JPH11150990A - Driving method of 5-phase stepping motor - Google Patents

Driving method of 5-phase stepping motor

Info

Publication number
JPH11150990A
JPH11150990A JP33515497A JP33515497A JPH11150990A JP H11150990 A JPH11150990 A JP H11150990A JP 33515497 A JP33515497 A JP 33515497A JP 33515497 A JP33515497 A JP 33515497A JP H11150990 A JPH11150990 A JP H11150990A
Authority
JP
Japan
Prior art keywords
excitation
phase
stepping motor
address
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33515497A
Other languages
Japanese (ja)
Other versions
JP3725316B2 (en
Inventor
Jun Ando
純 安東
Tetsuya Sekine
哲也 関根
Takashi Nakade
高史 中出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MELEC CC
Original Assignee
MELEC CC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MELEC CC filed Critical MELEC CC
Priority to JP33515497A priority Critical patent/JP3725316B2/en
Publication of JPH11150990A publication Critical patent/JPH11150990A/en
Application granted granted Critical
Publication of JP3725316B2 publication Critical patent/JP3725316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Stepping Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low vibration control method of a 5-phase stepping motor which can sufficiently cope with a field that resolution is increased up to 2000 resolutions without changing circuit constitution, and reduction of damping of high precision and low vibration at the time of low speed are required. SOLUTION: In this method, starts and ends of the respective phase windings A-E of a 5-phase stepping motor 2 are connected in order, an annular winding is formed, switching means Tr(Tr1-Tr10) are individually connected with connection points P1-P5 of the phase windings A-E, a DC voltage higher than time rated voltage of the stepping motor 2 is applied to the connection points P1-P5 by controlling the switching means Tr, excitation/nonexcitation of the respective phase windings is repeated every sequence, and driving for performing constant current control is performed. Each of the fundamental angle in step driving is divided into 4 or more regions. In each divided region, excitation/ nonexcitation of the respective windings A-E is repeated. Stepping is performed every address by the combined output of excitation vectors in the respective divided regions.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は分解能を更に高めた5相
ステッピングモータの新規な低振動駆動方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a novel low-vibration driving method for a five-phase stepping motor with further improved resolution.

【0002】[0002]

【従来の技術】5相ステッピングモータの駆動方法とし
て、定電流チョッパ駆動(図2(イ)に示す励磁パターン
と非励磁パターンとを各アドレスにおいて制御指令に従
って交互に切り替える駆動方式)は、駆動回路に入力さ
れる直流電圧を直接ステッピングモータに印加するた
め、DV(直流電圧をより低い駆動電圧に変換してこれ
をステッピングモータに印加する)方式の駆動回路に比
べて印加電圧をDV電圧に変換する回路が不要な分だけ
簡素化する事が出来る。また、DV方式の場合と違って
定格以上の高電圧をステッピングモータに印加する事に
より、電流の立ち上がりが早くなり、加速特性も改善さ
れる。このようなメリットの故に定電流チョッパ駆動方
式は一般的に広く使用されている。
2. Description of the Related Art As a method of driving a five-phase stepping motor, a constant current chopper drive (a drive system in which an excitation pattern and a non-excitation pattern shown in FIG. DC voltage is directly applied to the stepping motor, so the applied voltage is converted to DV voltage compared to the DV (convert DC voltage to lower drive voltage and apply this to the stepping motor) drive circuit. It can be simplified by the unnecessary circuit. Also, unlike the case of the DV system, by applying a high voltage exceeding the rating to the stepping motor, the rise of the current is accelerated, and the acceleration characteristics are improved. Because of these advantages, the constant current chopper drive method is generally widely used.

【0003】しかしながら、加速特性が改善される反
面、ステッピングモータの定格以上の高電圧を直接印加
する事、並びに図14、15に示す非励磁パターンにお
いて(〇)印で示す未接続点の電位が不安定になりやすい
事から前のステップから次のステップに移った瞬間に非
励磁相における電流のオーバーシュートが起こり、ダン
ピングが大きくなるという問題がある。
However, while the acceleration characteristics are improved, a high voltage higher than the rating of the stepping motor is directly applied, and the potential of the non-connection point indicated by the mark (〇) in the non-excitation pattern shown in FIGS. Since it is likely to be unstable, there is a problem in that the current overshoot occurs in the non-excited phase at the moment when the process moves from the previous step to the next step, and the damping increases.

【0004】そこで、本発明者らは、特開平8−275
587号公報記載の駆動方法を提案した。この方法は、
従来回路をそのまま利用し、回路の複雑化やコストアッ
プを招く事なく、ダンピングの低減及び低速時の低振動
を可能とする駆動方法の提供を目的とするもので、『5
相ステッピングモータの各相巻線の始端及び終端とを順
次に接続して環状に結線し、これらの相巻線の接続点に
各別にスイッチング手段を接続し、前記スイッチング手
段をスイッチング制御して前記接続点にステッピングモ
ータの定格電圧より高い直流電圧を印加することにより
各相巻線の励磁・非励磁を各シーケンス毎に繰り返し行
って定電流制御を行う』と言う駆動方法であって、ステ
ッピングモータの各相巻線の非励磁時に各相巻線の接続
点すべてを前記直流電圧の正極又は負極に接続するとい
うものであり、前記問題点は解決された。
Accordingly, the present inventors have disclosed in Japanese Patent Laid-Open No. 8-275.
A driving method described in Japanese Patent No. 587 is proposed. This method
The purpose of the present invention is to provide a driving method that enables reduction of damping and low-speed vibration at low speed without using a conventional circuit as it is and without increasing the complexity and cost of the circuit.
The start and end of each phase winding of the phase stepping motor are sequentially connected to form a ring connection, switching means are individually connected to the connection points of these phase windings, and the switching means is controlled to perform switching. A constant current control is performed by applying a DC voltage higher than the rated voltage of the stepping motor to the connection point to repeatedly excite and de-energize each phase winding for each sequence. " The above problem is solved by connecting all the connection points of the respective phase windings to the positive or negative electrode of the DC voltage when the respective phase windings are not excited.

