JPH11150042A - Polarizable electrode with current collecting body - Google Patents

Polarizable electrode with current collecting body

Info

Publication number
JPH11150042A
JPH11150042A JP9315047A JP31504797A JPH11150042A JP H11150042 A JPH11150042 A JP H11150042A JP 9315047 A JP9315047 A JP 9315047A JP 31504797 A JP31504797 A JP 31504797A JP H11150042 A JPH11150042 A JP H11150042A
Authority
JP
Japan
Prior art keywords
electrode
activated carbon
activated
carbon
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9315047A
Other languages
Japanese (ja)
Inventor
Haruhiko Handa
晴彦 半田
Susumu Nomoto
進 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9315047A priority Critical patent/JPH11150042A/en
Publication of JPH11150042A publication Critical patent/JPH11150042A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve volume capacitance of a polarizable electrode and, at the same time, service life characteristic of the electrode, by covering an activated-carbon molded electrode body composed of activated carbon, a conducting agent, and a binder with a current collecting body having a specific numerical aperture. SOLUTION: A polarizable electrode is manufactured by covering an activated-carbon molded electrode body formed by molding a mixture of activated carbon, a conducting agent, and a binder with a current collecting body. At the time of preparing the mixture, the activated carbon and the conducting agent are mixed in dry state and, thereafter, a solvent for the binder is added to the mixture to be mixed well. When a numerical aperture of the current collecting body covering the molded electrode body becomes large, the area of the current collecting body covering the electrode becomes small and the contacting area of the activated carbon with an electrolytic solution becomes large. As a result, the resistance of the electrode becomes small, but the activated-carbon is apt to come off the electrode material. When the numerical aperture becomes small, on the contrary, the activated-carbon hardly comes off the electrode material, but the resistance of the electrode becomes large. By taking the above- mentioned facts into consideration, the numerical aperture is adjusted to 70-95%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、分極性電極と電
解質との界面に生じる電気二重層を利用した電気二重層
キャパシタに用いられる分極性電極に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polarizable electrode used for an electric double layer capacitor using an electric double layer generated at an interface between a polarizable electrode and an electrolyte.

【0002】[0002]

【従来の技術】現在、電気二重層キャパシタは、マイク
ロコンピュータ、メモリ、タイマー等のバックアップ用
電源に用いられている。従来のこの種電気二重層キャパ
シタの構成を以下に説明する。集電体には、厚さ20〜
50μmのアルミエッチド箔が用いられる。また、分極
性電極は、活性炭粉末に結合剤のセルロース誘導体及び
導電剤のアセチレンブラックを混合した混合粉末が用い
られる。そして、この混合粉末を、以下のようにスラリ
ー状に調整し、ディップ法により集電体上に分極性電極
を製膜する。混合粉末は、例えば粒径5μmのフェノー
ル樹脂系の活性炭粉末、カルボキシメチルセルロースの
アンモニウム塩及びアセチレンブラックを10:1.
2:2の重量比で混合したものを用いる。この混合粉末
に対して重量比で約3倍量のメタノールと約5倍量の水
とを加えてスラリー状の混合液を調整する。そして、例
えば厚さ20μmのアルミエッチド箔からなる集電体を
混合液に所定の時間浸して、集電体上に分極性電極を製
膜する。その後、室温で乾燥し、所定の大きさに切断し
て電極体を得る。続いて、集電体にリードを取り付け、
2つの電極体がセパレータを介して対向するように捲回
し、これに電解液を含浸した後、円筒形のアルミニウム
ケースに挿入し、パッキンを用いてケースの開口部を封
口する。従来の電気二重層キャパシタは、以上のように
製造され、形状は円筒形になる。電極厚、アルミニウム
集電体の形状、捲回数を制御することにより、所望の電
気容量を得ることができる。
2. Description of the Related Art At present, electric double layer capacitors are used as backup power supplies for microcomputers, memories, timers and the like. The configuration of this type of conventional electric double layer capacitor will be described below. The current collector has a thickness of 20 to
An aluminum etched foil of 50 μm is used. For the polarizable electrode, a mixed powder of activated carbon powder mixed with a cellulose derivative as a binder and acetylene black as a conductive agent is used. Then, the mixed powder is adjusted to a slurry state as described below, and a polarizable electrode is formed on the current collector by a dipping method. The mixed powder is, for example, a phenol resin-based activated carbon powder having a particle size of 5 μm, an ammonium salt of carboxymethyl cellulose and acetylene black in a ratio of 10: 1.
What was mixed by the weight ratio of 2: 2 is used. About 3 times by weight of methanol and about 5 times by weight of water are added to this mixed powder to prepare a slurry-like mixed solution. Then, a current collector made of, for example, an aluminum-etched foil having a thickness of 20 μm is immersed in the mixed solution for a predetermined time to form a polarizable electrode on the current collector. Then, it is dried at room temperature and cut into a predetermined size to obtain an electrode body. Next, attach the lead to the current collector,
The two electrode bodies are wound so as to face each other with a separator interposed therebetween, and impregnated with an electrolytic solution, inserted into a cylindrical aluminum case, and the opening of the case is sealed with packing. The conventional electric double layer capacitor is manufactured as described above, and has a cylindrical shape. A desired electric capacity can be obtained by controlling the electrode thickness, the shape of the aluminum current collector, and the number of turns.

