JPH11148788A - Heat accumulator - Google Patents

Heat accumulator

Info

Publication number
JPH11148788A
JPH11148788A JP9315555A JP31555597A JPH11148788A JP H11148788 A JPH11148788 A JP H11148788A JP 9315555 A JP9315555 A JP 9315555A JP 31555597 A JP31555597 A JP 31555597A JP H11148788 A JPH11148788 A JP H11148788A
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage tank
temperature
filled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9315555A
Other languages
Japanese (ja)
Inventor
Kazuhiro Fukada
和宏 深田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP9315555A priority Critical patent/JPH11148788A/en
Publication of JPH11148788A publication Critical patent/JPH11148788A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Central Heating Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To facilitate temperature control while reducing heat loss by arranging a first heat storage tank filled with a heat storage agent having different heat absorbing and radiating temperatures and a second heat storage tank filled with a latent thermal storage medium having a phase temperature lower than the radiating temperature of heat storage agent such that heat an be exchanged between them. SOLUTION: A heat accumulator comprises first and second heat storage tanks 1, 2 filled, respectively, with water adsorbed zeolite and normal paraffin having a desired melting point (lower than the water adsorbing temperature of zeolite). At the time of heat storage (a), heat H1 is stored in the heat storage tank 1 through a heat exchanger 4 and water is desorbed from zeolite to exhaust chill Wc. At the time of radiation (b), moisture Hu in the atmosphere (or water flow) is fed to the heat storage tank 1 and adsorbed by zeolite thus generating heat. Temperature of the normal paraffin in the heat storage tank 2 is raised up to the melting point through a heat exchanger 5 and then the temperature of indoor air C1 is raised through a heat exchanger 6 thus producing hot wind H4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蓄熱装置に関する。[0001] The present invention relates to a heat storage device.

【0002】[0002]

【従来の技術】従来より、工場排水や、太陽熱を利用し
た冷暖房装置、給湯装置が普及されている。これらに
は、水和物の脱水・水和反応を利用したものや、水酸化
物の分解反応を利用したもの、金属水素化物の生成反応
を利用したもの、濃度差型のものなど多岐にわたってお
り、その経済性、蓄熱密度の高さから、研究開発が進ん
でいる(特開昭和63−34461号公報等)。
2. Description of the Related Art Heretofore, cooling / heating devices and hot water supply devices utilizing factory drainage, solar heat, and the like have been widely used. There are a wide variety of these, including those that utilize hydration dehydration and hydration reactions, those that utilize hydroxide decomposition reactions, those that utilize metal hydride formation reactions, and those that use concentration differences. Due to its economical efficiency and high heat storage density, research and development have been advanced (Japanese Patent Application Laid-Open No. 63-34461, etc.).

【0003】[0003]

【発明が解決しようとする課題】しかし、これら化学反
応等を利用した蓄熱剤を用いた蓄熱装置は、 ポテンシャルエネルギーによる吸熱温度と放熱温度の
差(ヒステリシス)が大きい。 一端反応が開始すると、温度制御が難しい。 等の問題があり、必要以上の温度上昇による熱損失が無
視できなかった。
However, a heat storage device using a heat storage agent utilizing such a chemical reaction or the like has a large difference (hysteresis) between an endothermic temperature and a radiated temperature due to potential energy. Once the reaction starts, it is difficult to control the temperature. However, heat loss due to an excessive temperature rise cannot be ignored.

【0004】本発明は上記の課題を解決し、化学反応等
を利用した蓄熱剤においても容易に温度制御でき、かつ
熱損失の小さい蓄熱装置を提供することを目的とする。
An object of the present invention is to solve the above problems and to provide a heat storage device which can easily control the temperature of a heat storage agent utilizing a chemical reaction or the like and has a small heat loss.