【0005】[0005]

【発明が解決しようとする課題】しかし、この方法では
その分解能は1000分解(ハーフステップ)であり、
更なる高精度のダンピングの低減及び低速時の低振動が
要求される分野では不十分であり、より一層の性能向上
が要求されていた。本発明は、前記従来例に増して厳し
い精度の要求される分野に対応できる5相ステッピング
モータの低振動制御方法を開発する事にある。
However, in this method, the resolution is 1000 resolution (half step),
It is not sufficient in the field where higher precision reduction of damping and low vibration at low speed are required, and further improvement in performance has been required. An object of the present invention is to develop a low-vibration control method for a five-phase stepping motor that can cope with a field requiring stricter accuracy than the conventional example.

【0006】[0006]

【課題を解決するための手段】請求項1に記載の駆動方
法は、 5相ステッピングモータ(2)の各相巻線(A)〜(E)をそ
の始端及び終端とを順次に接続して環状に結線し、これ
らの相巻線(A)〜(E)の接続点(P1)〜(P5)に各別にスイッ
チング手段(Tr)を接続し、前記スイッチング手段(Tr)を
スイッチング制御して前記接続点(P1)〜(P5)にステッピ
ングモータ(2)の定格電圧より高い直流電圧を印加する
ことにより各相巻線(A)〜(E)の励磁・非励磁を各シーケ
ンス毎に繰り返し行って定電流制御を行う駆動方法にお
いて、 ステップ駆動における各基本角を4以上に分割し、各
分割区分において、各相巻線(A)〜(E)の励磁・非励磁を
繰り返し、各分割区分における励磁ベクトルの合成出力
によって各アドレス毎に歩進させる事を特徴とするもの
である。その結果、歩進の分解能が向上しそれだけステ
ップ駆動時の振動が小さくなり、滑らかな回転が可能と
なる。
According to a first aspect of the present invention, there is provided a driving method comprising: connecting each phase winding (A) to (E) of a five-phase stepping motor (2) with its starting end and its end in order. Connected in a ring, switching means (Tr) is connected to each of the connection points (P1) to (P5) of these phase windings (A) to (E), and the switching means (Tr) is subjected to switching control. By applying a DC voltage higher than the rated voltage of the stepping motor (2) to the connection points (P1) to (P5), excitation / de-excitation of each phase winding (A) to (E) is repeated for each sequence. In the driving method of performing the constant current control, each basic angle in the step drive is divided into four or more, and in each divided section, excitation / de-excitation of each phase winding (A) to (E) is repeated, and each division is performed. It is characterized in that a step is advanced for each address by a combined output of the excitation vector in the section. As a result, the step resolution is improved, the vibration during step driving is correspondingly reduced, and smooth rotation is possible.

【0007】請求項2は、請求項1を限定したもので
『各分割区分における各相巻線の励磁・非励磁が4相励
磁で4回繰り返され、各分割区分における励磁ベクトル
の合成出力によって各アドレス毎に歩進させる』事を特
徴とする。これによれば、4アドレスで基本角(0.7
2°)だけ移動するとすれば、ステップ駆動の分解能を
2000に高める事ができ、従来のステップ駆動に増し
て振動が小さくなり、滑らかな回転が可能となる。
A second aspect of the present invention restricts the first aspect in that “excitation and non-excitation of each phase winding in each divided section is repeated four times by four-phase excitation, and a combined output of excitation vectors in each divided section is used. Step by step for each address. " According to this, the basic angle (0.7) is obtained at four addresses.
If it is moved by 2 °), the resolution of the step drive can be increased to 2000, the vibration is reduced as compared with the conventional step drive, and smooth rotation is possible.

【0008】請求項3は、請求項1の他の限定で『各基
本角が4つの分割区分に分割され、各分割区分における
各相巻線の励磁・非励磁が2相励磁で4回繰り返され、
各分割区分における励磁ベクトルの合成出力によって各
アドレス毎に歩進させる』事を特徴とするもので、この
場合も4アドレスで基本角(0.72°)だけ移動する
とすれば、ステップ駆動の分解能を2000迄高める事
ができ、従来のステップ駆動に増して振動が小さくな
り、滑らかな回転が可能となる。
According to another aspect of the present invention, each basic angle is divided into four divided sections, and excitation / de-excitation of each phase winding in each divided section is repeated four times by two-phase excitation. And
Stepping is performed for each address by the combined output of the excitation vector in each division section. In this case as well, if it moves by the basic angle (0.72 °) at four addresses, the resolution of the step drive Can be increased up to 2000, vibration is reduced as compared with the conventional step drive, and smooth rotation is possible.

【0009】請求項4は、非励磁時の結線方法であり、
『ステッピングモータ(2)の各相巻線(A)〜(E)の非励磁
時に各相巻線(A)〜(E)の接続点(P1)〜(P5)すべてを前記
直流電圧の正極(+)又は負極(−)に接続する』事を特
徴とする。
A fourth aspect of the present invention is a connection method at the time of non-excitation.
`` When the phase windings (A) to (E) of the stepping motor (2) are not energized, the connection points (P1) to (P5) of the phase windings (A) to (E) are all connected to the positive pole of the DC voltage. (+) Or negative electrode (-). "

【0010】このようにすれば、ステッピングモータ
(2)の各相巻線(A)〜(E)の接続点(P1)〜(P5)すべてを非
励磁時に前記直流電圧の正極(+)或いは負極(−)に接
続することになるため、非励磁時には各相巻線(A)〜(E)
の接続点(P1)〜(P5)全てを安定したほぼ同一の電位に保
つことが出来、従来、非励磁時に発生していた急激な電
位の変化を起こすことがない。
In this case, the stepping motor
Since all the connection points (P1) to (P5) of the respective phase windings (A) to (E) of (2) are connected to the positive (+) or negative (-) of the DC voltage when not energized. , Each phase winding (A) to (E) when not energized
All of the connection points (P1) to (P5) can be maintained at a stable and substantially the same potential, and a sudden change in potential which has conventionally occurred at the time of non-excitation does not occur.