【0003】[0003]

【発明が解決しようとする課題】上記従来の構成で、大
容量の大型キャパシタを作製しようとすると、電極の捲
回数を多くする必要がある。ところで、キャパシタの電
気容量は電極中の活性炭と電解液界面に発現する電気二
重層によるため、電気容量を大きくするには電極中に占
める活性炭の体積分率を高くし、活性炭/電解液界面の
接触面積を大きくする必要がある。これには、電極厚を
厚くすることにより集電体、セパレータを少なくして、
活性炭の体積分率を高くすることが有効である。しか
し、電極厚を厚くした場合、充放電を繰り返すと電極が
集電体から剥離してしまい、寿命特性が悪くなるという
問題があった。
In order to manufacture a large-capacity large-capacitance capacitor with the above-mentioned conventional configuration, it is necessary to increase the number of turns of the electrode. By the way, since the electric capacity of the capacitor depends on the activated carbon in the electrode and the electric double layer appearing at the electrolyte interface, to increase the electric capacity, increase the volume fraction of the activated carbon in the electrode and increase the It is necessary to increase the contact area. For this, the current collector and separator are reduced by increasing the electrode thickness,
It is effective to increase the volume fraction of activated carbon. However, when the electrode thickness is increased, there is a problem that the electrode is separated from the current collector when charging and discharging are repeated, and the life characteristics are deteriorated.

【0004】[0004]

【課題を解決するための手段】本発明は、活性炭と導電
剤と結合剤から構成される活性炭電極成形体を開口率7
0〜95%の集電体で被覆した集電体付き分極性電極を
提供する。ここに、前記集電体としては、タンタル、ア
ルミニウム、およびチタンからなる群より選択される少
なくとも1種の金属からなる多孔体が好ましい。上記の
構成によれば、活性炭電極成形体中の活性炭の体積分率
が上がることによりキャパシタの体積容量が向上すると
ともに、電極を集電体で覆っているため繰り返し充放電
を行っても電極成形体の剥離がなく、寿命特性に優れた
キャパシタを提供することができる。
SUMMARY OF THE INVENTION The present invention relates to an activated carbon electrode formed from activated carbon, a conductive agent and a binder.
A polarizable electrode with a current collector coated with 0 to 95% of the current collector is provided. Here, the current collector is preferably a porous body made of at least one metal selected from the group consisting of tantalum, aluminum, and titanium. According to the above configuration, the volume fraction of the activated carbon in the activated carbon electrode molded body is increased, so that the volume capacity of the capacitor is improved. In addition, since the electrode is covered with the current collector, the electrode can be formed even if charge and discharge are performed repeatedly. It is possible to provide a capacitor which does not peel off the body and has excellent life characteristics.

【0005】[0005]

