight.
【請求項2】 490乃至520N/mm2級のTMC
P鋼並びにNb及びVの一方又は双方が添加されていな
い490乃至520N/mm2級鋼の溶接に使用される
溶接用フラックスであることを特徴とする請求項1に記
載のサブマージアーク溶接用ボンドフラックス。
2. 490 to 520 N / mm 2 class TMC
Submerged arc welding bonding according to claim 1, characterized in that the P steels and welding flux one or both of Nb and V is used for welding of 490 to 520N / mm 2 class steel not added flux.
【請求項3】 請求項1に記載のボンドフラックスを使
用し、C:0.12重量%以下、Si:0.10重量%
以下、Mn:1.5乃至2.4重量%のワイヤと組合せ
てサブマージアーク溶接し、Ti:0.010乃至0.
020重量%、B:0.0040乃至0.0080重量
%及びMo:0.10乃至0.45重量%を含有する組
成の溶接金属を得ることを特徴とするサブマージアーク
溶接方法。
3. Using the bond flux according to claim 1, C: 0.12% by weight or less, Si: 0.10% by weight.
Hereinafter, submerged arc welding is performed in combination with a wire of Mn: 1.5 to 2.4% by weight, and Ti: 0.010 to 0.
A submerged arc welding method comprising obtaining a weld metal having a composition containing 020% by weight, B: 0.0040 to 0.0080% by weight, and Mo: 0.10 to 0.45% by weight.
JP34338097A 1997-12-12 1997-12-12 Bond flux for submerged arc welding and submerged arc welding method using the same Pending JPH11170085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34338097A JPH11170085A (en) 1997-12-12 1997-12-12 Bond flux for submerged arc welding and submerged arc welding method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34338097A JPH11170085A (en) 1997-12-12 1997-12-12 Bond flux for submerged arc welding and submerged arc welding method using the same

Publications (1)

Publication Number Publication Date
JPH11170085A true JPH11170085A (en) 1999-06-29

Family

ID=18361072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34338097A Pending JPH11170085A (en) 1997-12-12 1997-12-12 Bond flux for submerged arc welding and submerged arc welding method using the same

Country Status (1)

Country Link
JP (1) JPH11170085A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230983A (en) * 2002-02-08 2003-08-19 Kobe Steel Ltd Bonded flux for submerged arc welding
KR101464853B1 (en) * 2012-01-10 2014-11-25 가부시키가이샤 고베 세이코쇼 Bond flux, wire, welding metal and welding method for submerged arc welding
CN105397342A (en) * 2015-12-18 2016-03-16 天津宝庆峰焊业有限公司 Gas shielded flux-cored wire, preparation method thereof and gas shielded welding method
KR20160078771A (en) 2014-12-24 2016-07-05 주식회사 포스코 High strength heat input flux cored arc welded metal joint having excellent impact toughness
US9492894B2 (en) 2010-12-27 2016-11-15 Posco Flux-cored arc welding wire for providing superior toughness and weldability to a welded joint at a low temperature, and welded joint using same
CN107685202A (en) * 2017-10-10 2018-02-13 河南科技大学 A kind of neutral sintered flux used for submerged arc welding and preparation method thereof
US10065272B2 (en) 2012-12-27 2018-09-04 Posco Super high-strength flux cored arc welded joint having excellent impact toughness, and welding wire for manufacturing same
US10266929B2 (en) 2013-12-24 2019-04-23 Posco Ultrahigh-strength gas metal arc welded joint having excellent impact toughness, and solid wire for producing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003230983A (en) * 2002-02-08 2003-08-19 Kobe Steel Ltd Bonded flux for submerged arc welding
US9492894B2 (en) 2010-12-27 2016-11-15 Posco Flux-cored arc welding wire for providing superior toughness and weldability to a welded joint at a low temperature, and welded joint using same
KR101464853B1 (en) * 2012-01-10 2014-11-25 가부시키가이샤 고베 세이코쇼 Bond flux, wire, welding metal and welding method for submerged arc welding
US10065272B2 (en) 2012-12-27 2018-09-04 Posco Super high-strength flux cored arc welded joint having excellent impact toughness, and welding wire for manufacturing same
US10266929B2 (en) 2013-12-24 2019-04-23 Posco Ultrahigh-strength gas metal arc welded joint having excellent impact toughness, and solid wire for producing same
DE112013007707B4 (en) 2013-12-24 2024-02-01 Posco Co., Ltd Ultra-high strength gas metal arc welding joint with excellent notched impact strength and solid wire to produce the same
KR20160078771A (en) 2014-12-24 2016-07-05 주식회사 포스코 High strength heat input flux cored arc welded metal joint having excellent impact toughness
CN105397342A (en) * 2015-12-18 2016-03-16 天津宝庆峰焊业有限公司 Gas shielded flux-cored wire, preparation method thereof and gas shielded welding method
CN107685202A (en) * 2017-10-10 2018-02-13 河南科技大学 A kind of neutral sintered flux used for submerged arc welding and preparation method thereof

Similar Documents

Publication Publication Date Title
US4571480A (en) Flux cored wire electrodes for self-shielded arc welding
KR100920549B1 (en) Flux-cored wire for gas shielded arc welding
JP3258135B2 (en) Submerged arc welding method for high strength Cr-Mo steel
US4017339A (en) Flux for use in submerged arc welding of steel
JPS5944159B2 (en) Flux-cored wire for gas shield arc welding
US4338142A (en) Melting flux composition for submerged arc welding
CA1071441A (en) Bare electrode for welding of low temperature steel
KR20020027238A (en) Large heat input submerged arc welding joint, method for producing the joint, steel wire for the submerged arc welding joint, and flux for the submerged arc welding joint
US4029934A (en) Welding, and a steel suitable for use therein
JPH11170085A (en) Bond flux for submerged arc welding and submerged arc welding method using the same
CN112621016B (en) Welding material, weld metal, and electroslag welding method
JPH09277087A (en) Flux cored wire for arc welding
JP2005230906A (en) Gas shielded arc welding method
JP4125688B2 (en) Two-electrode large heat input submerged arc welding method
JP2723335B2 (en) Flux-cored wire for gas shielded arc welding
JP2593614B2 (en) Submerged arc welding method for high Cr ferritic heat resistant steel
JP2003001486A (en) Flux for submerged arc welding and method for producing submerged arc welded joint
KR20020008681A (en) Flux cored wire for co2 gas shielded arc welding
JP6071797B2 (en) Flux for single-sided submerged arc welding
JP2006326642A (en) Fused flux for submerged arc welding
JPH0829431B2 (en) Low-hydrogen coated arc welding rod
JP3550770B2 (en) Flux for sub-mark welding
JP3163838B2 (en) Bond flux for submerged arc welding
JPH1110391A (en) Flux cored wire for multielectrode vertical electrogas arc welding for extra thick plate
JPH03294096A (en) Combined wire for electrogas arc welding

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Written amendment

Effective date: 20040426

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20041102

Free format text: JAPANESE INTERMEDIATE CODE: A02