【0011】即ち、図5、8のアドレス(0)の励磁時に
おいて、(E)相はその両端が正極(+)に接続されている
ために非励磁状態にある。この状態は非励磁パターンで
も同様で、非励磁状態においては、接続点(P1)〜(P5)の
全てが正極(+)に接続されている。《なお、負極(−)に
接続されている場合は図示しないが図5〜7から類推可
能である。》
That is, when the address (0) shown in FIGS. 5 and 8 is excited, the (E) phase is in a non-excited state because its both ends are connected to the positive electrode (+). This state is the same in the non-excitation pattern. In the non-excitation state, all of the connection points (P1) to (P5) are connected to the positive electrode (+). << When connected to the negative electrode (-), it is not shown, but can be inferred from FIGS. 》

【0012】従って、非励磁パターンにおいて、全接続
点(P1)〜(P5)の電位は正極(+)《或いは負極(−)》の
電位と等しくなり非常に安定している。その結果、前分
割区分から次分割区分に切り替えた場合でも各接続点(P
1)〜(P5)において急激な電位の変化が生じないため、電
流のオーバーシュートが発生したとしても非常に小さく
しかも収斂しやすくなり円滑な相電流を流すことが出
来、前記の分解能の向上と相俟ってダンピングの低減と
低速時の低振動を可能となし得る。なお、本発明の2種
類のシーケンスパターンは、3部に分かれており、第1
シーケンスパターンは図5〜7で表され、第2シーケン
スパターンは図8〜10で表される。
Therefore, in the non-excitation pattern, the potentials at all the connection points (P1) to (P5) are equal to the potentials of the positive electrode (+) << or the negative electrode (-) >>, and are very stable. As a result, even when switching from the previous division to the next division, each connection point (P
1) to (P5) does not cause a rapid change in potential, so that even if an overshoot of current occurs, a very small and easy to converge and a smooth phase current can flow, thereby improving the resolution. Together with this, it is possible to reduce the damping and reduce the vibration at low speed. The two types of sequence patterns of the present invention are divided into three parts.
The sequence pattern is represented by FIGS. 5 to 7, and the second sequence pattern is represented by FIGS.

【0013】[0013]

【実施の態様】以下、本発明方法を図面に従って説明す
る。図1は本発明方法が実施される回路構成である。こ
こで、スイッチング手段を総称する場合は(Tr)と数字を
付さずに示す事とする。相巻線(A)(B)(C)(D)(E)の接続
点も同様で(P)で総称する。本実施例に使用されるモー
タは5相ステッピングモータ(2)で、その駆動巻線は、
5相の相巻線(A)(B)(C)(D)(E)をその始端及び終端とを
順次に接続して形成されたた環状結線である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The method of the present invention will be described below with reference to the drawings. FIG. 1 shows a circuit configuration in which the method of the present invention is performed. Here, when the switching means is generically referred to, it is indicated without (Tr) and without a numeral. The connection points of the phase windings (A), (B), (C), (D), and (E) are similarly referred to as (P). The motor used in this embodiment is a five-phase stepping motor (2), and its driving winding is
This is an annular connection formed by sequentially connecting the five-phase windings (A), (B), (C), (D), and (E) to the start end and the end.

【0014】図1のスイッチング手段(Tr1)〜(Tr10)
『スイッチング手段(Tr)としては、例えばトランジスタ
やFETが使用される。』は、2個一組のスイッチング
手段(Trn-1)、(Trn)を直列に接続し、該直列に接続され
たスイッチング手段(Trn-1)、(Trn)の接続点
と環状結線の接続点(P)とが接続されており、これらを
スイッチング制御する事により、前述の環状結線の励磁
相(A)〜(E)の接続点(P1)〜(P5)を正極(+)又は負極(−)
に接続するようになっている。本実施例では10個のス
イッチング手段(Tr1)〜(Tr10)が使用されており、制御
回路(S)を構成している。
Switching means (Tr1) to (Tr10) in FIG.
“For example, a transistor or an FET is used as the switching means (Tr). "The two pair of switching means (Tr n-1), ( Tr n) connected in series, the switching means (Tr n-1) connected to the series, and a connection point of the (Tr n) The connection point (P) of the ring connection is connected, and by controlling these switching, the connection points (P1) to (P5) of the excitation phases (A) to (E) of the ring connection described above are connected to the positive electrode ( +) Or negative electrode (-)
To connect to. In this embodiment, ten switching means (Tr1) to (Tr10) are used, and constitute a control circuit (S).

【0015】制御回路(S)の出力側には小さい値のセン
ス抵抗(R)が接続され、環状結線に流れる総励磁電流(2
i0)がこれを通過する事によって、その両端にセンシン
グ電圧が発現するようになっている。このセンス電圧を
定電流制御回路(1)に入力することにより、総励磁電流
量(2i0)のフィードバック制御が可能となる。
A small value sense resistor (R) is connected to the output side of the control circuit (S), and the total exciting current (2
When i 0 ) passes through this, a sensing voltage is developed at both ends thereof. By inputting this sense voltage to the constant current control circuit (1), feedback control of the total exciting current (2i 0 ) becomes possible.

【0016】定電流制御回路(1)はROM(3)のアドレス
ライン(3a)に接続される。定電流駆動(1)は、センス抵
抗(R)に流れる電流の電圧(センス電圧)を検出し、後述
のようにROM(3)を介して制御回路(S)のスイッチング
制御を行うものである。
The constant current control circuit (1) is connected to an address line (3a) of the ROM (3). The constant current drive (1) detects a voltage (sense voltage) of a current flowing through the sense resistor (R) and performs switching control of the control circuit (S) via the ROM (3) as described later. .

【0017】ROM(3)は、制御回路(S)の各スイッチン
グ手段(Tr)のベースに接続され、スイッチング手段(Tr)
の開閉制御を行うものである。ROM(3)には5相ステ
ッピングモータ(2)を駆動するシーケンスに対応した励
磁パターンのデータと電流制御を行うための非励磁パタ
ーンのデータが格納されている。
The ROM (3) is connected to the base of each switching means (Tr) of the control circuit (S), and is connected to the switching means (Tr).
For controlling the opening and closing of. The ROM (3) stores excitation pattern data corresponding to a sequence for driving the five-phase stepping motor (2) and non-excitation pattern data for performing current control.

【0018】N進カウンタ(4)『本実施例では40進カ
ウンタである。』は、所望の分解能(勿論これに限定さ
れることはないが、本実施例では、分解能が2000分
解で、シーケンスは40周期である。)に応じたシーケ
ンス周期をROM(3)に出力するもので、カウンタ(4)は
正転(CW)でカウント・アップし、逆転(CCW)でカウ
ント・ダウンするようになっている。
N-ary counter (4) [In the present embodiment, it is a 40-ary counter. Is output to the ROM (3) according to the desired resolution (the resolution is, of course, not limited to this, but in this embodiment, the resolution is 2000 resolution and the sequence is 40 cycles). The counter (4) counts up by forward rotation (CW) and counts down by reverse rotation (CCW).