【発明の実施の形態】本発明の分極性電極は、活性炭と
導電剤と結合剤を混合する工程、得られた混合物を成形
する工程、および前記工程により作製した活性炭電極成
形体を集電体で覆う工程によって製造することができ
る。前記活性炭と導電剤と結合剤を混合する工程は、各
粉末を乾式で混合した後、前記結合剤の溶媒を添加して
混合することが好ましい。活性炭電極成形体を被覆する
集電体の開口率は、大きくなると電極を被覆する集電体
の面積が小さくなり、電解液と接触する活性炭の面積が
大きくなる。その結果、抵抗は小さくなるが、活性炭電
極材料が剥離しやすくなる。逆に、開口率が小さいと、
電極材料は剥離しにくくなるが、抵抗が大きくなる。こ
の両者の兼ね合いから、集電体の開口率は70〜95%
が適当である。
BEST MODE FOR CARRYING OUT THE INVENTION The polarizable electrode of the present invention comprises a step of mixing activated carbon, a conductive agent and a binder, a step of forming the resulting mixture, and a step of forming the activated carbon electrode molded body produced by the above-mentioned step into a current collector. It can be manufactured by the step of covering with. In the step of mixing the activated carbon, the conductive agent, and the binder, it is preferable that the powder is mixed in a dry manner, and then the solvent of the binder is added and mixed. As the aperture ratio of the current collector covering the activated carbon electrode compact increases, the area of the current collector covering the electrode decreases, and the area of the activated carbon in contact with the electrolyte increases. As a result, the resistance is reduced, but the activated carbon electrode material is easily peeled. Conversely, if the aperture ratio is small,
Although the electrode material is less likely to peel, the resistance increases. From the balance between the two, the aperture ratio of the current collector is 70 to 95%.
Is appropriate.

【0006】[0006]

【実施例】以下本発明の実施例を説明する。 《実施例1》粒径5μmのフェノール樹脂系の活性炭粉
末、カルボキシメチルセルロースのアンモニウム塩、ア
セチレンブラックおよび水を10:1.2:2:20の
重量比に秤量し、これらを混練して粘土状混練物を作製
した。この混練物をローラで引き伸ばして、厚さ1mm
のシートを作製した。このシートを大きさ100mm×
150mmに切断した。こうして得た活性炭シートを開
口率が75%のアルミニウムのラス網で被覆した。これ
を2×107N/mmの力で加圧した後、180℃で乾
燥することにより含有水分を蒸発させ、大きさ100×
150mm、厚み1mmの電極体を作製した。
Embodiments of the present invention will be described below. Example 1 A phenol resin-based activated carbon powder having a particle size of 5 μm, an ammonium salt of carboxymethylcellulose, acetylene black and water were weighed at a weight ratio of 10: 1.2: 2: 20 and kneaded to obtain a clay-like mixture. A kneaded product was prepared. This kneaded material is stretched with a roller to a thickness of 1 mm.
Was prepared. This sheet is 100mm in size
It was cut to 150 mm. The activated carbon sheet thus obtained was covered with an aluminum lath net having an opening ratio of 75%. This was pressurized with a force of 2 × 10 7 N / mm, and then dried at 180 ° C. to evaporate the water content.
An electrode body having a thickness of 150 mm and a thickness of 1 mm was prepared.

【0007】《実施例2》粒径5μmのフェノール樹脂
系の活性炭粉末、カルボキシメチルセルロースのアンモ
ニウム塩、アセチレンブラックおよび水を10:1.
2:2:20の重量比に秤量し、これらを混練し粘土状
混練物を作製した。この混練物をローラで引き伸ばし
て、厚さ1mmのシートを作製した。このシートを10
0mm×150mmにカットした。カットした活性炭シ
ートを開口率が80%のアルミニウムのラス網で被覆し
た。これを2×107N/mmの力で加圧し、その後1
80℃で乾燥することにより含有水分を蒸発させ、大き
さ100×150mm、厚み1mmの電極体を作製し
た。
Example 2 A phenol resin-based activated carbon powder having a particle size of 5 μm, an ammonium salt of carboxymethylcellulose, acetylene black and water were mixed at 10: 1.
They were weighed to a weight ratio of 2: 2: 20 and kneaded to prepare a clay-like kneaded product. The kneaded material was stretched with a roller to produce a sheet having a thickness of 1 mm. This sheet is 10
It was cut into 0 mm x 150 mm. The cut activated carbon sheet was covered with an aluminum lath net having an opening ratio of 80%. This is pressurized with a force of 2 × 10 7 N / mm, and then
The water content was evaporated by drying at 80 ° C. to prepare an electrode body having a size of 100 × 150 mm and a thickness of 1 mm.