【0005】[0005]

【課題を解決するための手段】請求項1に記載の発明
(以下、「本発明1」という)の蓄熱装置は、可逆的に
吸熱、放熱を行い、実質的に吸熱温度と放熱温度が異な
る(以下、「ヒステリシスを有する」という)蓄熱剤が
充填された第1の蓄熱槽と、第1の蓄熱槽に充填された
蓄熱剤の放熱温度より低い相転移温度を有する潜熱型蓄
熱剤が充填された第2の蓄熱槽とからなり、第1の蓄熱
槽と第2の蓄熱槽とが熱交換可能となされているもので
ある。
The heat storage device according to the first aspect of the present invention (hereinafter referred to as "the present invention 1") reversibly absorbs and radiates heat, and the heat absorption temperature and the heat radiation temperature are substantially different. A first heat storage tank filled with a heat storage agent (hereinafter referred to as “having hysteresis”); and a latent heat type heat storage agent having a phase transition temperature lower than the heat radiation temperature of the heat storage agent filled in the first heat storage tank. A second heat storage tank is provided, and the first heat storage tank and the second heat storage tank can exchange heat.

【0006】請求項2に記載の発明(以下、「本発明
2」という)の蓄熱装置は、可逆的に吸熱、放熱を行
い、ヒステリシスを有する蓄熱剤が充填された第1の蓄
熱槽と、第1の蓄熱槽に充填された蓄熱剤の吸熱温度よ
り高い相転移温度を有する潜熱型蓄熱剤が充填された第
2の蓄熱槽とからなり、第1の蓄熱槽と第2の蓄熱槽と
が熱交換可能となされているものである。
According to a second aspect of the present invention, there is provided a heat storage device which reversibly absorbs and radiates heat and is filled with a heat storage agent having hysteresis. A second heat storage tank filled with a latent heat type heat storage agent having a phase transition temperature higher than an endothermic temperature of the heat storage agent filled in the first heat storage tank, wherein the first heat storage tank, the second heat storage tank, Are heat-exchangeable.

【0007】上記第1の蓄熱槽に充填される蓄熱剤とし
ては、可逆的に吸熱、放熱を行い、ヒステリシスを有す
る蓄熱剤であれば特に限定されず、例えば、ゼオライト
と水、シリカゲルと水等の吸脱着反応を利用したもの;
硫酸ナトリウム、硫化ナトリウム、半水石膏等の水和反
応を利用したもの;水酸化マグネシウム、水酸化カルシ
ウム等の水酸化物の分解反応を利用したもの;塩化第一
鉄−アンモニア複塩、塩化カルシウム−アンモニア複塩
等のアンモニア化物の生成反応を利用したもの;、La
Ni5 、Mm(ミッシュメタル)Ni5 、CaNi5
の金属水素化物を利用したもの;炭酸カルシウム等の分
解反応を利用したもの;CCl3 F、CH3 OH・3C
6 4 (OH)2 、M・6H2 O(M=Ar,CH4,C
2 、H 2 S、Cl2 等)、M・17H2 O(M=C3
8 、CHCl3 等)、アダクツ等のクラスレイト化合
物を利用したものなどがあげられる。
The heat storage agent to be filled in the first heat storage tank is
Has a hysteresis by reversibly absorbing and radiating heat.
The heat storage agent is not particularly limited as long as it is, for example, zeolite.
Using adsorption and desorption reactions of water and silica gel and water;
Hydration of sodium sulfate, sodium sulfide, gypsum hemihydrate, etc.
Using magnesium hydroxide; magnesium hydroxide, calcium hydroxide
Utilizing the decomposition reaction of hydroxides such as chromium;
Iron-ammonia double salt, calcium chloride-ammonia double salt
Utilizing the reaction of forming an ammonium compound such as La;
NiFive, Mm (Misch metal) NiFive, CaNiFiveetc
Using metal hydrides of calcium carbonate, etc.
Using dissociation reaction; CClThreeF, CHThreeOH ・ 3C
6HFour(OH)Two, M ・ 6HTwoO (M = Ar, CHFour, C
OTwo, H TwoS, ClTwoEtc.), M ・ 17HTwoO (M = CThree
H8, CHClThreeEtc.), adducts and other class rates
There are things using things.