【0019】本発明方法は、電流制御を行うための非励
磁パターンとして、環状結線の励磁相(A)〜(E)の接続点
(P1)〜(P5)を全て正極(+)または負極(−)に接続するパ
ターンをROM(3)に格納している。
According to the method of the present invention, as a non-excitation pattern for performing current control, a connection point between the excitation phases (A) to (E) of the ring connection is used.
A pattern for connecting all of (P1) to (P5) to the positive electrode (+) or the negative electrode (-) is stored in the ROM (3).

【0020】ROM(3)は、カウンタ(4)の指令するシー
ケンスに対応した励磁パターンの出力と、定電流制御回
路(1)の信号出力によっての非励磁パターンの出力を各
基本角の4以上に分割された各分割区分において交互に
行うものである。本発明の要部はこの点にある。そして
この励磁パターンの出力形式は2通りあり、請求項2に
示すような4相励磁方式(図5〜7)と、請求項3に示
すような2相励磁方式(図8〜10)である。まず、4
相励磁方式を説明し、その後で2相励磁方式に付いて説
明する。
The ROM (3) stores the output of the excitation pattern corresponding to the sequence commanded by the counter (4) and the output of the non-excitation pattern based on the signal output of the constant current control circuit (1) at four or more of each basic angle. Are performed alternately in each of the divided sections. The essential part of the present invention lies in this point. There are two types of output of this excitation pattern, namely, a four-phase excitation method as shown in claim 2 (FIGS. 5 to 7) and a two-phase excitation method as shown in claim 3 (FIGS. 8 to 10). . First, 4
The phase excitation method will be described, and then the two-phase excitation method will be described.

【0021】従来例では、図2(イ)に示すように、1シ
ーケンスの一部(網掛部分)に於いて4相励磁が行わ
れ、残部は非励磁であった。換言すれば、励磁と非励磁
とが1度づつ繰り返されて、フルステップ駆動がなされ
る事になる。(図14、15の場合はハーフステップ駆
動である。)
In the prior art, as shown in FIG. 2A, four-phase excitation was performed in a part (shaded portion) of one sequence, and the rest was not excited. In other words, the excitation and the non-excitation are repeated once each, and the full step drive is performed. (In the case of FIGS. 14 and 15, half-step driving is performed.)

【0022】これに対して本発明方法では、この1基本
角を4以上(この場合は4つ)の複数に区分し、その分
割された各区分の(網掛部分)に於いて4相励磁が行わ
れ、残部は非励磁とした。非励磁時、接続点(P1)〜(P5)
は正極或いは負極に接続される。《図2(ロ)参照》 そして、各分割区分における励磁パターンの一部を順序
に従って徐々に変化させて行く事により、各アドレスに
おける合成ベクトルの方向と大きさとが、徐々に変化つ
つ4つ毎のアドレスにおいて、従来例の同じシーケンス
のベクトルと同じ方向と大きさを持つように制御してい
る。その結果、分解能が大幅に上がりステップ駆動に起
因する振動は大幅に減少する。
On the other hand, in the method of the present invention, the one basic angle is divided into a plurality of four or more (in this case, four), and four-phase excitation is performed in each of the divided sections (shaded portions). And the rest was de-energized. When not energized, connection points (P1) to (P5)
Is connected to a positive electrode or a negative electrode. << See FIG. 2 (b) >> By gradually changing the part of the excitation pattern in each divided section according to the order, the direction and magnitude of the combined vector at each address gradually change every four. Is controlled to have the same direction and magnitude as the vector of the same sequence in the conventional example. As a result, the resolution is greatly increased and the vibration caused by the step driving is greatly reduced.

【0023】なお、図中、(+)は接続点(P)が正極に接
続され、(−)は負極に接続されていることを示す。→は
相電流の方向を示す。そして、非励磁状態をつくる非励
磁パターンの出力時に全ての励磁相(A)〜(E)の接続点(P
1)〜(P5)が正極(+)《或いは負極(−)》に接続され
る。このため非励磁状態においては全ての励磁相(A)〜
(E)の接続点(P1)〜(P5)が(+)電極《或いは負極
(−)》に接続されて(+)電極《或いは負極(−)》と
同じ電位を保つ事になり(換言すれば電位が不安定にな
らず)、その結果安定した電位となり、前の分割区分か
ら次の分割区分に移った瞬間に非励磁相における電流の
オーバーシュート現象が起こるというようなことがな
く、その結果ダンピングの低減や低速回転における低振
動駆動が可能となった。
In the drawing, (+) indicates that the connection point (P) is connected to the positive electrode, and (-) indicates that it is connected to the negative electrode. → indicates the direction of the phase current. Then, at the time of outputting a non-excitation pattern for creating a non-excitation state, the connection points (P) of all the excitation phases (A) to (E) are output.
1) to (P5) are connected to the positive electrode (+) << or the negative electrode (-) >>. Therefore, in the non-excitation state, all excitation phases (A) to
The connection points (P1) to (P5) of (E) are connected to the (+) electrode << or the negative electrode (-) >>, and maintain the same potential as the (+) electrode << or the negative electrode (-) >> (in other words, The potential will not become unstable), resulting in a stable potential, and the overshoot of the current in the non-excited phase will not occur at the moment of shifting from the previous division to the next division. As a result, it has become possible to reduce the damping and to achieve low vibration driving at low speed rotation.

【0024】《実施例1》この場合は『各分割区分にお
ける各相巻線(A)〜(E)の励磁・非励磁が4相励磁で4回
繰り返され、各分割区分における励磁ベクトルの合成出
力によってロータを各アドレス毎(即ち、アドレス0→
アドレス1→アドレス2→…というように)に歩進させ
る(換言すれば、図2(イ)に示す従来例の或る1つのシ
ーケンス《図2(イ)の場合、アドレス0'》を、図2(ロ)
に示すように4つの区分に分割し、各分割区分において
励磁パターンの切替タイミングを定電流コントロール周
期に同期させた)』場合で、図3(イ)(ロ)にその低速時及
び高速時のシーケンスの一部を示し、図5〜8にそのシ
ーケンスにおける時計回り(CW)の全パターンを示
す。
<< Embodiment 1 >> In this case, "excitation and non-excitation of each phase winding (A) to (E) in each divided section is repeated four times by four-phase excitation, and the excitation vectors in each divided section are synthesized. The output is used to set the rotor for each address (that is, address 0 →
(In other words, one sequence of the conventional example shown in FIG. 2 (A) << address 0 'in the case of FIG. 2 (A) >> Fig. 2 (b)
As shown in Fig. 3, the switching timing of the excitation pattern is synchronized with the constant current control period in each of the divided sections.) A part of the sequence is shown, and FIGS. 5 to 8 show all clockwise (CW) patterns in the sequence.