【0008】《実施例3》混合粉末は、粒径5μmのフ
ェノール樹脂系の活性炭粉末、カルボキシメチルセルロ
ースのアンモニウム塩、アセチレンブラックおよび水を
10:1.2:2:20の重量比に秤量し、これらを混
練し粘土状混練物を作製した。この混練物をローラで引
き伸ばして、厚さ1mmのシートを作製した。このシー
トを100mm×150mmにカットした。カットした
活性炭シートを開口率が95%のアルミニウムのラス網
で被覆した。これを2×107N/mmの力で加圧し、
その後180℃で乾燥することにより含有水分を蒸発さ
せ、大きさ100×150mm、厚み1mmの電極体を
作製した。
Example 3 A mixed powder was prepared by weighing a phenol resin-based activated carbon powder having a particle size of 5 μm, an ammonium salt of carboxymethyl cellulose, acetylene black and water in a weight ratio of 10: 1.2: 2: 20. These were kneaded to produce a clay-like kneaded product. The kneaded material was stretched with a roller to produce a sheet having a thickness of 1 mm. This sheet was cut into 100 mm × 150 mm. The cut activated carbon sheet was covered with an aluminum lath net having an opening ratio of 95%. This is pressurized with a force of 2 × 10 7 N / mm,
Thereafter, by drying at 180 ° C., the contained water was evaporated to produce an electrode body having a size of 100 × 150 mm and a thickness of 1 mm.

【0009】《実施例4》混合粉末は、粒径5μmのフ
ェノール樹脂系の活性炭粉末、カルボキシメチルセルロ
ースのアンモニウム塩、アセチレンブラックおよび水を
10:1.2:2:20の重量比に秤量し、これらを混
練し粘土状混練物を作製した。この混練物をローラで引
き伸ばして、厚さ1mmのシートを作製した。このシー
トを100mm×150mmにカットした。カットした
活性炭シートを開口率が80%のタンタルのラス網で被
覆した。これを2×107N/mmの力で加圧し、その
後180℃で乾燥することにより含有水分を蒸発させ、
大きさ100×150mm、厚み1mmの電極体を作製
した。
Example 4 A mixed powder was prepared by weighing a phenol resin-based activated carbon powder having a particle size of 5 μm, an ammonium salt of carboxymethyl cellulose, acetylene black and water in a weight ratio of 10: 1.2: 2: 20. These were kneaded to produce a clay-like kneaded product. The kneaded material was stretched with a roller to produce a sheet having a thickness of 1 mm. This sheet was cut into 100 mm × 150 mm. The cut activated carbon sheet was covered with a tantalum lath net having an opening ratio of 80%. This was pressurized with a force of 2 × 10 7 N / mm and then dried at 180 ° C. to evaporate the water content,
An electrode body having a size of 100 × 150 mm and a thickness of 1 mm was prepared.

【0010】《実施例5》混合粉末は、粒径5μmのフ
ェノール樹脂系の活性炭粉末、カルボキシメチルセルロ
ースのアンモニウム塩、アセチレンブラックおよび水を
10:1.2:2:20の重量比に秤量し、これらを混
練し粘土状混練物を作製した。この混練物をローラで引
き伸ばして、厚さ1mmのシートを作製した。このシー
トを100mm×150mmにカットした。カットした
活性炭シートを開口率が80%のチタンのラス網で被覆
した。これを2×107N/mmの力で加圧し、その後
180℃で乾燥することにより含有水分を蒸発させ、大
きさ100×150mm、厚み1mmの電極体を作製し
た。
Example 5 A mixed powder was prepared by weighing a phenol resin-based activated carbon powder having a particle size of 5 μm, an ammonium salt of carboxymethyl cellulose, acetylene black and water in a weight ratio of 10: 1.2: 2: 20. These were kneaded to produce a clay-like kneaded product. The kneaded material was stretched with a roller to produce a sheet having a thickness of 1 mm. This sheet was cut into 100 mm × 150 mm. The cut activated carbon sheet was covered with a titanium lath net having an opening ratio of 80%. This was pressurized with a force of 2 × 10 7 N / mm, and then dried at 180 ° C. to evaporate the contained water, thereby producing an electrode body having a size of 100 × 150 mm and a thickness of 1 mm.