【0008】上記第2の蓄熱槽に充填される潜熱型蓄熱
剤としては、必要とする温度領域近傍にに相転移温度を
有するものであれば特に限定されず、潜熱としては、融
解熱、凝結熱、金属等の結晶変態熱などがあげられる
が、取り扱いの点で融解熱が好ましい。
The latent heat type heat storage agent to be filled in the second heat storage tank is not particularly limited as long as it has a phase transition temperature in the vicinity of a required temperature range. Examples of the latent heat include heat of fusion and condensation. Examples of such heat include heat of transformation of metals and the like, and heat of fusion is preferred from the viewpoint of handling.

【0009】就中、n−オクタコサン(融点61.4
℃)、n−ヘキサコサン(融点56.3℃)、n−テト
ラコサン(融点50.6℃)、n−ドコサン(融点4
4.0℃)、n−エイコサン(融点36.4℃)、n−
オクタデカン(融点28.2℃)、n−ヘキサデカン
(融点18.2℃)、n−テトラデカン(融点5.9
℃)等のノルマルパラフィン及びこれらの混合物、プロ
ピオンアミド(融点81.3℃)、ナフタレン(融点8
0℃)、ステアリン酸(融点71℃)、ビフェニル(融
点71℃)、ポリエチレングリコール(融点−25〜6
8℃)、パルミチン酸(融点63℃)、ミリスチン酸
(融点57℃)、カンフェン(融点50℃)、ラウリル
酸(融点44℃)、カプリル酸(融点31.6℃)、酢
酸(16.6)等の有機化合物;硫酸ナトリウム10水
塩(融点32.4℃)、水(融点0℃)等の無機化合物
などが挙げられる。
Above all, n-octacosan (melting point 61.4)
° C), n-hexacosan (melting point 56.3 ° C), n-tetracosane (melting point 50.6 ° C), n-docosan (melting point 4
4.0 ° C.), n-eicosane (melting point 36.4 ° C.), n-
Octadecane (melting point 28.2 ° C), n-hexadecane (melting point 18.2 ° C), n-tetradecane (melting point 5.9)
° C) and a mixture thereof, propionamide (melting point 81.3 ° C), naphthalene (melting point 8
0 ° C.), stearic acid (melting point 71 ° C.), biphenyl (melting point 71 ° C.), polyethylene glycol (melting point −25-6)
8 ° C), palmitic acid (melting point 63 ° C), myristic acid (melting point 57 ° C), camphene (melting point 50 ° C), lauric acid (melting point 44 ° C), caprylic acid (melting point 31.6 ° C), acetic acid (16.6) And organic compounds such as sodium sulfate decahydrate (melting point 32.4 ° C.) and water (melting point 0 ° C.).

【0010】この中でも、給湯、暖房等に使用するので
あれば、融点が40〜80℃程度のものが好適に使用さ
れる。
[0010] Among them, if it is used for hot water supply, heating or the like, those having a melting point of about 40 to 80 ° C are preferably used.

【0011】(作用)本発明1の蓄熱装置は、可逆的に
吸熱、放熱を行い、ヒステリシスを有する蓄熱剤が充填
された第1の蓄熱槽と、第1の蓄熱槽に充填された蓄熱
剤の放熱温度より低い相転移温度を有する潜熱型蓄熱剤
が充填された第2の蓄熱槽とからなり、第1の蓄熱槽と
第2の蓄熱槽とが熱交換可能となされているものである
から、第1の蓄熱槽の蓄熱剤に効率的に蓄えられた温熱
が、第2の蓄熱槽の潜熱型蓄熱剤の相転移温度により、
一定の温度で長時間利用できる。さらに、第1の蓄熱槽
の蓄熱剤のヒステリシスが大きくても、有効に利用でき
る。
(Function) The heat storage device of the present invention 1 reversibly absorbs and radiates heat, and has a first heat storage tank filled with a heat storage agent having hysteresis, and a heat storage agent filled in the first heat storage tank. And a second heat storage tank filled with a latent heat type heat storage agent having a phase transition temperature lower than the heat radiation temperature of the first heat storage tank and the second heat storage tank. Thus, the heat efficiently stored in the heat storage agent in the first heat storage tank is determined by the phase transition temperature of the latent heat type heat storage agent in the second heat storage tank.
It can be used for a long time at a constant temperature. Furthermore, even if the hysteresis of the heat storage agent in the first heat storage tank is large, it can be effectively used.