【0025】図3(イ)(ロ)において、アドレス0では各分
割区分の励磁パターンは、4相励磁の場合で(ABCD)(ABC
D)(ABCD)(ABCD)となり、この合成ベクトルは従来例のア
ドレス0'《図2(イ)》の4相励磁(ABCD)と一致する。
In FIGS. 3A and 3B, at address 0, the excitation pattern of each divided section is (ABCD) (ABC
D) (ABCD) (ABCD), and this composite vector matches the four-phase excitation (ABCD) at address 0 '<< FIG.

【0026】アドレス4では各分割区分の励磁パターン
は、(BCDE)(BCDE)(BCDE)(BCDE)の4相励磁でとなり、こ
の合成ベクトルは従来例のアドレス1'《図2(イ)》の4
相励磁(BCDE)と一致する。即ち、アドレス0、4は従来
の4相励磁の位置であり、アドレス0からアドレス4迄
の移動がフルステップ(基本角=0.72°)移動とな
る。
At address 4, the excitation pattern of each divided section is a four-phase excitation of (BCDE) (BCDE) (BCDE) (BCDE), and the resultant vector is the address 1 'of the conventional example << FIG. Of 4
It matches with phase excitation (BCDE). That is, addresses 0 and 4 are the conventional four-phase excitation positions, and the movement from address 0 to address 4 is a full-step movement (basic angle = 0.72 °).

【0027】その中間であるアドレス2は、アドレス0
の励磁パターン(ABCD)が2回、アドレス4の励磁パター
ン(BCDE)が2回出力される事になるので、合成される励
磁ベクトルは《ABCDE》となり、ハーフステップの位置
にロータが移動する事になる。
Address 2 in the middle is address 0
The excitation pattern (ABCD) is output twice and the excitation pattern (BCDE) at address 4 is output twice, so the excitation vector to be synthesized is << ABCDE >> and the rotor moves to the half-step position. become.

【0028】アドレス1は、1シーケンス中にアドレス
0の励磁パターン(ABCD)が3回、アドレス4の励磁パタ
ーン(BCDE)が1回となるので、アドレス0から基本角の
1/4だけ移動した位置にロータが移動する事になる。
Since the excitation pattern (ABCD) at address 0 is three times and the excitation pattern (BCDE) at address 4 is one during one sequence, address 1 has moved from address 0 by one-fourth of the basic angle. The rotor will move to the position.

【0029】アドレス3は、1シーケンス中にアドレス
0の励磁パターン(ABCD)が3回、アドレス4の励磁パタ
ーン(BCDE)が1回となるので、アドレス0から基本角の
3/4だけ移動した位置にロータが移動する事になる。
下記に各アドレスの励磁シーケンスを構成する4つの励
磁パターンの表を表1として示す。
At address 3, since the excitation pattern (ABCD) of address 0 is three times and the excitation pattern (BCDE) of address 4 is one time during one sequence, the address 3 has moved from address 0 by 3/4 of the basic angle. The rotor will move to the position.
Table 1 below shows a table of four excitation patterns constituting the excitation sequence of each address.

【0030】[0030]

【化学式等を記載した書面】[Documents describing chemical formulas, etc.]

【表1】 [Table 1]

【0031】以上の励磁ベクトル(ABCD)から励磁ベクト
ル(BCDE)迄の4分割方法を述べたが、アドレス4以降の
他の励磁ベクトルも同様の事が適用でき、これによって
電気角1周分を40分解する事ができる。
Although the above-described four-division method from the excitation vector (ABCD) to the excitation vector (BCDE) has been described, the same can be applied to the other excitation vectors after the address 4, so that one electrical angle can be reduced. 40 can be disassembled.

【0032】低速駆動から高速駆動までの範囲でモータ
インピーダンスの変化による励磁・非励磁の割合が変わ
っても1シーケンス中の各々の励磁パターンの出力割合
はこれに応じて変化するため、各シーケンスにおいて作
られる合成ベクトルはこれに影響されない。図3(イ)は
低速駆動時で、励磁時間が短く、図3(ロ)は高速駆動時
で、励磁時間が長くなっている。
Even if the ratio of excitation and non-excitation changes due to a change in motor impedance in the range from low-speed driving to high-speed driving, the output ratio of each excitation pattern in one sequence changes accordingly. The resulting composite vector is not affected by this. FIG. 3A shows a short excitation time during low-speed driving, and FIG. 3B shows a long excitation time during high-speed driving.

【0033】その結果、4アドレスで基本角(0.72
°)だけ移動するので、ステップ駆動の分解能を200
0に高める事ができ、従来のステップ駆動に増して振動
が小さくなり、滑らかな回転が可能となる。
As a result, the basic angle (0.72) is obtained with four addresses.
°), the resolution of the step drive is 200
The vibration can be reduced to zero and smooth rotation can be achieved as compared with the conventional step drive.

【0034】《実施例2》この場合は『各シーケンスが
4つの分割区分に分割され、各分割区分における各相巻
線の励磁・非励磁が2相励磁で4回繰り返され、各分割
区分における励磁ベクトルの合成出力によって各アドレ
ス毎に歩進させる』場合で、励磁パターンが実施例1の
場合と相違する。図8〜10にそのシーケンスにおける
時計回り(CW)の全パターンを示す。
<< Embodiment 2 >> In this case, "each sequence is divided into four divided sections, and excitation / de-excitation of each phase winding in each divided section is repeated four times by two-phase excitation. Excitation pattern is different from that of the first embodiment in the case of "stepping up for each address by the combined output of the excitation vector". 8 to 10 show all clockwise (CW) patterns in the sequence.