【0011】《比較例1》混合粉末は、粒径5μmのフ
ェノール樹脂系の活性炭粉末、カルボキシメチルセルロ
ースのアンモニウム塩、アセチレンブラックおよび水を
10:1.2:2:20の重量比に秤量し、これらを混
練し粘土状混練物を作製した。この混練物をローラで引
き伸ばして、厚さ1mmのシートを作製した。このシー
トを100mm×150mmにカットした。カットした
活性炭シートを開口率が65%のアルミニウムのラス網
で被覆した。これを2×107N/mmの力で加圧し、
その後180℃で乾燥することにより含有水分を蒸発さ
せ、大きさ100×150mm、厚み1mmの電極体を
作製した。
Comparative Example 1 A mixed powder was prepared by weighing a phenol resin-based activated carbon powder having a particle size of 5 μm, an ammonium salt of carboxymethyl cellulose, acetylene black and water in a weight ratio of 10: 1.2: 2: 20. These were kneaded to produce a clay-like kneaded product. The kneaded material was stretched with a roller to produce a sheet having a thickness of 1 mm. This sheet was cut into 100 mm × 150 mm. The cut activated carbon sheet was covered with an aluminum lath net having an opening ratio of 65%. This is pressurized with a force of 2 × 10 7 N / mm,
Thereafter, by drying at 180 ° C., the contained water was evaporated to produce an electrode body having a size of 100 × 150 mm and a thickness of 1 mm.

【0012】《比較例2》混合粉末は、粒径5μmのフ
ェノール樹脂系の活性炭粉末、カルボキシメチルセルロ
ースのアンモニウム塩、アセチレンブラックおよび水を
10:1.2:2:20の重量比に秤量し、これらを混
練し粘土状混練物を作製した。この混練物をローラで引
き伸ばして、厚さ1mmのシートを作製した。このシー
トを100mm×150mmにカットした。カットした
活性炭シートを開口率が97%のアルミニウムのラス編
みで被覆した。これを2×107N/mmの力で加圧
し、その後180℃で乾燥することにより含有水分を蒸
発させ、大きさ100×150mm、厚み1mmの電極
体を作製した。
Comparative Example 2 The mixed powder was prepared by weighing a phenol resin-based activated carbon powder having a particle size of 5 μm, an ammonium salt of carboxymethyl cellulose, acetylene black and water in a weight ratio of 10: 1.2: 2: 20. These were kneaded to produce a clay-like kneaded product. The kneaded material was stretched with a roller to produce a sheet having a thickness of 1 mm. This sheet was cut into 100 mm × 150 mm. The cut activated carbon sheet was covered with an aluminum lath stitch having an opening ratio of 97%. This was pressurized with a force of 2 × 10 7 N / mm, and then dried at 180 ° C. to evaporate the contained water, thereby producing an electrode body having a size of 100 × 150 mm and a thickness of 1 mm.

【0013】上記の各電極体にアルミニウムリードを取
り付け、2枚の電極体がセパレータを介して対向するよ
うに重ねあわせてアルミニウムケースに挿入した。そし
て、プロピレンカーボネートにテトラエチルアンモニウ
ムパークロレイトを0.5mol/l溶解した電解液の中で
真空引きすることにより、電解液を分極性電極およびセ
パレータに含浸した。その後、シリコン樹脂製封口板で
ケースの開口部を封口し、電気二重層キャパシタを作製
した。電気二重層キャパシタの特性評価は、次のように
して行った。まず、2.5Vの定電圧で1時間充電し、
次いで100mAの定電流で放電したときの電気二重層
容量および直流抵抗を測定することにより初期特性を評
価した。次に、75℃の恒温槽中において、2.8Vの
定電圧負荷充電を行い、3000時間後の電気二重層容
量および直流抵抗を測定する寿命試験を行った。これら
の結果を表1に示す。
An aluminum lead was attached to each of the above-mentioned electrode bodies, and the two electrode bodies were overlapped so as to face each other with a separator interposed therebetween, and inserted into an aluminum case. Then, the polarizable electrode and the separator were impregnated with the electrolytic solution by evacuating the electrolytic solution obtained by dissolving 0.5 mol / l of tetraethylammonium perchlorate in propylene carbonate. Thereafter, the opening of the case was sealed with a silicone resin sealing plate to produce an electric double layer capacitor. The characteristic evaluation of the electric double layer capacitor was performed as follows. First, charge at a constant voltage of 2.5V for 1 hour,
Next, the initial characteristics were evaluated by measuring the electric double layer capacity and the DC resistance when discharging at a constant current of 100 mA. Next, a constant voltage load of 2.8 V was charged in a constant temperature bath at 75 ° C., and a life test for measuring the electric double layer capacity and DC resistance after 3000 hours was performed. Table 1 shows the results.

