JPH1116783A - Manufacture of conductive high-molecular solid-state electrolytic capacitor - Google Patents

Manufacture of conductive high-molecular solid-state electrolytic capacitor

Info

Publication number
JPH1116783A
JPH1116783A JP16882897A JP16882897A JPH1116783A JP H1116783 A JPH1116783 A JP H1116783A JP 16882897 A JP16882897 A JP 16882897A JP 16882897 A JP16882897 A JP 16882897A JP H1116783 A JPH1116783 A JP H1116783A
Authority
JP
Japan
Prior art keywords
organic semiconductor
semiconductor layer
anode
acrylic resin
anode body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16882897A
Other languages
Japanese (ja)
Other versions
JP3241636B2 (en
Inventor
Yuji Aoki
勇治 青木
Kenji Araki
健二 荒木
Tomoji Arai
智次 荒井
Kenichi Takahashi
健一 高橋
Takashi Fukami
隆 深海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Toppan Circuit Solutions Toyama Inc
Original Assignee
NEC Toppan Circuit Solutions Toyama Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Toppan Circuit Solutions Toyama Inc filed Critical NEC Toppan Circuit Solutions Toyama Inc
Priority to JP16882897A priority Critical patent/JP3241636B2/en
Publication of JPH1116783A publication Critical patent/JPH1116783A/en
Application granted granted Critical
Publication of JP3241636B2 publication Critical patent/JP3241636B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To use conductive high molecular compound, which is kept low in viscosity so as to improve pores inside an anode in permeability to the molecular compound by a method, wherein organic semiconductor mother liquid which is not subjected to polymerization reaction yet and where a specific amount of acrylic resin is dissolved is used. SOLUTION: An anode lead leading wire 2 of Ta is implanted upright in tantalum powder, the tantalum powder is subjected to pressure molding, the molded tantalum body is sintered into an anode body 1. Then, the anode lead wire 2 is welded into a belt-like metal plate 3, and an oxide film 4 is formed on the surface of the anode body 1. Thereafter, about 0.1 to about 5 wt.% acrylic resin is dissolved into a pyrrole monomer water solution to form organic semiconductor mother liquid, the anode body 1 is dipped into the organic semiconductor mother liquid, and a chemical polymerization reaction takes place to form an organic semiconductor layer 5 which contains an acrylic resin component. Thereafter, a conductor layer 9 is formed by the use of Ag paste to serve as a cathode layer for the formation of a capacitor device. By this setup, an organic semiconductor layer is formed, even into pores inside an anode to improved the covering rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は導電性高分子固体電
解コンデンサの製造方法に関し、特に半導体母液にバイ
ンダーとしてアクリル系樹脂あるいはセルロース系樹脂
を所定量添加した導電性高分子固体電解コンデンサの製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a conductive polymer solid electrolytic capacitor, and more particularly to a method for manufacturing a conductive polymer solid electrolytic capacitor obtained by adding an acrylic resin or a cellulose resin as a binder to a semiconductor mother liquor. About.

【0002】[0002]

【従来の技術】特開昭60−206127号公報にはア
クリル樹脂をバインダーとして含有した有機半導体を固
体電解質として用い、tanδの小さい、高周波特性の
良好な固体電解コンデンサの製造方法とその技術が開示
されている。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 60-206127 discloses a method and a technique for producing a solid electrolytic capacitor having a small tan δ and good high-frequency characteristics using an organic semiconductor containing an acrylic resin as a binder as a solid electrolyte. Have been.