【0035】アドレス0では各分割区分の励磁パターン
は、2相励磁の場合で(BC)(BC)と、(AD)(AD)となり、こ
の合成ベクトルは《ABCD》となり、従来例のアドレス
0'《図2(イ)》の4相励磁(ABCD)と一致する。ここで、
各相の励磁割合はA:B:C:D=2:2:2:2であ
る。
At address 0, the excitation pattern of each divided section is (BC) (BC) and (AD) (AD) in the case of two-phase excitation, and the resultant vector is << ABCD >>. 'It matches the four-phase excitation (ABCD) in << Fig. here,
The excitation ratio of each phase is A: B: C: D = 2: 2: 2: 2.

【0036】アドレス4では各分割区分の励磁パターン
は、(BE)(BE)と、(CD)(CD)を1:1で出力するためこの
合成ベクトルは《BCDE》となり、従来例のアドレス1'
《図2(イ)》の4相励磁(BCDE)と一致する。ここで、各
相の励磁割合はA:B:C:D=2:2:2:2であ
る。この場合もアドレス0、4は従来の4相励磁の位置
であり、アドレス0からアドレス4迄の移動がフルステ
ップ(基本角=0.72°)移動となる。
At address 4, the excitation pattern of each division section outputs (BE) (BE) and (CD) (CD) at a ratio of 1: 1, so that the composite vector is << BCDE >>. '
This coincides with the four-phase excitation (BCDE) shown in FIG. Here, the excitation ratio of each phase is A: B: C: D = 2: 2: 2: 2. Also in this case, addresses 0 and 4 are the positions of the conventional four-phase excitation, and the movement from address 0 to address 4 is a full-step movement (basic angle = 0.72 °).

【0037】その中間であるアドレス2は、励磁パター
ン(BC)、(AD)、(CD)、(BE)を1:1:1:1の割合で出
力する事になるので、各相の励磁割合はA:B:C:D
=1:2:2:1である。合成される励磁ベクトルは
《ABCDE》となり、アドレス0と4の中間のハーフステ
ップの位置にロータが移動する事になる。
The intermediate address 2 outputs the excitation patterns (BC), (AD), (CD), and (BE) at a ratio of 1: 1: 1: 1. The ratio is A: B: C: D
= 1: 2: 2: 1. The resultant excitation vector is << ABCDE >>, and the rotor moves to a half-step position between addresses 0 and 4.

【0038】アドレス1は、励磁パターン(BC)、(AD)、
(BC)、(CD)を1:1:1:1の割合で出力する事になる
ので、各相の励磁割合はA:B:C:D=1:2:3:
2である。アドレス0の励磁ベクトル《ABCD》に対して
電気角で約9.7°進んだ位置となる。2000分解の
1ステップの電気角は9°であり、これに対して10%
以下のずれとなるが、実用上は問題とならない。図4の
(θ1)がベクトル《ABCD》に対して移動角が約9.7°の
場合を示し、(θ2)がベクトル《BCDE》に対して移動角
が約9.7°の場合を示す。
Address 1 is the excitation pattern (BC), (AD),
Since (BC) and (CD) are output at a ratio of 1: 1: 1: 1, the excitation ratio of each phase is A: B: C: D = 1: 2: 3:
2. It is a position advanced by about 9.7 degrees in electrical angle with respect to the excitation vector << ABCD >> at address 0. The electrical angle of one step of 2000 resolution is 9 °, which is 10%
Although the following shifts occur, there is no practical problem. In FIG.
(θ1) indicates a case where the moving angle is about 9.7 ° with respect to the vector << ABCD >>, and (θ2) indicates a case where the moving angle is about 9.7 ° with respect to the vector << BCDE >>.

【0039】アドレス3は、励磁パターン(BC)、(CD)、
(BE)、(CD)を1:1:1:1の割合で出力する事になる
ので、各相の励磁割合はB:C:D:E=2:3:2:
1である。アドレス4の励磁ベクトル《ABCD》に対して
電気角で約9.7°遅れた位置となる。2000分解の
1ステップの電気角は9°であり、これに対して10%
以下のずれとなるが、実用上は問題とならない。下記に
各アドレスの励磁シーケンスを構成する4つの励磁パタ
ーンの表を表2として示す。
Address 3 is the excitation pattern (BC), (CD),
Since (BE) and (CD) are output at a ratio of 1: 1: 1: 1, the excitation ratio of each phase is B: C: D: E = 2: 3: 2:
It is one. The position is delayed by about 9.7 degrees in electrical angle with respect to the excitation vector << ABCD >> at address 4. The electrical angle of one step of 2000 resolution is 9 °, which is 10%
Although the following shifts occur, there is no practical problem. Table 2 below shows a table of four excitation patterns constituting the excitation sequence of each address.

【0040】[0040]

【化学式等を記載した書面】[Documents describing chemical formulas, etc.]

【表2】 [Table 2]

【0041】以上の実施例2における励磁ベクトル(ABC
D)から励磁ベクトル(BCDE)迄の4分割方法を述べたが、
アドレス4以降の他の励磁ベクトルも同様の事が適用で
き、これによって電気角1周分を40分解する事ができ
る。
The excitation vector (ABC
The method of dividing into four from D) to the excitation vector (BCDE) was described.
The same can be applied to the other excitation vectors after the address 4, whereby one electric angle rotation can be resolved into 40.

【0042】図11は従来例の振動実験データを示し、
図12は図5〜7の本発明方法1の励磁パターンによっ
て得た振動実験データであり、図13は図8〜10の本
発明方法2の励磁パターンによって得た振動実験データ
である。図において横軸が時間、縦軸が速度である。図
11〜13によれば、従来例のデータに比べて本発明の
データではステップ駆動時の振動が抑制されている事が
よくわかる。
FIG. 11 shows vibration test data of a conventional example.
FIG. 12 shows vibration test data obtained by the excitation pattern of the method 1 of the present invention shown in FIGS. 5 to 7, and FIG. 13 shows vibration test data obtained by the excitation pattern of the method 2 of the present invention shown in FIGS. In the figure, the horizontal axis is time, and the vertical axis is speed. According to FIGS. 11 to 13, it can be clearly understood that the data of the present invention suppresses the vibration during the step driving as compared with the data of the conventional example.