【0012】本発明2の蓄熱装置の蓄熱装置は、可逆的
に吸熱、放熱を行い、ヒステリシスを有する蓄熱剤が充
填された第1の蓄熱槽と、第1の蓄熱槽に充填された蓄
熱剤の吸熱温度より高い相転移温度を有する潜熱型蓄熱
剤が充填された第2の蓄熱槽とからなり、第1の蓄熱槽
と第2の蓄熱槽とが熱交換可能となされているものであ
るから、第1の蓄熱槽の蓄熱剤に効率的に蓄えられた冷
熱が、第2の蓄熱槽の潜熱型蓄熱剤の相転移温度によ
り、一定の温度で長時間利用できる。さらに、第1の蓄
熱槽の蓄熱剤のヒステリシスが大きくても、有効に利用
できる。
The heat storage device of the heat storage device according to the second aspect of the present invention includes a first heat storage tank filled with a heat storage agent having a hysteresis and reversibly absorbing and releasing heat, and a heat storage agent filled in the first heat storage tank. A second heat storage tank filled with a latent heat type heat storage agent having a phase transition temperature higher than the heat absorption temperature of the first heat storage tank, and the first heat storage tank and the second heat storage tank can exchange heat. Therefore, the cold heat efficiently stored in the heat storage agent in the first heat storage tank can be used for a long time at a constant temperature due to the phase transition temperature of the latent heat type heat storage agent in the second heat storage tank. Furthermore, even if the hysteresis of the heat storage agent in the first heat storage tank is large, it can be effectively used.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳しく説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0014】図1は、本発明1の実施の形態の一例を示
す説明図であり、(a)は蓄熱する状態、(b)は放熱
する状態を示す。図1において、1は第1の蓄熱槽、2
は第2の蓄熱槽、3は断熱材、4、5、6は熱交換器で
ある。本発明1の蓄熱装置を用いて給湯若しくは暖房を
行う場合について説明する。図1(a)、(b)に示す
ように本発明1の蓄熱装置は、第1の蓄熱槽1、第2の
蓄熱槽2、断熱材3及び熱交換器4、5、6よりなる。
FIG. 1 is an explanatory view showing an example of the first embodiment of the present invention, wherein (a) shows a state of storing heat and (b) shows a state of radiating heat. In FIG. 1, 1 is a first heat storage tank, 2
Denotes a second heat storage tank, 3 denotes a heat insulating material, and 4, 5, and 6 denote heat exchangers. A case where hot water supply or heating is performed using the heat storage device of the first aspect of the present invention will be described. As shown in FIGS. 1A and 1B, the heat storage device of the present invention 1 includes a first heat storage tank 1, a second heat storage tank 2, a heat insulating material 3, and heat exchangers 4, 5, and 6.

【0015】第1の蓄熱槽1には水を吸着したゼオライ
トが充填されている。第1の蓄熱槽1には温熱(太陽
熱、廃熱など)H1が熱交換器4を介して第1の蓄熱槽
1に蓄熱される。第1の蓄熱槽1に蓄熱された温熱H1
は、第1の蓄熱槽1の温度を上昇させ、ゼオライトから
の水の脱着温度以上に上昇し、水をゼオライトから脱着
させる。そして、冷気Wcとなって排気される。さらに
ゼオライトから脱着された水は、凝縮されて排水(水蒸
気でもよい)Waとなって、装置外に排出される。そし
て、第1の蓄熱槽1内の温度は、断熱材3により略一定
に保持される。
The first heat storage tank 1 is filled with water-adsorbed zeolite. Heat H1 (solar heat, waste heat, etc.) is stored in the first heat storage tank 1 via the heat exchanger 4 in the first heat storage tank 1. Heat H1 stored in the first heat storage tank 1
Raises the temperature of the first heat storage tank 1 to rise above the desorption temperature of water from zeolite, and desorbs water from zeolite. And it becomes cold air Wc and is exhausted. Further, the water desorbed from the zeolite is condensed into waste water (or water vapor) Wa and discharged outside the apparatus. The temperature in the first heat storage tank 1 is maintained substantially constant by the heat insulating material 3.