【0003】従来の導電性高分子固体電解コンデンサ
は、図8に示すように弁作用金属粉末に陽極リード引き
出し線2を直立させたのち加圧成形し、高真空中で焼結
したものを陽極体1とし、次に、陽極リード引出線2を
帯状金属板3に溶接し、陽極体1の表面に電気化学的に
誘電体である酸化皮膜4を形成したのち有機半導体にア
クリル樹脂を混ぜた有機半導体層7を陽極体1内部に注
入し、その後に導電体層9を形成し、コンデンサ素子を
完成させる。次に、リード端子2に接続し樹脂で外装し
てコンデンサを完成させている。
[0003] As shown in FIG. 8, a conventional conductive polymer solid electrolytic capacitor is formed by erecting an anode lead wire 2 on a valve metal powder, press-molding it, and sintering it in a high vacuum. Then, the anode lead wire 2 was welded to the strip-shaped metal plate 3 to form an oxide film 4 which is a dielectric substance on the surface of the anode body 1 and then mixed with an organic semiconductor and an acrylic resin. The organic semiconductor layer 7 is injected into the inside of the anode body 1, and thereafter, the conductor layer 9 is formed to complete the capacitor element. Next, the capacitor is completed by connecting to the lead terminal 2 and covering with a resin.

【0004】[0004]

【発明が解決しようとする課題】従来技術の有機半導体
にアクリル樹脂などのバインダーを含有させたのち陽極
体内部に有機半導体を注入して形成する場合、有機半導
体の粘度が高いため、陽極体内部の細孔部への浸透性が
悪くなり被覆率を低下させる欠点があった。また被覆率
の低下により、機械的ストレスや実装時の熱応力で導電
体層が誘電体皮膜に接触してショート不良を発生させて
いた。
When an organic semiconductor according to the prior art is formed by injecting an organic semiconductor into the anode body after adding a binder such as an acrylic resin to the organic semiconductor of the prior art, the viscosity of the organic semiconductor is high. However, there is a disadvantage that the permeability to the pores is deteriorated and the coverage is reduced. In addition, due to a decrease in the coverage, the conductor layer comes into contact with the dielectric film due to mechanical stress or thermal stress during mounting, thereby causing a short circuit failure.

【0005】本発明は、実装時の熱履歴に耐えることが
出来ることを目的とする。
[0005] It is an object of the present invention to be able to withstand heat history during mounting.

【0006】[0006]

【課題を解決するための手段】本発明の導電性高分子固
体電解コンデンサは、アクリル樹脂を溶かした重合反応
前の有機半導体母液を使用するため、有機半導体にアク
リル樹脂を混合したものより粘度を低くすることができ
る。この重合反応前の有機半導体母体に陽極体を浸漬し
たのち重合反応により、有機半導体層を形成するため、
有機半導体層の被覆率を向上できる機械的ストレスや実
装時の熱応力に耐える有機半導体層を有する。
The conductive polymer solid electrolytic capacitor of the present invention uses an organic semiconductor mother liquor before polymerization reaction in which an acrylic resin is dissolved, and therefore has a higher viscosity than that obtained by mixing an organic semiconductor with an acrylic resin. Can be lower. After the anode body is immersed in the organic semiconductor matrix before the polymerization reaction, the polymerization reaction is performed to form an organic semiconductor layer.
It has an organic semiconductor layer that can withstand mechanical stress capable of improving the coverage of the organic semiconductor layer and thermal stress during mounting.

【0007】本発明によれば、陽極体内部の細孔部に有
機半導体層を形成でき、組立時の機械的ストレス及び外
装時や実装時の熱応力による漏れ電流の増加を防ぐこと
ができ、ショート不良を低減することが出来る。
According to the present invention, an organic semiconductor layer can be formed in the pores inside the anode body, and an increase in leakage current due to mechanical stress during assembly and thermal stress during packaging or mounting can be prevented. Short defects can be reduced.

【0008】[0008]

【発明の実施の形態】次に本発明の実施の形態について
図面を参照して説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0009】図1は本発明の第1の実施の形態の製造方
法による固体電解コンデンサの断面図、図2は本発明の
第1の実施の形態の固体電解コンデンサの製造方法の工
程フローチャートである。本発明の第1の実施の形態の
固体電解コンデンサの製造方法は、図1及び図2に示す
ように、タンタル粉末にTaワイヤの陽極リード引き出
し線2を直立させ、加圧成形したのち高真空中で焼結し
たものを陽極体1とし、次に、陽極リード引き出し線2
を帯状金属板3に溶接し、陽極体1の表面に電気化学的
に誘電体層である酸化皮膜4を形成したのち、ピロール
をモノマーとする水溶液に対して1wt%の比率でアク
リル樹脂を溶かした有機半導体母液に浸漬したのち化学
的に重合反応を行いアクリル樹脂分を含む有機半導体層
5を形成した後Agペーストにより陰極層の導電体層9
を形成してコンデンサ素子を完成させる。
FIG. 1 is a sectional view of a solid electrolytic capacitor according to the manufacturing method of the first embodiment of the present invention, and FIG. 2 is a process flowchart of the method of manufacturing the solid electrolytic capacitor of the first embodiment of the present invention. . As shown in FIGS. 1 and 2, a method for manufacturing a solid electrolytic capacitor according to a first embodiment of the present invention is as follows. The anode body 1 was sintered in the anode, and then the anode lead wire 2
Is welded to the strip-shaped metal plate 3 to form an oxide film 4 as a dielectric layer on the surface of the anode body 1 electrochemically, and then an acrylic resin is dissolved at a ratio of 1 wt% to an aqueous solution containing pyrrole as a monomer. After being immersed in the organic semiconductor mother liquor, a chemical polymerization reaction is performed to form an organic semiconductor layer 5 containing an acrylic resin component.
Is formed to complete the capacitor element.

【0010】次に、リード端子を接続し樹脂で外装して
コンデンサを完成させる。
Next, the lead terminals are connected and packaged with resin to complete the capacitor.

【0011】図3にはアクリル樹脂の添加量と有機半導
体層が酸化皮膜を覆う被覆率と陽極体外部の有機半導体
層膜厚の関係を示し、図4にはアクリル樹脂の添加量と
はんだ耐熱試験による漏れ電流の関係を示す。図3及び
図4より、アクリル樹脂の添加量が0wt%では有機半
導体層の膜厚が薄いため、はんだ耐熱試験による漏れ電
流不良の発生が認められ、またアクリル樹脂の添加量が
10wt%では、有機半導体層の被覆率が悪いため、は
んだ耐熱試験による漏れ電流不良の発生が認められ、コ
ンデンサの漏れ電流特性に悪影響を及ぼすものと判断で
きる。更に、アクリル樹脂の添加量が0.1wt%から
5wt%の範囲であれば漏れ電流特性を改善できるが、
容量の出現率と有機半導体母液調合時のばらつきを考慮
するとアクリル樹脂の添加量は1.0wt%程度が望ま
しいと判断する。
FIG. 3 shows the relationship between the amount of acrylic resin added, the coverage of the organic semiconductor layer covering the oxide film, and the thickness of the organic semiconductor layer outside the anode body. FIG. 4 shows the amount of acrylic resin added and the solder heat resistance. The relationship of the leakage current by a test is shown. 3 and FIG. 4, when the addition amount of the acrylic resin is 0 wt%, the thickness of the organic semiconductor layer is thin, so that the occurrence of a leakage current defect due to the solder heat resistance test is recognized. When the addition amount of the acrylic resin is 10 wt%, Since the coverage of the organic semiconductor layer is poor, occurrence of a leakage current defect in the solder heat resistance test is recognized, and it can be determined that the leakage current characteristic of the capacitor is adversely affected. Furthermore, if the addition amount of the acrylic resin is in the range of 0.1 wt% to 5 wt%, the leakage current characteristics can be improved,
Considering the appearance rate of the capacity and the variation at the time of preparing the organic semiconductor mother liquor, it is determined that the addition amount of the acrylic resin is preferably about 1.0 wt%.

【0012】以上、説明してきた本発明による試作品
と、図8に示す従来品について、有機半導体層の被覆率
と膜厚を比較した。その結果は、図5(A)に第1の実
施の形態による有機半導体層の被覆率、図5(B)に従
来の有機半導体にアクリル樹脂を1.0wt%混ぜたの
ち陽極体に注入して有機半導体層を形成した場合の有機
半導体層の被覆率を示す。この図より第1の実施の形態
の有機半導体層の被覆率は従来品と比較して約30%被
覆率を改善できることが判明した。
The above-described prototype according to the present invention and the conventional product shown in FIG. 8 were compared in terms of the organic semiconductor layer coverage and film thickness. The results are shown in FIG. 5 (A). The coverage of the organic semiconductor layer according to the first embodiment is shown in FIG. 5 (A). FIG. 5 (B) shows a conventional organic semiconductor mixed with 1.0 wt% of acrylic resin and then injected into the anode body. 4 shows the coverage of the organic semiconductor layer when the organic semiconductor layer was formed by the method described above. From this figure, it was found that the coverage of the organic semiconductor layer of the first embodiment can be improved by about 30% as compared with the conventional product.

【0013】又、図6(A)に本発明の第1の実施の形
態による有機半導体層の膜厚、図6(B)に従来の有機
半導体にアクリル樹脂を1.0wt%混ぜたのち陽極体
に注入して有機半導体層を形成した場合の有機半導体層
の膜厚を示す。この図より第1の実施の形態の有機半導
体層の膜厚は従来品と比較して同等の膜厚が得られる。
更に、本発明による試作品と、図8に示す従来品につい
て、各々1000個を製造して、製造工程中でのショー
ト不良率と各々50個の製品を260℃のはんだに10
秒間浸漬する試験による漏れ電流値の変化を比較した。
その結果は、表1の(A)に、第1の実施の形態による
製造工程中でのショート不良率、又表1の(B)に従来
の有機半導体にアクリル樹脂を1.0wt%混ぜたのち
陽極体に注入して有機半導体層を形成した場合の製造工
程中でのショート不良率を示す。この表1より第1の実
施の形態のショート不良率は、従来品と比較して大幅に
低下することが判明した。
FIG. 6A shows the thickness of the organic semiconductor layer according to the first embodiment of the present invention, and FIG. 6B shows a conventional organic semiconductor mixed with 1.0% by weight of an acrylic resin and then an anode. This shows the thickness of the organic semiconductor layer when the organic semiconductor layer is formed by injecting it into a body. From this figure, the film thickness of the organic semiconductor layer of the first embodiment is equivalent to that of the conventional product.
Further, the prototype according to the present invention and the conventional product shown in FIG.
The change of the leakage current value by the test of immersion for 2 seconds was compared.
The results are shown in Table 1 (A), the short-circuit failure rate during the manufacturing process according to the first embodiment, and Table 1 (B), a conventional organic semiconductor mixed with 1.0 wt% of acrylic resin. The percentage of short-circuit defects during the manufacturing process when an organic semiconductor layer is formed by injecting the organic semiconductor layer into the anode body is shown below. From this Table 1, it was found that the short-circuit defect rate of the first embodiment was significantly reduced as compared with the conventional product.

【0014】[0014]

【表1】 [Table 1]

【0015】さらに、図7(A)に、第1の実施の形態
によるはんだ耐熱試験の漏れ電流値の変化、又図7の
(B)に従来の有機半導体層5にアクリル樹脂を1.0
wt%漏ぜたのち陽極体1に注入して有機半導体層5を
形成した場合のはんだ耐熱試験の漏れ電流値の変化を示
す。この図より第1の実施の形態の信頼性は、従来品と
比較して極めて漏れ電流値の変化の少ないことが判明し
た。
FIG. 7A shows a change in the leakage current value in the solder heat resistance test according to the first embodiment, and FIG. 7B shows a conventional organic semiconductor layer 5 made of acrylic resin of 1.0%.
The change of the leakage current value in the solder heat resistance test when the organic semiconductor layer 5 is formed by being injected into the anode body 1 after leaking by wt% is shown. From this figure, it was found that the reliability of the first embodiment was extremely small in the change of the leakage current value as compared with the conventional product.