【0014】[0014]

【表1】 [Table 1]

【0015】《実施例6》粒径5μmのフェノール樹脂
系の活性炭粉末、カルボキシメチルセルロースのアンモ
ニウム塩、アセチレンブラックおよび水を10:1.
2:2:20の重量比に秤量し、これらを混練し粘土状
混練物を作製した。この混練物をローラで引き伸ばし
て、厚さ1mmのシートを作製した。このシートを10
0mm×150mmにカットした。カットした活性炭シ
ートを開口率が85%のアルミニウムのラス網で被覆し
た。これを2×107N/mmの力で加圧し、その後1
80℃で乾燥することにより含有水分を蒸発させ、大き
さ100×150mm、厚み1mmの電極体を作製し
た。
Example 6 A phenol resin-based activated carbon powder having a particle size of 5 μm, an ammonium salt of carboxymethylcellulose, acetylene black and water were added in a ratio of 10: 1.
They were weighed to a weight ratio of 2: 2: 20 and kneaded to prepare a clay-like kneaded product. The kneaded material was stretched with a roller to produce a sheet having a thickness of 1 mm. This sheet is 10
It was cut into 0 mm x 150 mm. The cut activated carbon sheet was covered with an aluminum lath net having an opening ratio of 85%. This is pressurized with a force of 2 × 10 7 N / mm, and then
The water content was evaporated by drying at 80 ° C. to prepare an electrode body having a size of 100 × 150 mm and a thickness of 1 mm.

【0016】図1は、上記の電極体を用いた電気二重層
キャパシタの分解斜視図を示す。10枚の電極体がセパ
レータを介して交互に積み重ねられている。そして、奇
数番目の電極体1aおよび偶数番目の電極体1bはそれ
ぞれ1つのリード端子2aおよび2bに接続されてい
る。これらの電極体は、つづら折りにして電極体間に介
在させたセパレータ3の端部により外周を被覆されてア
ルミニウムケース4内に挿入される。プロピレンカーボ
ネートにテトラエチルアンモニウムパークロレイトを
0.5mol/l溶解した電解液を分極性電極、およびセパ
レータに含浸した。リード端子2aおよび2bをセラミ
ックで絶縁して取り付けたアルミニウム製蓋をケース4
の開口部に溶接することにより電気二重層キャパシタを
作製した。この電気二重層キャパシタの特性評価は次の
ように行った。まず、2.5Vの定電圧で1時間充電し
た後、100mAの定電流で放電したときの電気二重層
容量および直流抵抗を測定した。その結果、電気二重層
容量は1540F、直流抵抗は183mΩであった。
FIG. 1 is an exploded perspective view of an electric double layer capacitor using the above-mentioned electrode body. Ten electrode bodies are alternately stacked via a separator. The odd-numbered electrode bodies 1a and the even-numbered electrode bodies 1b are connected to one lead terminal 2a and 2b, respectively. These electrode bodies are inserted into the aluminum case 4 with their outer circumferences covered with the ends of the separators 3 interposed between the electrode bodies in a zigzag manner. An electrolyte obtained by dissolving 0.5 mol / l of tetraethylammonium perchlorate in propylene carbonate was impregnated into the polarizable electrode and the separator. An aluminum lid having lead terminals 2a and 2b insulated with ceramic is attached to case 4.
To form an electric double layer capacitor. The characteristics of the electric double layer capacitor were evaluated as follows. First, the electric double layer capacity and the DC resistance when the battery was charged at a constant voltage of 2.5 V for one hour and then discharged at a constant current of 100 mA were measured. As a result, the electric double layer capacity was 1540 F and the DC resistance was 183 mΩ.

【0017】以上の結果から明らかなように、実施例に
比較して比較例1は初期抵抗が大きく、初期容量が小さ
い。また、比較例2は容量変化率、抵抗変化率とも大き
くなった。
As is apparent from the above results, Comparative Example 1 has a higher initial resistance and a lower initial capacity than the Example. In Comparative Example 2, both the capacitance change rate and the resistance change rate were large.