【0043】[0043]

【発明の効果】以上述べたように、本発明駆動方式によ
れば、回路構成を変更する事なく分解能を高める事がで
きたので、前記効果に加えて更なる低振動を実現し得
た。これに加えて、非励磁時の各相巻線の全ての接続点
が正極又は負極に接続され、非励磁時に安定したほぼ同
一の電位に保つことが出来るため、前ステップから次ス
テップに切り替えた場合でも各接続点において急激な電
位が十分に抑制され、たとえ電流のオーバーシュートが
発生したとしても非常に小さくしかも収斂しやすくなり
円滑な相電流を流すことが出来、ダンピングの低減と低
速時の低振動を可能となし得た。また、回路構成も従来
と全く同一であるためコストアップとならないという利
点もある。
As described above, according to the driving method of the present invention, the resolution can be increased without changing the circuit configuration, so that further low vibration can be realized in addition to the above-mentioned effects. In addition to this, all connection points of each phase winding at the time of non-excitation are connected to the positive electrode or the negative electrode, and can be maintained at almost the same potential which is stable at the time of non-excitation. Even in this case, a sharp potential is sufficiently suppressed at each connection point, and even if an overshoot of the current occurs, it is very small and easily converges, so that a smooth phase current can be flown. Low vibration could be achieved. Also, there is an advantage that the cost is not increased because the circuit configuration is completely the same as the conventional one.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法が適用される5相ステッピングモー
タの回路構成図
FIG. 1 is a circuit configuration diagram of a five-phase stepping motor to which the method of the present invention is applied.

【図2】従来例と本発明方法の励磁パターンと非励磁パ
ターンの組み合わせ並びに相電流の方向との関係を示す
シーケンス比較図
FIG. 2 is a sequence comparison diagram showing a combination of an excitation pattern and a non-excitation pattern of the conventional example and the method of the present invention, and a relationship with a direction of a phase current.

【図3】本発明方法における低速駆動時と高速駆動時の
励磁パターンと非励磁パターンの組み合わせの変化を示
すシーケンス図
FIG. 3 is a sequence diagram showing a change in a combination of an excitation pattern and a non-excitation pattern during low-speed driving and high-speed driving in the method of the present invention.

【図4】本発明方法における合成ベクトル図FIG. 4 is a composite vector diagram in the method of the present invention.

【図5】本発明の実施例1における励磁パターンのCW
方向の全シーケンスの内の前段を示す図面
FIG. 5 is a diagram illustrating a CW of an excitation pattern according to the first embodiment of the present invention.
Drawing showing the front of the entire sequence of directions

【図6】本発明の実施例1における励磁パターンのCW
方向の全シーケンスの内の中段を示す図面
FIG. 6 shows a CW of an excitation pattern according to the first embodiment of the present invention.
Drawing showing the middle of the entire sequence of directions

【図7】本発明の実施例1における励磁パターンのCW
方向の全シーケンスの内の後段を示す図面
FIG. 7 is a diagram illustrating a CW of an excitation pattern according to the first embodiment of the present invention.
Drawing showing the last part of the whole sequence of directions

【図8】本発明の実施例2における励磁パターンのCW
方向の全シーケンスの内の前段を示す図面
FIG. 8 shows a CW of an excitation pattern according to the second embodiment of the present invention.
Drawing showing the front of the entire sequence of directions

【図9】本発明の実施例2における励磁パターンのCW
方向の全シーケンスの内の中段を示す図面
FIG. 9 shows a CW of an excitation pattern according to the second embodiment of the present invention.
Drawing showing the middle of the entire sequence of directions

【図10】本発明の実施例2における励磁パターンのC
W方向の全シーケンスの内の後段を示す図面
FIG. 10 shows C of the excitation pattern in Embodiment 2 of the present invention.
Drawing showing the latter part of the whole sequence in the W direction

【図11】従来例(1000分解)の振動試験の結果を
表すグラフ
FIG. 11 is a graph showing a result of a vibration test of a conventional example (1000 decomposition).

【図12】本発明方法(2000分解)の実施例1の振
動試験の結果を表すグラフ
FIG. 12 is a graph showing the results of a vibration test of Example 1 of the method of the present invention (2000 decomposition).

【図13】本発明方法(2000分解)の実施例2の振
動試験の結果を表すグラフ
FIG. 13 is a graph showing the results of a vibration test of Example 2 of the method of the present invention (2000 decomposition).

【図14】従来例の励磁パターン表すシーケンス図FIG. 14 is a sequence diagram showing an excitation pattern of a conventional example.

【図15】他の従来例の励磁パターン表すシーケンス図FIG. 15 is a sequence diagram showing an excitation pattern of another conventional example.

【符号の説明】[Explanation of symbols]

(A)(B)(C)(D)(E)…5相ステッピングモータの各相巻線 (P1)〜(P5)…各相巻線の接続点 (Tr)…スイッチング手段 (+)…正極 (−)…負極 (2)…5相ステッピングモータ (A) (B) (C) (D) (E) ... each phase winding of the 5-phase stepping motor (P1) to (P5) ... connection point of each phase winding (Tr) ... switching means (+) ... Positive (-): Negative (2): 5-phase stepping motor

【手続補正書】[Procedure amendment]

【提出日】平成10年10月16日[Submission date] October 16, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0037[Correction target item name] 0037

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0037】その中間であるアドレス2は、励磁パター
ン(BC)、(AD)、(CD)、(BE)を1:1:
1:1の割合で出力する事になるので、各相の励磁割合
はA:B:C:D:E=1:2:2:2:1である。合
成される励磁ベクトルは《ABCDE》となり、アドレ
ス0と4の中間のハーフステップの位置にロータが移動
することになる。
The address 2 in the middle is obtained by setting the excitation patterns (BC), (AD), (CD), and (BE) at 1: 1:
Since the output is performed at a ratio of 1: 1, the excitation ratio of each phase is A: B: C: D : E = 1: 2: 2 : 2 : 1. The resultant excitation vector is << ABCDE >>, and the rotor moves to the half-step position between addresses 0 and 4.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0039[Correction target item name] 0039

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0039】アドレス3は、励磁パターン(BC)、
(CD)、(BE)、(CD)を1:1:1:1の割合
で出力する事になるので、各相の励磁割合はB:C:
D:E=2:3:2:1である。アドレス4の励磁ベク
トル《BCD》に対して電気角で約9.7°遅れた位
置となる。2000分解の1ステップの電気角は9°で
あり、これに対して10%以下のずれとなるが、実用上
は問題とならない。下記に各アドレスの励磁シーケンス
を構成する4つの励磁パターンの表を表2として示す。
Address 3 is an excitation pattern (BC),
Since (CD), (BE), and (CD) are output at a ratio of 1: 1: 1: 1, the excitation ratio of each phase is B: C:
D: E = 2: 3: 2: 1. The position is delayed by about 9.7 degrees in electrical angle with respect to the excitation vector << BCD E >> at address 4. The electrical angle in one step of 2000 resolution is 9 °, which is less than 10%, but does not pose a problem in practical use. Table 2 below shows a table of four excitation patterns constituting the excitation sequence of each address.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 FIG. 2

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 FIG. 3

【手続補正5】[Procedure amendment 5]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図7[Correction target item name] Fig. 7

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図7】 FIG. 7

【手続補正6】[Procedure amendment 6]

【補正対象書類名】図面[Document name to be amended] Drawing

【補正対象項目名】図10[Correction target item name] FIG.