【0016】以上説明してきた結果より、従来の有機半
導体層にアクリル樹脂を1.0wt%混ぜたのち陽極体
に注入したものは有機半導体層の膜厚は良いが被覆率が
悪いため漏れ電流特性が悪く、本発明の第1の実施の形
態が従来品に比べて優れていることが分かる。
From the results described above, the conventional organic semiconductor layer in which an acrylic resin was mixed at 1.0 wt% and then injected into the anode body had a good film thickness of the organic semiconductor layer but a poor coverage, so that the leakage current characteristic was poor. However, it is clear that the first embodiment of the present invention is superior to the conventional product.

【0017】本発明の他の実施の形態は第1の実施の形
態で説明したアクリル樹脂の替わりにセルロース樹脂を
用いて完成させたコンデンサ素子である。セルロース樹
脂の場合もアクリル樹脂の場合と同様の結果が得られ
る。
Another embodiment of the present invention is a capacitor element completed by using a cellulose resin in place of the acrylic resin described in the first embodiment. In the case of the cellulose resin, the same results as in the case of the acrylic resin can be obtained.

【0018】[0018]

【発明の効果】第一の効果は、有機半導体層の被覆率が
向上することである。その理由は、0.1〜5wt%の
アクリル樹脂を溶かした有機半導体母液に陽極体を浸漬
し有機半導体母液が陽極体内部の細孔部へ浸透したのち
重合反応により有機半導体層を形成するため陽極体内部
の細孔部に有機半導体層を形成でき被覆率を向上できる
からである。その結果、組立時の機械的ストレスや外装
時及び実装時の熱応力による漏れ電流の増加を防ぎ、歩
留を向上させることができる。
The first effect is that the coverage of the organic semiconductor layer is improved. The reason is that the anode body is immersed in an organic semiconductor mother liquor in which 0.1 to 5 wt% of an acrylic resin is dissolved, and the organic semiconductor mother liquor penetrates into pores inside the anode body, and then forms an organic semiconductor layer by a polymerization reaction. This is because an organic semiconductor layer can be formed in the pores inside the anode body and the coverage can be improved. As a result, it is possible to prevent an increase in leakage current due to mechanical stress at the time of assembly and thermal stress at the time of packaging and mounting, thereby improving the yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の製造方法による固
体電解コンデサの断面図である。
FIG. 1 is a cross-sectional view of a solid electrolytic capacitor manufactured by a manufacturing method according to a first embodiment of the present invention.

【図2】本発明の第1の実施の形態の固体電解コンデン
サの製造方法の工程フローチャートである。
FIG. 2 is a process flowchart of a method for manufacturing the solid electrolytic capacitor according to the first embodiment of the present invention.

【図3】アクリル樹脂の添加量と有機半導体層が酸化皮
膜を覆う被覆率と陽極体外部の有機半導体層膜厚の関係
を示す特性図である。
FIG. 3 is a characteristic diagram showing the relationship between the amount of acrylic resin added, the coverage of the organic semiconductor layer covering the oxide film, and the thickness of the organic semiconductor layer outside the anode body.

【図4】アクリル樹脂の添加量とはんだ耐熱試験による
漏れ電流の関係を示す特性図である。
FIG. 4 is a characteristic diagram showing a relationship between an added amount of an acrylic resin and a leakage current in a solder heat resistance test.

【図5】(A),(B)は本発明の第1の実施の形態及
び従来の有機半導体にアクリル樹脂を1.0wt%混ぜ
た後陽極体に注入して有機半導体層を形成した場合の有
機半導体層の被覆率の分布図である。
FIGS. 5A and 5B show a case where an organic semiconductor layer is formed by mixing an acrylic resin with an organic semiconductor of 1.0 wt% in the first embodiment of the present invention and a conventional organic semiconductor and then injecting the mixture into an anode body; FIG. 4 is a distribution diagram of the coverage of the organic semiconductor layer of FIG.

【図6】(A),(B)は本発明の第1の実施の形態及
び従来の有機半導体にアクリル樹脂を1.0wt%混ぜ
たのち陽極体に注入して有機半導体層を形成した場合の
有機半導体層の膜厚の分布図である。
FIGS. 6A and 6B show a case where an organic semiconductor layer is formed by mixing 1.0 wt% of an acrylic resin with an organic semiconductor according to the first embodiment of the present invention and a conventional organic semiconductor and then injecting the mixture into an anode body; 3 is a distribution diagram of the film thickness of the organic semiconductor layer of FIG.

【図7】(A),(B)は本発明の第1の実施の形態及
び従来の有機半導体にアクリル樹脂にを1.0%混ぜた
後陽極体に注入して有機半導体層を形成した場合のはん
だ耐熱試験の漏れ電流値の変化を示す分布図である。
FIGS. 7A and 7B show an organic semiconductor layer formed by mixing 1.0% of acrylic resin with a conventional organic semiconductor according to the first embodiment of the present invention and injecting it into an anode body; FIG. 8 is a distribution diagram showing a change in a leakage current value in a solder heat resistance test in the case.

【図8】従来の製造方法による固体電解コンデンサの断
面図である。
FIG. 8 is a sectional view of a solid electrolytic capacitor manufactured by a conventional manufacturing method.

【符号の説明】[Explanation of symbols]

1 陽極体 2 陽極リード引き出し線 3 帯状金属板 4 酸化皮膜 5 アクリル樹脂分を含む有機半導体層 6 セルロース樹脂分を含む有機半導体層 7 従来のアクリル樹脂分を含む有機半導体層 8 陽極体内部被覆状態 9 導電体層 DESCRIPTION OF SYMBOLS 1 Anode body 2 Lead wire of anode lead 3 Strip metal plate 4 Oxide film 5 Organic semiconductor layer containing acrylic resin 6 Organic semiconductor layer containing cellulose resin 7 Conventional organic semiconductor layer containing acrylic resin 8 Inside of anode body 9 Conductor layer

フロントページの続き (72)発明者 高橋 健一 富山県下新川郡入善町入膳560番地 富山 日本電気株式会社内 (72)発明者 深海 隆 富山県下新川郡入善町入膳560番地 富山 日本電気株式会社内Continuing on the front page (72) Inventor Kenichi Takahashi 560, Irizen-cho, Shimoshinkawa-gun, Toyama Prefecture Inside Toyama NEC Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 弁作用金属の微粉末に陽極リード引き出
し線を直出させ、加圧成形し、高真空中で焼結した陽極
体に順次、陽極酸化皮膜、有機半導体層及び陰極導体層
とを形成した導電性高分子固体コンデンサの製造方法に
於いて、前記半導体層の形成工程に際して半導体母液に
バインダーとしての樹脂を添加し、添加量が0.1wt
%から5wt%として化学重合反応により形成すること
を特徴とする導電性高分子固体電解コンデンサの製造方
法。
1. An anode lead wire is directly exposed to a fine powder of a valve action metal, and the anode body formed by pressing and sintering in a high vacuum is successively formed with an anodic oxide film, an organic semiconductor layer and a cathode conductor layer. In the method for producing a conductive polymer solid capacitor in which is formed, a resin as a binder is added to the semiconductor mother liquor in the step of forming the semiconductor layer, and the amount added is 0.1 wt.
A method for producing a conductive polymer solid electrolytic capacitor, characterized in that it is formed by a chemical polymerization reaction at a concentration of from 5% to 5% by weight.
【請求項2】 前記バインダーとしての樹脂がアクリル
系樹脂であることを特徴とする請求項1記載の導電性高
分子固体電解コンデンサの製造方法。
2. The method according to claim 1, wherein the resin as the binder is an acrylic resin.
【請求項3】 前記バインダーとしての樹脂がセルロー
ス系樹脂であることを特徴とする請求項1記載の導電性
高分子固体電解コンデンサの製造方法。
3. The method according to claim 1, wherein the resin as the binder is a cellulosic resin.
JP16882897A 1997-06-25 1997-06-25 Method for manufacturing conductive polymer solid electrolytic capacitor Expired - Lifetime JP3241636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16882897A JP3241636B2 (en) 1997-06-25 1997-06-25 Method for manufacturing conductive polymer solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16882897A JP3241636B2 (en) 1997-06-25 1997-06-25 Method for manufacturing conductive polymer solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH1116783A true JPH1116783A (en) 1999-01-22
JP3241636B2 JP3241636B2 (en) 2001-12-25

Family

ID=15875280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16882897A Expired - Lifetime JP3241636B2 (en) 1997-06-25 1997-06-25 Method for manufacturing conductive polymer solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3241636B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248461B2 (en) 2004-03-29 2007-07-24 Matsushita Electric Industrial Co., Ltd. Conducting polymer composite and solid electrolytic capacitor using the same
US20090154058A1 (en) * 2005-08-19 2009-06-18 Martin Biler Polymer based solid state capacitors and a method of manufacturing them
JP2012222020A (en) * 2011-04-05 2012-11-12 Murata Mfg Co Ltd Solid electrolytic capacitor and manufacturing method therefor
KR20130031580A (en) * 2011-09-21 2013-03-29 삼성전기주식회사 Solid electrolyte capacitor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4868601B2 (en) * 2007-12-05 2012-02-01 Necトーキン株式会社 Solid electrolytic capacitor and manufacturing method thereof
JP2009209259A (en) 2008-03-04 2009-09-17 Nec Tokin Corp Electroconductive polymer and solid electrolytic capacitor using it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248461B2 (en) 2004-03-29 2007-07-24 Matsushita Electric Industrial Co., Ltd. Conducting polymer composite and solid electrolytic capacitor using the same
US20090154058A1 (en) * 2005-08-19 2009-06-18 Martin Biler Polymer based solid state capacitors and a method of manufacturing them
US8264819B2 (en) * 2005-08-19 2012-09-11 Avx Corporation Polymer based solid state capacitors and a method of manufacturing them
JP2012222020A (en) * 2011-04-05 2012-11-12 Murata Mfg Co Ltd Solid electrolytic capacitor and manufacturing method therefor
KR20130031580A (en) * 2011-09-21 2013-03-29 삼성전기주식회사 Solid electrolyte capacitor

Also Published As

Publication number Publication date
JP3241636B2 (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JP4328483B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR100473098B1 (en) Solid electrolytic capacitor and method for preparing the same
KR100880482B1 (en) Solid electrolytic capacitor and method of producing the same
JPH07235455A (en) Solid electrolytic capacitor and production thereof
JP2009505413A (en) Solid capacitor and manufacturing method thereof
EP0893807A2 (en) Method of manufacturing solid electrolytic capacitor
US9048024B2 (en) Solid electrolytic capacitor and method for producing the same
EP2577695A2 (en) Method of improving electromechanical integrity of cathode coating to cathode termination interfaces in solid electrolytic capacitors
JP5062770B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH1116783A (en) Manufacture of conductive high-molecular solid-state electrolytic capacitor
JP7473537B2 (en) Solid Electrolytic Capacitors
JP2003217980A (en) Nb SOLID ELECTROLYTIC CAPACITOR AND MANUFACTURING METHOD THEREFOR
JPH08115855A (en) Lamination-type solid electrolytic capacitor
JP4748726B2 (en) Solid electrolytic capacitor
JPH08330191A (en) Solid electrolytic capacitor and its manufacture
JP4803741B2 (en) Manufacturing method of solid electrolytic capacitor
JP2850823B2 (en) Manufacturing method of chip type solid electrolytic capacitor
JP3284993B2 (en) Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
JP2000068160A (en) Ta SOLID ELECTROLYTIC CAPACITOR AND ITS MANUFACTURE
JP3391364B2 (en) Manufacturing method of tantalum solid electrolytic capacitor
JPH07106204A (en) Solid electrolytic capacitor
CN115240985A (en) Solid electrolytic capacitor and method for manufacturing solid electrolytic capacitor
JP2001284179A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2008205164A (en) Solid state electrolytic capacitor and its manufacturing method
JPH09293646A (en) Tantalum solid electrolytic capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010911

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141019

Year of fee payment: 13

EXPY Cancellation because of completion of term