【0018】[0018]

【発明の効果】以上のように本発明によれば、容量変化
率、抵抗変化率とも小さな電気二重層キャパシタを与え
る分極性電極が得られる。
As described above, according to the present invention, a polarizable electrode which provides an electric double layer capacitor having a small rate of change in capacitance and a small rate of change in resistance can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における電気二重層キャパシタ
の分解斜視図である。
FIG. 1 is an exploded perspective view of an electric double layer capacitor according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1a、1b 電極体 2a、1b リード端子 3 セパレータ 4 ケース 5 蓋 1a, 1b Electrode body 2a, 1b Lead terminal 3 Separator 4 Case 5 Lid

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 活性炭と導電剤と結合剤から構成される
活性炭電極成形体、および前記活性炭電極成形体を被覆
する開口率70〜95%の集電体からなることを特徴と
する集電体付き分極性電極。
1. A current collector comprising: an activated carbon electrode formed from activated carbon, a conductive agent and a binder; and a current collector covering the activated carbon electrode formed with an aperture ratio of 70 to 95%. With polarizable electrode.
【請求項2】 前記集電体がタンタル、アルミニウム、
およびチタンからなる群より選択される少なくとも1種
の金属からなる請求項1記載の集電体付き分極性電極。
2. The method according to claim 1, wherein the current collector is tantalum, aluminum,
The polarizable electrode with a current collector according to claim 1, comprising at least one metal selected from the group consisting of titanium and titanium.
JP9315047A 1997-11-17 1997-11-17 Polarizable electrode with current collecting body Pending JPH11150042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9315047A JPH11150042A (en) 1997-11-17 1997-11-17 Polarizable electrode with current collecting body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9315047A JPH11150042A (en) 1997-11-17 1997-11-17 Polarizable electrode with current collecting body

Publications (1)

Publication Number Publication Date
JPH11150042A true JPH11150042A (en) 1999-06-02

Family

ID=18060799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9315047A Pending JPH11150042A (en) 1997-11-17 1997-11-17 Polarizable electrode with current collecting body

Country Status (1)

Country Link
JP (1) JPH11150042A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7463478B2 (en) 2005-04-21 2008-12-09 Mitsubishi Denki Kabushiki Kaisha Electric double layer capacitor
JP2010232404A (en) * 2009-03-27 2010-10-14 Jm Energy Corp Electricity storage device element, and lithium ion capacitor
WO2011152304A1 (en) 2010-05-31 2011-12-08 住友電気工業株式会社 Capacitor and process for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7463478B2 (en) 2005-04-21 2008-12-09 Mitsubishi Denki Kabushiki Kaisha Electric double layer capacitor
US7636232B2 (en) 2005-04-21 2009-12-22 Mitsubishi Denki Kabushiki Kaisha Electric double layer capacitor
JP2010232404A (en) * 2009-03-27 2010-10-14 Jm Energy Corp Electricity storage device element, and lithium ion capacitor
WO2011152304A1 (en) 2010-05-31 2011-12-08 住友電気工業株式会社 Capacitor and process for producing same
US8902566B2 (en) 2010-05-31 2014-12-02 Sumitomo Electric Industries, Ltd. Capacitor, and method for producing the same

Similar Documents

Publication Publication Date Title
US6627252B1 (en) Electrochemical double layer capacitor having carbon powder electrodes
US5621609A (en) Composite electrode materials for high energy and high power density energy storage devices
US4224392A (en) Nickel-oxide electrode structure and method of making same
CZ107397A3 (en) Two-layer capacitor
JP2698340B2 (en) Electrochemical battery
JP2003526899A (en) Capacitor with double electric layer
JPH04294515A (en) Energy storing element
JPH11150042A (en) Polarizable electrode with current collecting body
US20120148921A1 (en) Electrode for energy storage device, method of manufacturing the same, and energy storage device using the same
JPH11307404A (en) Electric double layer capacitor and its manufacture, ana active carbon for positive electrode
JPH097893A (en) Electric double-layer capacitor and manufacture thereof
JPH0266918A (en) Electric double layer capacitor
US7042708B1 (en) High capacitance energy storage device
EP0667032A1 (en) Rechargeable electrical energy storage device having organometallic electrodes
JPH10144570A (en) Electric double layer capacitor
JP2707638B2 (en) Alkaline manganese battery
JPS6242448Y2 (en)
JPS6048868B2 (en) Manufacturing method of electrode substrate
JPH06204085A (en) Electric double layer capacitor and manufacture thereof
JPH06295727A (en) Sealed alkaline storage battery
JP2000306784A (en) Electrode for capacitor, manufacture thereof, and capacitor
RU2098892C1 (en) Combined electrode for alkali storage battery
JP2680642B2 (en) Method for manufacturing zinc electrode for alkaline storage battery
KR20200074458A (en) Lithium-Ion Capacitor Cathode Using an Anode Current Collector
CA2347224C (en) High capacitance energy storage device