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図10】 FIG. 10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 5相ステッピングモータの各相巻
線の始端及び終端とを順次に接続して環状に結線し、こ
れらの相巻線の接続点に各別にスイッチング手段を接続
し、前記スイッチング手段をスイッチング制御して前記
接続点にステッピングモータの定格電圧より高い直流電
圧を印加することにより各相巻線の励磁・非励磁を繰り
返し行って定電流制御を行う5相ステッピングモータの
駆動方法において、 ステップ駆動における各基本角を4以上に分割し、各分
割区分において、各相巻線の励磁・非励磁を繰り返し、
各分割区分における励磁ベクトルの合成出力によって各
アドレス毎に歩進させる事を特徴とする5相ステッピン
グモータの駆動方法。
1. A five-phase stepping motor in which a starting point and an end point of each phase winding are sequentially connected to form a ring connection, and a switching means is connected to a connection point of each of the phase windings. In the method of driving a five-phase stepping motor, the switching control is performed to apply a DC voltage higher than the rated voltage of the stepping motor to the connection point to repeatedly excite and de-energize each phase winding to perform constant current control. Each basic angle in the step drive is divided into four or more, and excitation / de-excitation of each phase winding is repeated in each division section,
A method of driving a five-phase stepping motor, characterized in that a step is advanced for each address by a combined output of an excitation vector in each divided section.
【請求項2】 各分割区分における各相巻線の励
磁・非励磁が4相励磁で4回繰り返され、各分割区分に
おける励磁ベクトルの合成出力によって各アドレス毎に
歩進させる事を特徴とする請求項1に記載の5相ステッ
ピングモータの駆動方法。
2. The method according to claim 1, wherein excitation and non-excitation of each phase winding in each divided section are repeated four times by four-phase excitation, and stepwise is performed for each address by a combined output of an excitation vector in each divided section. A method for driving a five-phase stepping motor according to claim 1.
【請求項3】 各基本角が4つの分割区分に分割
され、各分割区分における各相巻線の励磁・非励磁が2
相励磁で4回繰り返され、各分割区分における励磁ベク
トルの合成出力によって各アドレス毎に歩進させる事を
特徴とする請求項1に記載の5相ステッピングモータの
駆動方法。
3. Each basic angle is divided into four divided sections, and excitation / de-excitation of each phase winding in each divided section is 2
2. The driving method for a five-phase stepping motor according to claim 1, wherein the step is repeated four times in the phase excitation, and the step is advanced for each address by a combined output of the excitation vector in each divided section.
【請求項4】 ステッピングモータの各相巻線の
非励磁時に各相巻線の接続点の全てを前記直流電圧の正
極又は負極に接続する事を特徴とする請求項1〜3のい
ずれかに記載の5相ステッピングモータの駆動方法。
4. The stepping motor according to claim 1, wherein all of the connection points of the phase windings are connected to the positive or negative pole of the DC voltage when the phase windings of the stepping motor are not excited. A driving method of the five-phase stepping motor according to the above.
JP33515497A 1997-11-18 1997-11-18 Driving method of 5-phase stepping motor Expired - Fee Related JP3725316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33515497A JP3725316B2 (en) 1997-11-18 1997-11-18 Driving method of 5-phase stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33515497A JP3725316B2 (en) 1997-11-18 1997-11-18 Driving method of 5-phase stepping motor

Publications (2)

Publication Number Publication Date
JPH11150990A true JPH11150990A (en) 1999-06-02
JP3725316B2 JP3725316B2 (en) 2005-12-07

Family

ID=18285381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33515497A Expired - Fee Related JP3725316B2 (en) 1997-11-18 1997-11-18 Driving method of 5-phase stepping motor

Country Status (1)

Country Link
JP (1) JP3725316B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131471A (en) * 2015-01-15 2016-07-21 株式会社メレック Driving device for stepping motor and driving method of stepping motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016131471A (en) * 2015-01-15 2016-07-21 株式会社メレック Driving device for stepping motor and driving method of stepping motor

Also Published As

Publication number Publication date
JP3725316B2 (en) 2005-12-07

Similar Documents

Publication Publication Date Title
JPS5869499A (en) Exciting system for step motor
JPH11150990A (en) Driving method of 5-phase stepping motor
JP2004023991A (en) Driving method of 5-phase stepping motor
JPS60226797A (en) Driving method of 5-phase stepping motor
JP2008278643A (en) Stepping motor driving device
JPH06343294A (en) Drive controller of stepping motor
JP3433860B2 (en) Driving method of 5-phase stepping motor
JP3365089B2 (en) Driving device for stepping motor
JP3162862B2 (en) Complementary sequence driving method for stepping motor
JP5327666B2 (en) Stepping motor driving apparatus and stepping motor driving method
JPS63174592A (en) Current controller for motor
JP3120082B2 (en) Drive device for N-phase stepping motor
JP4178058B2 (en) Stepping motor microstep method and stepping motor
JPH06165594A (en) Step motor driver
JPS5950797A (en) Drive circuit for pulse motor
JP3129500B2 (en) Driving method of N-phase pulse motor
JP2577282B2 (en) Complementary excitation drive method for N-phase pulse motor
JPH07236300A (en) Method for driving multiphase stepping motor
JP3062303B2 (en) Driving method of 5-phase pulse motor
JP6425305B2 (en) Driving device for stepping motor and driving method of stepping motor
JPH05207793A (en) Half step driving method through (n-1) phase excitation for n-phase pulse motor
JPH0698597A (en) Driving apparatus for stepping motor
JPS5831837B2 (en) stepping motor drive device
JPH05252796A (en) Stepping motor drive controller
JPH11146696A (en) Drive motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080930

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090930

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100930

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110930

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120930

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130930

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees