JPH11156195A - Oxide catalytic material for nitrogen oxide decomposition and method for decomposing and removing nitrogen oxide - Google Patents

Oxide catalytic material for nitrogen oxide decomposition and method for decomposing and removing nitrogen oxide

Info

Publication number
JPH11156195A
JPH11156195A JP9324966A JP32496697A JPH11156195A JP H11156195 A JPH11156195 A JP H11156195A JP 9324966 A JP9324966 A JP 9324966A JP 32496697 A JP32496697 A JP 32496697A JP H11156195 A JPH11156195 A JP H11156195A
Authority
JP
Japan
Prior art keywords
oxide
exhaust gas
decomposing
catalytic material
decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9324966A
Other languages
Japanese (ja)
Inventor
Yoshihiro Yuu
喜裕 由宇
Hitoshi Matsunosako
等 松之迫
Hidemi Matsumoto
秀美 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP9324966A priority Critical patent/JPH11156195A/en
Publication of JPH11156195A publication Critical patent/JPH11156195A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a useful catalytic material which is capable of decomposing directly various kinds of exhaust gas to be exhausted from a fixed generation source and NO contained in an exhaust gas from a mobile generation source, above all, an attenuated fuel gas combustion engine (lean burn engine) by high catalytic activity, without the use of a reducing agent, even under exhaust gas conditions containing a high temperature steam at about 600 deg.C and removing the N2 and O2 obtained by decomposition as well as a method for decomposing and removing the NO with the user of the catalytic material. SOLUTION: The oxide catalytic material for nitrogen oxide decomposition is composed of an oxide of β-Ga2 O3 whose atomic ratio n (Ga/Pd) of Ga an Pd and a crystal phase is 1.0-5.0 and PdO, and 10-60 wt.% of Al2 O3 . An oxidizing exhaust gas containing NO is brought into contact with the catalytic material and thereby, the NO contained in the exhaust gas is directly decomposed as N2 and O2 without the use of a reducing agent and the N2 and O2 removed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、定置式の工場の各
種工業炉や発電所用の内燃機関、及び移動式の自動車等
内燃機関等の各種排気ガス中に含まれる窒素酸化物(N
O)を直接、窒素(N2 )と酸素(O2 )に分解するこ
とが可能な酸化物触媒材料並びにこれを用いて各種排気
ガス中のNOを還元剤を用いずに直接、N2 とO2 に分
解して除去する方法に関するもので、とりわけ排気ガス
中の炭化水素濃度が低いリーンバーンエンジン等の自動
車排気ガス浄化用として好適な窒素酸化物分解用酸化物
触媒材料並びに該酸化物触媒材料を用いて排気ガス中の
NOを直接、N2 とO2 に分解して除去する方法に関す
るものである。
The present invention relates to nitrogen oxides (N) contained in various exhaust gases from internal combustion engines for various industrial furnaces and power plants in stationary factories and internal combustion engines for mobile automobiles.
O) is an oxide catalyst material capable of directly decomposing O) into nitrogen (N 2 ) and oxygen (O 2 ), and is used to directly reduce NO in various exhaust gases to N 2 without using a reducing agent. The present invention relates to a method for decomposing and removing O 2 , particularly an oxide catalyst material for decomposing nitrogen oxides and an oxide catalyst suitable for purifying automobile exhaust gas such as lean burn engines having a low hydrocarbon concentration in exhaust gas. The present invention relates to a method for directly decomposing NO in exhaust gas into N 2 and O 2 by using a material and removing it.

【0002】[0002]

【従来の技術】従来より、定置式の前記各種工業炉や内
燃機関、及び移動式の自動車に代表される内燃機関等か
ら排出される排気ガス中に含まれるNOは、人体に悪影
響を及ぼすだけでなく、酸性雨及び光化学スモッグの原
因物質であるため、その大気中への放出は大きな環境問
題になっている。
2. Description of the Related Art Conventionally, NO contained in exhaust gas discharged from various stationary industrial furnaces and internal combustion engines, and internal combustion engines typified by mobile automobiles, has only a bad effect on the human body. In addition, since it is a causative substance of acid rain and photochemical smog, its release into the atmosphere is a major environmental problem.

【0003】そこで、前記排気ガス中に含有されるNO
の除去方法としては、かねてより主に接触還元法が用い
られており、例えば、前記工場及び発電所等のNOの固
定発生源には排気ガス中に多量の酸素を含有することか
ら、還元剤としてアンモニアを用い、バナジア(V2
5 )/チタニア(TiO2 )触媒によりNOを還元除去
している。
Therefore, the NO contained in the exhaust gas
As a method for removing NO, a catalytic reduction method has been mainly used for a long time. For example, since a fixed NO emission source such as the factory and the power plant contains a large amount of oxygen in the exhaust gas, a reducing agent is used. Using ammonia as vanadia (V 2 O
5 ) / NO is reduced and removed by a titania (TiO 2 ) catalyst.

【0004】一方、自動車等の移動発生源には、排気ガ
ス中の酸素量が少ないため、該排気ガス中に残存する未
燃の一酸化炭素(CO)及び炭化水素(Cx y )を還
元剤として用い、三元触媒によりNOを還元除去してい
る。
[0004] On the other hand, undesired carbon monoxide (CO) and hydrocarbons (C x H y ) remaining in the exhaust gas are removed from the mobile sources such as automobiles because the amount of oxygen in the exhaust gas is small. It is used as a reducing agent, and NO is reduced and removed by a three-way catalyst.

【0005】そのようなNOの還元除去方法に用いられ
る三元触媒としては、例えば、パラジウム(Pd)、白
金(Pt)、ロジウム(Rh)等の貴金属をγ−アルミ
ナ(Al2 3 )で被覆したコージェライト等の耐火性
担体に担持したものが用いられていた。
As a three-way catalyst used in such a NO reduction reduction method, for example, a noble metal such as palladium (Pd), platinum (Pt), rhodium (Rh) is converted to γ-alumina (Al 2 O 3 ). Those supported on a coated refractory carrier such as cordierite have been used.

【0006】しかしながら、前記固定発生源のNO除去
方法として用いられているアンモニアによる接触還元法
は、アンモニアが高価でかつ危険であり、その取り扱い
に十分な注意が必要であるという理由から、移動発生源
には用いることができなかった。
[0006] However, the catalytic reduction method using ammonia, which is used as a method for removing NO from the fixed generation source, involves the problem that ammonia is expensive and dangerous, and requires sufficient care in its handling. It could not be used as a source.

【0007】他方、自動車等の移動発生源においても、
現在、省エネルギ−化のために注目されている希薄燃焼
エンジン(リーンバーンエンジン)では、排気ガス中の
未燃の一酸化炭素及び炭化水素量が極端に少ないため、
NOの還元作用を示さないという問題が残されている。
[0007] On the other hand, in a mobile source such as an automobile,
At present, in lean-burn engines (lean-burn engines), which are attracting attention for energy saving, the amounts of unburned carbon monoxide and hydrocarbons in exhaust gas are extremely small.
There remains a problem of not exhibiting the reducing action of NO.

【0008】かかる問題を解決するためには還元剤を使
用せずにNOを除去することが最も簡単で理想的である
ことから、かねてより銅イオン交換ゼオライト触媒を用
いることが提案されていたが、水蒸気存在下では活性が
著しく劣化し、最も要求されている600℃前後での水
蒸気を含有する排気ガス条件下では、前記NOの分解除
去能力が低く、実用上、使用できないという欠点があっ
た。
In order to solve such a problem, since it is easiest and ideal to remove NO without using a reducing agent, it has been proposed to use a copper ion exchanged zeolite catalyst for some time. However, the activity is significantly deteriorated in the presence of water vapor, and under exhaust gas conditions containing water vapor at around 600 ° C., which is the most required, the ability to decompose and remove NO is low, and there is a drawback that it cannot be used practically. .

【0009】そこで、NOをN2 とO2 に直接分解する
他の方法として、パラジウムに金、銀を混合してAl2
3 に担持した触媒材料が提案されている(R.J.W
uet al./Applied Catalysis
B:Environmental 6(1995)参
照)。
Therefore, as another method of directly decomposing NO into N 2 and O 2 , gold and silver are mixed with palladium to form Al 2
A catalyst material supported on O 3 has been proposed (RJW).
uet al. / Applied Catalysis
B: Environmental 6 (1995)).

【0010】[0010]

【発明が解決しようとする課題】しかしながら、前記提
案では水蒸気が存在しない排気ガス条件下ではNOをN
2 とO2 に直接分解できるとされているものの、水蒸気
存在下では確認されておらず、触媒材料として実用的な
水蒸気存在下での600℃前後の温度範囲における触媒
活性が未だ不十分であるという課題があった。
However, in the above-mentioned proposal, NO is converted to N under exhaust gas conditions in which no steam is present.
Although it is said that it can be directly decomposed into 2 and O 2 , it has not been confirmed in the presence of steam, and the catalytic activity in the temperature range of about 600 ° C. in the presence of steam which is practical as a catalyst material is still insufficient. There was a problem that.

【0011】[0011]

【発明の目的】本発明は前記課題に鑑み成されたもの
で、その目的は、工場や発電所等の固定発生源から排出
される各種排気ガス、及び自動車に代表される移動発生
源、とりわけ希薄燃焼エンジン(リーンバーンエンジ
ン)の排気ガス中に含まれるNOを、600℃前後の高
温の水蒸気を含有する排気ガス条件下でも、還元剤を用
いずに高い触媒活性で直接、N2 とO2 に分解除去する
ことができる有用な触媒材料並びにそれを用いたNOの
分解除去方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above problems, and has as its object to provide various exhaust gases emitted from fixed sources such as factories and power plants, and mobile sources represented by automobiles, especially NO contained in the exhaust gas of a lean burn engine (lean burn engine) is directly converted into N 2 and O 2 with high catalytic activity without using a reducing agent even under exhaust gas conditions containing high-temperature steam around 600 ° C. It is intended to provide a useful catalyst material which can be decomposed and removed into 2, and a method for decomposing and removing NO using the same.

【0012】[0012]

【課題を解決するための手段】本発明は前記課題に鑑み
成されたもので、β−Ga2 3 とPdOの2結晶相か
ら成る酸化物に対してAl2 3 を適量添加することに
より、得られた酸化物材料は、600℃を超え800℃
に至る高温の水蒸気を含有した排気ガス条件下でもNO
の直接分解反応に高い活性を示し、特に、希薄燃焼方式
の内燃機関から放出される還元剤がほとんど存在しない
NOを含有する水蒸気を含有した排気ガス中において
も、該NOを直接N2 とO2 に効果的に分解して浄化す
ることができることを確認し、本発明に至った。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and it is an object of the present invention to add an appropriate amount of Al 2 O 3 to an oxide composed of two crystal phases of β-Ga 2 O 3 and PdO. As a result, the obtained oxide material exceeds 600 ° C. and 800 ° C.
NO even under exhaust gas conditions containing high temperature steam up to
Has a high activity in the direct decomposition reaction of NO. Particularly, even in exhaust gas containing NO and containing steam containing almost no reducing agent released from a lean burn type internal combustion engine, the NO is directly converted into N 2 and O 2. The present inventors have confirmed that they can be effectively decomposed and purified into 2 and have led to the present invention.

【0013】即ち、本発明の窒素酸化物分解用酸化物触
媒材料は、結晶相としてGaとPdの原子比n(Ga/
Pd)が1.0〜5.0であるβ−Ga2 3 とPdO
から構成される酸化物に対し、Al2 3 を10〜60
重量%添加して成ることを特徴とするものである。
That is, the oxide catalyst material for decomposing nitrogen oxides of the present invention has an atomic ratio n (Ga / Pd) of Ga and Pd as a crystal phase.
Β-Ga 2 O 3 having Pd) of 1.0 to 5.0 and PdO
To oxides composed of the Al 2 O 3 10 to 60
% By weight.

【0014】更に、本発明の窒素酸化物分解除去方法
は、β−Ga2 3 とPdOの2結晶相から構成される
酸化物であり、含有するGaとPdの原子比n(Ga/
Pd)が1.0〜5.0で、40〜90重量%の前記酸
化物に、10〜60重量%の割合のAl2 3 を添加し
て成る窒素酸化物分解用酸化物触媒材料を用い、該触媒
材料とNOを含む排気ガスを接触させ、還元剤を用いず
にNOをN2 とO2 に直接分解除去することを特徴とす
るものである。
Further, the method for decomposing and removing nitrogen oxides of the present invention is an oxide composed of two crystal phases of β-Ga 2 O 3 and PdO, and has an atomic ratio n (Ga / Pd) of Ga and Pd contained therein.
Pd) is at 1.0 to 5.0, the oxide of 40 to 90 wt%, nitrogen oxides cracking oxide catalyst material formed by adding Al 2 O 3 ratio of 10 to 60 wt% The catalyst material is brought into contact with an exhaust gas containing NO, and NO is directly decomposed and removed into N 2 and O 2 without using a reducing agent.

【0015】[0015]

【作用】本発明の窒素酸化物分解用酸化物触媒材料並び
に窒素酸化物分解除去方法によれば、触媒材料がβ−G
2 3 とPdOの2結晶相から構成される酸化物にA
2 3 を添加したものであることから、前記β−Ga
2 3 結晶相の上にNOが解離吸着し、更にPdO結晶
相によりN−O間の結合力が弱められることにより、N
Oの直接分解活性が発現すると共に、Al2 3 を共存
させることにより、β−Ga2 3 とPdOが良く分散
化されるため、NO分解の活性点が増大し、その結果、
水蒸気の吸着による阻害が抑制され、800℃に及ぶ高
温で水蒸気が共存していても高い触媒活性を示すもので
ある。
According to the oxide catalyst material for decomposing nitrogen oxides and the method for decomposing and removing nitrogen oxides of the present invention, the catalyst material is β-G
A is an oxide composed of two crystal phases of a 2 O 3 and PdO.
l 2 O 3 , the β-Ga
NO is dissociated and adsorbed on the 2 O 3 crystal phase, and the bonding force between N and O is weakened by the PdO crystal phase.
By expressing the direct decomposition activity of O and coexisting with Al 2 O 3 , β-Ga 2 O 3 and PdO are well dispersed, so that the active site of NO decomposition increases, and as a result,
Inhibition due to the adsorption of water vapor is suppressed, and high catalytic activity is exhibited even at the high temperature of 800 ° C. even when water vapor coexists.

【0016】[0016]

【発明の実施の形態】以下、本発明の窒素酸化物分解用
酸化物触媒材料並びに窒素酸化物分解除去方法について
詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The oxide catalyst material for decomposing nitrogen oxides and the method for decomposing and removing nitrogen oxides of the present invention will be described in detail below.

【0017】本発明の窒素酸化物分解用酸化物触媒材料
は、β−Ga2 3 とPdOの2つの結晶相から構成さ
れる酸化物であり、該結晶相は触媒活性の低下を防止す
るためには前記GaとPdの原子比n(Ga/Pd)が
1.0〜5.0の比率から成ることが必要であり、特に
前記触媒活性の点からは前記原子比nは2.0〜4.0
の範囲がより望ましく、とりわけ2.5〜3.5の範囲
が最も望ましい傾向を示す。
The oxide catalyst material for decomposing nitrogen oxides of the present invention is an oxide composed of two crystal phases, β-Ga 2 O 3 and PdO, and this crystal phase prevents a decrease in catalytic activity. For this purpose, it is necessary that the atomic ratio n (Ga / Pd) of Ga and Pd is in the range of 1.0 to 5.0, and particularly from the viewpoint of the catalytic activity, the atomic ratio n is 2.0. ~ 4.0
Is more desirable, and especially the range of 2.5 to 3.5 shows the most desirable tendency.

【0018】また、前記酸化物に添加するAl2 3
量が10重量%より少なく、即ち前記酸化物の量が90
重量%より多くなると、水蒸気による反応阻害効果が発
現せず、一方、Al2 3 の量が60重量%を越える
と、即ち前記酸化物の量が40重量%未満になると、触
媒活性が低下することから、Al2 3 の添加量は10
〜60重量%に限定され、特に耐水性の点からは20〜
50重量%がより好ましく、更に30〜40重量%が最
も望ましい傾向を示す。
Further, the amount of Al 2 O 3 added to the oxide is less than 10% by weight, that is, the amount of the oxide is 90%.
When the amount is more than 60% by weight, the effect of inhibiting the reaction by water vapor is not exhibited. On the other hand, when the amount of Al 2 O 3 exceeds 60% by weight, that is, when the amount of the oxide is less than 40% by weight, the catalytic activity decreases. Therefore, the addition amount of Al 2 O 3 is 10
To 60% by weight, especially from the viewpoint of water resistance.
50% by weight is more preferable, and 30 to 40% by weight shows the most desirable tendency.

【0019】従って、前記Al2 3 を添加したβ−G
2 3 とPdOの2つの結晶相で構成される酸化物か
ら成る窒素酸化物分解用酸化物を、NOを含有した還元
ガスが存在しない水蒸気を含む排気ガスと接触させる
と、該排気ガス中のNOをN2とO2 に直接分解する優
れた特性を有することが認められる。
Accordingly, β-G to which Al 2 O 3 is added
When a nitrogen oxide decomposing oxide composed of an oxide composed of two crystal phases of a 2 O 3 and PdO is brought into contact with an exhaust gas containing water vapor in which a reducing gas containing NO does not exist, the exhaust gas It is recognized that it has an excellent property of directly decomposing NO in the mixture into N 2 and O 2 .

【0020】次に、本発明の窒素酸化物分解用酸化物触
媒材料の製造方法について、その一例を以下に詳述す
る。
Next, an example of the method for producing the oxide catalyst material for decomposing nitrogen oxides of the present invention will be described in detail below.

【0021】本発明の酸化物は、Ga及びPdを含有す
る原料粉末又は水溶液を、GaとPdの原子比n(Ga
/Pd)が1.0〜5.0の範囲内となるように秤量
し、十分に撹袢混合した後、アンモニア水で中和して得
られた沈殿物を、酸化性雰囲気中、600〜800℃の
温度で5〜30時間熱処理することにより、β−Ga2
3 とPdOの2つの結晶相から構成される粉末を作製
した。
The oxide of the present invention is obtained by mixing a raw material powder or an aqueous solution containing Ga and Pd with an atomic ratio n (Ga
/ Pd) is weighed so as to be in the range of 1.0 to 5.0, and after sufficiently stirring and mixing, the precipitate obtained by neutralization with aqueous ammonia is subjected to oxidation in an oxidizing atmosphere at 600 to By performing a heat treatment at a temperature of 800 ° C. for 5 to 30 hours, β-Ga 2
A powder composed of two crystal phases of O 3 and PdO was prepared.

【0022】前記原料粉末としては、Gaの場合、例え
ば、Gaの酸化物や、熱処理により酸化物を生成するそ
の炭酸塩、硝酸塩、酢酸塩等を用いることができる。
As the raw material powder, in the case of Ga, for example, an oxide of Ga, a carbonate, a nitrate, an acetate thereof, etc. which forms an oxide by heat treatment can be used.

【0023】又、Pdの場合には、特に制限されるもの
ではないが、通常、その硝酸塩類、硫酸塩類、炭酸塩
類、塩酸、臭酸塩類(ハロゲン化物)等の無機塩類、酢
酸塩等の有機塩類、水酸化物、酸化物等が挙げられ、そ
れらPdの塩を溶液にする際の溶媒にも特に制限はない
が、通常、水あるいはアルコール、カルボニル化合物等
の有機物を用いることができる。
In the case of Pd, although not particularly limited, usually, inorganic salts such as nitrates, sulfates, carbonates, hydrochloric acid, bromates (halides), acetates and the like are used. Examples include organic salts, hydroxides, oxides, and the like. There is no particular limitation on the solvent used when the Pd salt is made into a solution, but usually water or an organic substance such as an alcohol or a carbonyl compound can be used.

【0024】また前記酸化物は、前記以外に酸化物や他
の金属塩による固相反応法や、金属アルコキシド等のゾ
ル−ゲル法等によっても合成できるものであり、何等こ
れら製造方法に限定されるものではない。
The oxide can be synthesized by a solid-phase reaction method using an oxide or another metal salt or a sol-gel method such as a metal alkoxide. Not something.

【0025】更に、前記製造方法において、いずれも熱
処理は、該熱処理温度が600℃より低いと結晶化が不
十分となり、逆に800℃を越えるとPdOが還元され
てしまうため、600〜800℃の温度で、酸化雰囲気
中、5〜30時間行うが、特に低い温度で熱処理するこ
とが粉末の比表面積を高めるために有効であり、実用的
には、比表面積が35m2 /g以上となるように設定す
ることが望ましい。
Further, in any of the above-mentioned manufacturing methods, in any of the heat treatments, if the heat treatment temperature is lower than 600 ° C., the crystallization becomes insufficient, and if the heat treatment temperature exceeds 800 ° C., PdO is reduced. The heat treatment is performed at a temperature of 5 to 30 hours in an oxidizing atmosphere. Heat treatment at a particularly low temperature is effective for increasing the specific surface area of the powder, and practically, the specific surface area is 35 m 2 / g or more. It is desirable to set as follows.

【0026】尚、本発明において、前記触媒の熱処理時
間は特に限定されるものではなく、通常、2〜10時間
で十分であり、又、該熱処理中に温度を段階的に変化さ
せても良い。
In the present invention, the heat treatment time of the catalyst is not particularly limited, and usually 2 to 10 hours is sufficient, and the temperature may be changed stepwise during the heat treatment. .

【0027】次に、前記β−Ga2 3 とPdOの2結
晶相から成る酸化物にAl2 3 を所定量添加して窒素
酸化物分解用酸化物触媒材料を作製するが、その添加方
法としては、例えばAl2 3 とβ−Ga2 3 及びP
dOから成る酸化物をボールミルや乳鉢で粉砕混合する
方法等が採用でき、均一に分散するようになれば混合方
法は何ら限定されるものではない。
Next, a predetermined amount of Al 2 O 3 is added to the oxide composed of the two crystal phases of β-Ga 2 O 3 and PdO to prepare an oxide catalyst material for decomposing nitrogen oxides. As a method, for example, Al 2 O 3 and β-Ga 2 O 3 and P
A method of pulverizing and mixing an oxide composed of dO in a ball mill or a mortar can be adopted, and the mixing method is not particularly limited as long as the oxide is uniformly dispersed.

【0028】かくして得られた触媒材料とNOを含む排
気ガスとを接触させることにより、還元剤を用いること
なくNOをN2 とO2 に直接分解することが可能とな
る。
By bringing the catalyst material thus obtained into contact with exhaust gas containing NO, NO can be directly decomposed into N 2 and O 2 without using a reducing agent.

【0029】[0029]

【実施例】次に、本発明を以下に詳述するようにして評
価した。
Next, the present invention was evaluated as described in detail below.

【0030】先ず、出発原料としてGa(NO3 2
9H2 O及びPd(NO3 2 の試薬を用い、GaとP
dの金属比が表1に示す組成となるように秤量し、これ
らの試薬を蒸留水中に溶解させ、撹拌しながらアンモニ
ア水で中和し、この時に生成した沈殿物を濾過、洗浄
し、凍結乾燥させた。
First, Ga (NO 3 ) 2.
Using 9H 2 O and Pd (NO 3 ) 2 reagents, Ga and P
The metal ratio of d was weighed so as to have the composition shown in Table 1, these reagents were dissolved in distilled water, neutralized with aqueous ammonia while stirring, and the precipitate formed at this time was filtered, washed, and frozen. Let dry.

【0031】かくして得られた乾燥粉末を大気中、70
0℃の温度で30時間、熱処理して比表面積が40〜5
0m2 /gの酸化物粉末を得た。
The dry powder thus obtained is placed in air at 70
Heat treatment at 0 ° C. for 30 hours for specific surface area of 40-5
An oxide powder of 0 m 2 / g was obtained.

【0032】次に、得られたβ−Ga2 3 とPdOか
ら成る酸化物粉末に対して、比表面積が70m2 /g以
上のAl2 3 粉末を表1に示す割合で添加混合した
後、該混合粉末を金型プレスにより成形し、更に冷間静
水圧成形法により圧縮してから該成形物を解砕して篩別
し、500μmを越え、700μm以下に整粒して評価
試料を調製した。
Next, Al 2 O 3 powder having a specific surface area of 70 m 2 / g or more was added to the obtained oxide powder composed of β-Ga 2 O 3 and PdO at a ratio shown in Table 1 and mixed. Thereafter, the mixed powder is molded by a mold press, and further compressed by a cold isostatic pressing method, and then the molded product is crushed and sieved. Was prepared.

【0033】次いで、模擬排気ガスとしてNOが300
0ppm、残部がHeから成る反応ガスを、該反応ガス
と触媒材料が接触する条件として、空間速度(SV)を
9000/hr.に設定しで前記評価用材料を充填した
触媒層に流し、600〜800℃の温度範囲で、水蒸気
を含ませない場合と10%の水蒸気を共存させた場合で
それぞれ触媒層を通過して生成したN2 ガスをガスクロ
マトグラフで測定し、触媒活性を評価した。
Next, NO as a simulated exhaust gas was 300
A space gas (SV) of 9000 / hr. Was used as a condition that a reaction gas consisting of 0 ppm and the balance of He was in contact with the catalyst material. Is passed through the catalyst layer filled with the above-mentioned evaluation material at a temperature of 600 ° C. to 800 ° C., and is generated by passing through the catalyst layer in a case where water vapor is not included and in a case where 10% water vapor coexists. The N 2 gas measured was measured by gas chromatography to evaluate the catalytic activity.

【0034】本実施例では、触媒のNO分解能は前記触
媒層出口側のN2 濃度(ppm)の2倍の値を触媒層入
口側のNO濃度(ppm)で除した百分率を、NO除去
率(%)とし、各温度でのNO除去率を求めた。
In the present embodiment, the NO resolution of the catalyst is expressed by a percentage obtained by dividing twice the value of N 2 concentration (ppm) at the catalyst layer outlet side by the NO concentration (ppm) at the catalyst layer inlet side. (%), And the NO removal rate at each temperature was determined.

【0035】以上の結果から、600〜800℃の温度
範囲で、水蒸気が存在しない条件下及び10%の水蒸気
が存在する条件下での評価に基づき、本発明による効果
を明確にするために、水蒸気が存在する条件下でのNO
分解活性の最低値が20%未満のものは不良、最低値が
20%以上で最高値が50〜52%のものを可、53〜
66%のものを良、67%以上のものを優と判定した。
From the above results, in order to clarify the effect according to the present invention, based on the evaluation under the condition where steam does not exist and the condition where 10% steam exists in the temperature range of 600 to 800 ° C., NO in the presence of water vapor
If the minimum value of the decomposition activity is less than 20%, it is defective. If the minimum value is 20% or more and the maximum value is 50 to 52%, acceptable.
66% was determined to be good, and 67% or more was determined to be excellent.

【0036】また、本発明にかかる評価用の触媒材料
は、X線回折測定(XRD)により結晶相を同定し、い
ずれもβ−Ga2 3 とPdOの2つの結晶相の存在を
確認した。
The crystal phase of the catalyst material for evaluation according to the present invention was identified by X-ray diffraction measurement (XRD), and the presence of two crystal phases, β-Ga 2 O 3 and PdO, was confirmed in each case. .

【0037】尚、β−Ga2 3 とPdOの2つの結晶
相から成る酸化物にAl2 3 を添加しないもの、及び
従来のPdにAuとAgを混合してAl2 3 に担持し
たものを比較例とした。
An oxide composed of two crystal phases of β-Ga 2 O 3 and PdO without adding Al 2 O 3 , or a conventional Pd mixed with Au and Ag and supported on Al 2 O 3 This was used as a comparative example.

【0038】[0038]

【表1】 [Table 1]

【0039】表1から明らかなように、比較例であるA
2 3 を添加しない試料番号9では水蒸気存在下では
600℃以上でのNO分解活性が低く、従来のPdにA
uとAgを混合してAl2 3 に担持した試料番号19
では、水蒸気を含まない状態でもNO除去率が600℃
でも18%と低く、最高値でも62%であり、実用上、
満足すべきものではない。
As is clear from Table 1, the comparative example A
In Sample No. 9 to which l 2 O 3 was not added, the NO decomposition activity at 600 ° C. or higher was low in the presence of water vapor,
Sample No. 19 in which u and Ag were mixed and supported on Al 2 O 3
In this case, the NO removal rate is 600 ° C even without water vapor.
However, it is as low as 18%, and the highest value is 62%.
Not satisfactory.

【0040】それに対して、本発明ではいずれも、60
0℃以上800℃という高温の雰囲気下、水蒸気が共存
していても十分なNO分解活性を示していることが確認
できた。
On the other hand, in the present invention, in each case, 60
It was confirmed that under a high temperature atmosphere of 0 ° C. or more and 800 ° C., sufficient NO decomposition activity was exhibited even in the presence of water vapor.

【0041】[0041]

【発明の効果】以上、詳述したように本発明の窒素酸化
物分解用酸化物触媒材料並びに窒素酸化物分解除去方法
によれば、該酸化物触媒材料は、GaとPdの原子比n
が1.0〜5.0の比率から成るβ−Ga2 3 とPd
Oの2つの結晶相で構成される酸化物と、10〜60重
量%のAl2 3 から成る窒素酸化物を直接分解する触
媒材料であり、該酸化物触媒材料にNOを含む還元ガス
が存在しない酸化性排気ガスを接触させることにより、
600〜800℃の高温の温度範囲でもNOをN2 とO
2 に直接分解され、水蒸気存在下でも十分なNO分解活
性能力を有していることから、工場や発電所等の固定発
生源は勿論、自動車等の移動発生源からの排気ガス中に
含まれるNOを有効に分解除去することができる。
As described above in detail, according to the oxide catalyst material for decomposing nitrogen oxide and the method for decomposing and removing nitrogen oxide of the present invention, the oxide catalyst material has an atomic ratio of Ga to Pd of n.
Β-Ga 2 O 3 and Pd having a ratio of 1.0 to 5.0
An oxide composed of two crystal phases of O and a catalyst material for directly decomposing nitrogen oxides composed of 10 to 60% by weight of Al 2 O 3 , wherein the oxide catalyst material contains a reducing gas containing NO. By contacting non-existing oxidizing exhaust gas,
NO and N 2 and O even in a high temperature range of 600 to 800 ° C.
It is directly decomposed into 2 and has sufficient NO decomposition activity even in the presence of water vapor, so it is contained in exhaust gas from mobile sources such as automobiles as well as fixed sources such as factories and power plants. NO can be effectively decomposed and removed.

【0042】その結果、省エネルギー、省資源及び地球
温暖化防止を目標として開発される今後のリーンバーン
エンジン等の各種内燃機関の排気ガスをはじめ、NOを
含有する各種有害物質の浄化に極めて有用なものとな
る。
As a result, it is extremely useful for purifying various harmful substances containing NO, including exhaust gas from various internal combustion engines such as lean burn engines which will be developed with the aim of saving energy and resources and preventing global warming. It will be.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ガリウム(Ga)とパラジウム(Pd)の
原子比n(Ga/Pd)が1.0〜5.0であるβ−G
2 3 とPdOの結晶相から成る酸化物が40〜90
重量%と、酸化アルミニウム(Al2 3 )が10〜6
0重量%とから成ることを特徴とする窒素酸化物分解用
酸化物触媒材料。
1. A β-G having an atomic ratio n (Ga / Pd) of gallium (Ga) to palladium (Pd) of 1.0 to 5.0.
oxide comprising a crystal phase of a 2 O 3 and PdO 40 to 90
% By weight and aluminum oxide (Al 2 O 3 )
An oxide catalyst material for decomposing nitrogen oxides, comprising 0% by weight.
【請求項2】ガリウム(Ga)とパラジウム(Pd)の
原子比n(Ga/Pd)が1.0〜5.0であるβ−G
2 3 とPdOの結晶相から成る酸化物が40〜90
重量%と、酸化アルミニウム(Al2 3 )が10〜6
0重量%とから成る窒素酸化物分解用酸化物触媒材料
を、窒素酸化物を含む排気ガスと接触させ、該窒素酸化
物を直接、窒素と酸素に分解することを特徴とする窒素
酸化物分解除去方法。
2. A β-G having an atomic ratio n (Ga / Pd) of gallium (Ga) to palladium (Pd) of 1.0 to 5.0.
oxide comprising a crystal phase of a 2 O 3 and PdO 40 to 90
% By weight and aluminum oxide (Al 2 O 3 )
Nitrogen oxide decomposition, characterized in that an oxide catalyst material for nitrogen oxide decomposition consisting of 0% by weight is brought into contact with an exhaust gas containing nitrogen oxide, and the nitrogen oxide is directly decomposed into nitrogen and oxygen. Removal method.
JP9324966A 1997-11-26 1997-11-26 Oxide catalytic material for nitrogen oxide decomposition and method for decomposing and removing nitrogen oxide Pending JPH11156195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9324966A JPH11156195A (en) 1997-11-26 1997-11-26 Oxide catalytic material for nitrogen oxide decomposition and method for decomposing and removing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9324966A JPH11156195A (en) 1997-11-26 1997-11-26 Oxide catalytic material for nitrogen oxide decomposition and method for decomposing and removing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH11156195A true JPH11156195A (en) 1999-06-15

Family

ID=18171622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9324966A Pending JPH11156195A (en) 1997-11-26 1997-11-26 Oxide catalytic material for nitrogen oxide decomposition and method for decomposing and removing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH11156195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041170A1 (en) * 2004-10-15 2006-04-20 Ngk Insulators, Ltd. Method for producing porous structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041170A1 (en) * 2004-10-15 2006-04-20 Ngk Insulators, Ltd. Method for producing porous structure
JPWO2006041170A1 (en) * 2004-10-15 2008-05-22 日本碍子株式会社 Method for producing porous structure
JP5098333B2 (en) * 2004-10-15 2012-12-12 日本碍子株式会社 Method for producing porous structure

Similar Documents

Publication Publication Date Title
EP0714693A1 (en) Exhaust gas cleaner and method for cleaning exhaust gas
JP2005516767A (en) Novel catalyst for reducing NO to N2 using hydrogen under NOx oxidation conditions
JP2000117106A (en) Exhaust gas cleaning catalyst for lean burn engine
JP3889467B2 (en) Nitrogen oxide removing catalyst material, nitrogen oxide treatment apparatus using the material, and nitrogen oxide removing method
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
JPH11156195A (en) Oxide catalytic material for nitrogen oxide decomposition and method for decomposing and removing nitrogen oxide
JP3417702B2 (en) Nitrogen oxide storage composition and exhaust gas purification method
JP3199562B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JPH0859236A (en) Highly heat-resistant copper-alumina double oxide and cleaning method of exhaust gas
JPH06106028A (en) Treatment of nitrous oxide containing gas
JPH11156196A (en) Oxide catalytic material for nitrogen oxide decomposition and method for decomposing and removing nitrogen oxide
JP2004074139A (en) Exhaust gas purification catalyst and purification method
JPH1190225A (en) Oxide catalytic material for removing nitrogen oxide and removing method therefor
JP3346665B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JP3686753B2 (en) Oxide catalyst material for decomposing nitrogen oxide and method for decomposing and removing nitrogen oxide
JPH0474536A (en) Catalyst for decomposing nitrogen oxide
JPH1133401A (en) Oxide catalytic material for removal of nox, and method for removing nox
JP3311370B2 (en) Exhaust purification catalyst system
JP2851769B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JP3273319B2 (en) Nitrogen oxide reduction catalyst and nitrogen oxide removal method
JPH0975733A (en) Oxide catalytic material for removal of nox and method for removing nox
JPH10296084A (en) Oxide catalytic material for removing nitrogen oxide and removing method for nitrogen oxide
JP3346653B2 (en) Oxide catalyst material for removing nitrogen oxides and method for removing nitrogen oxides
JPH06190244A (en) Decomposition treatment of nitrous oxide
JP2601018B2 (en) Exhaust gas purification catalyst