【0016】第2の蓄熱槽2には、所望する温度(ゼオ
ライトへの水の吸着温度より低い)の融点を有するノル
マルパラフィンが充填されている。第1の蓄熱槽1に蓄
熱された温熱H1を用いて給湯若しくは暖房を行うに
は、先ず大気中の湿気Hu(流水でもよい)を第1の蓄
熱槽1に供給して、第1の蓄熱槽1に充填されたゼオラ
イトに水を供給する。第1の蓄熱槽1はゼオライトが水
を吸着し、ゼオライトへの水の吸着温度以上となる。こ
の時の発熱H3 は、第2の蓄熱槽2に熱交換器5を介し
て移動する。発熱H3を吸熱した第2の蓄熱槽2は、充
填されたノルマルパラフィンが、その融点まで上昇す
る。この第2の蓄熱槽2に水W1を通過させると、略ノ
ルマルパラフィンの融点まで温度上昇した温水W2が得
られる。さらに、熱交換器6を介して室内の空気C1を
第2の蓄熱槽2に供給すると、略ノルマルパラフィンの
融点まで温度上昇した温風H4が得られる。
The second heat storage tank 2 is filled with normal paraffin having a melting point of a desired temperature (lower than the temperature of adsorption of water on zeolite). In order to perform hot water supply or heating using the heat H1 stored in the first heat storage tank 1, first, humidity Hu (may be flowing water) in the atmosphere is supplied to the first heat storage tank 1, and the first heat storage is performed. Water is supplied to the zeolite filled in the tank 1. In the first heat storage tank 1, zeolite adsorbs water, and the temperature becomes equal to or higher than the temperature at which water is adsorbed on zeolite. The heat generated at this time H 3 moves to the second heat storage tank 2 via the heat exchanger 5. The filled normal paraffin rises to the melting point in the second heat storage tank 2 that has absorbed the heat generation H3. When the water W1 is passed through the second heat storage tank 2, warm water W2 whose temperature has risen to the melting point of substantially normal paraffin is obtained. Furthermore, when the indoor air C1 is supplied to the second heat storage tank 2 via the heat exchanger 6, warm air H4 whose temperature has been raised to the melting point of substantially normal paraffin is obtained.

【0017】図2は、本発明2の実施の形態の一例を示
す説明図であり、(a)は蓄冷する状態、(b)は冷
風、冷水を得る状態を示す。図2において、11は第1
の蓄熱槽、21は第2の蓄熱槽、31は断熱材、41は
ヒートポンプ、51、61は熱交換器である。本発明2
の蓄熱装置を用いて冷房を行う場合について説明する。
図2(a)、(b)に示すように本発明2の蓄熱装置
は、第1の蓄熱槽11、第2の蓄熱槽21、断熱材31
及びヒートポンプ41、熱交換器51、61よりなる。
FIGS. 2A and 2B are explanatory views showing an example of the second embodiment of the present invention, wherein FIG. 2A shows a state of storing cold air, and FIG. 2B shows a state of obtaining cold air and cold water. In FIG. 2, 11 is the first
, 21 is a second heat storage tank, 31 is a heat insulating material, 41 is a heat pump, and 51 and 61 are heat exchangers. Invention 2
A case in which cooling is performed using the heat storage device described above will be described.
As shown in FIGS. 2A and 2B, the heat storage device of the present invention 2 includes a first heat storage tank 11, a second heat storage tank 21, and a heat insulating material 31.
And a heat pump 41 and heat exchangers 51 and 61.

【0018】第1の蓄熱槽11にはクラスレート化合物
であるCCl3 F(分解温度6.8℃)が充填されてい
る。第1の蓄熱槽11には大気C2がヒートポンプ41
に送られ、第1の蓄熱槽11が冷却される。第1の蓄熱
槽1に充填されたCCl3 Fは、その包接温度まで低下
して包接される。そして、大気C2は廃熱WHとして装
置外へ排出される。第1の蓄熱槽11内の温度は、断熱
材31により略一定に保持される。
The first heat storage tank 11 is filled with CCl 3 F (decomposition temperature: 6.8 ° C.) which is a clathrate compound. Atmosphere C2 is supplied to the first heat storage tank 11 by the heat pump 41.
And the first heat storage tank 11 is cooled. The CCl 3 F filled in the first heat storage tank 1 is cooled down to its inclusion temperature and is included. Then, the atmosphere C2 is discharged outside the apparatus as waste heat WH. The temperature in the first heat storage tank 11 is maintained substantially constant by the heat insulating material 31.

【0019】第2の蓄熱槽21には、所望する温度(C
Cl3 Fの分解温度より高い)の融点を有するノルマル
パラフィンが充填されている。この装置を用いて冷房を
行うには、熱交換器61を介して室内の空気H6を第2
の蓄熱槽21に供給すると、略ノルマルパラフィンの融
点まで温度低下した冷風C3が得られる。この時の熱H
5は熱交換器51を介して第1の蓄熱槽11に移動す
る。
In the second heat storage tank 21, a desired temperature (C
Normal paraffin having a melting point of (higher than the decomposition temperature of Cl 3 F). In order to perform cooling using this device, indoor air H6 is passed through the heat exchanger 61 to the second air.
When supplied to the heat storage tank 21, cold air C3 whose temperature has been reduced to the melting point of substantially normal paraffin is obtained. Heat H at this time
5 moves to the first heat storage tank 11 via the heat exchanger 51.

【0020】[0020]

【発明の効果】本発明1の蓄熱装置は上述のように構成
されているので、化学反応等を利用した蓄熱剤において
も一定の温度の熱媒を供給でき、かつ熱損失の小さい蓄
熱装置となる。
Since the heat storage device of the present invention 1 is configured as described above, a heat storage device that can supply a constant temperature heat medium even with a heat storage agent utilizing a chemical reaction or the like and has a small heat loss can be provided. Become.

【0021】本発明2の蓄熱装置は上述のように構成さ
れているので、化学反応等を利用した蓄熱(冷)剤にお
いても一定の温度の冷媒を供給でき、かつ熱損失の小さ
い蓄熱装置となる。
Since the heat storage device of the present invention 2 is configured as described above, a heat storage (cooling) agent utilizing a chemical reaction or the like can supply a refrigerant at a constant temperature and has a small heat loss. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明1の実施の形態の一例を示す説明図であ
り、(a)は蓄熱する状態、(b)は放熱する状態を示
す。
FIGS. 1A and 1B are explanatory diagrams illustrating an example of an embodiment of the present invention, in which FIG. 1A illustrates a state in which heat is stored, and FIG.

【図2】図2は、本発明2の実施の形態の一例を示す説
明図であり、(a)は蓄冷する状態、(b)は冷風、冷
水を得る状態を示す。
FIGS. 2A and 2B are explanatory diagrams showing an example of the second embodiment of the present invention, in which FIG. 2A shows a state of storing cold air, and FIG. 2B shows a state of obtaining cold air and cold water.

【符号の説明】[Explanation of symbols]

1、11 第1の蓄熱槽 2、21 第2の蓄熱槽 3、31 断熱材 4、5、6、51、61 熱交換器 41 ヒートポンプ DESCRIPTION OF SYMBOLS 1, 11 1st heat storage tank 2, 21 2nd heat storage tank 3, 31 Thermal insulation 4, 5, 6, 51, 61 Heat exchanger 41 Heat pump

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 可逆的に吸熱、放熱を行い、実質的に吸
熱温度と放熱温度が異なる蓄熱剤が充填された第1の蓄
熱槽と、第1の蓄熱槽に充填された蓄熱剤の放熱温度よ
り低い相転移温度を有する潜熱型蓄熱剤が充填された第
2の蓄熱槽とからなり、第1の蓄熱槽と第2の蓄熱槽と
が熱交換可能となされていることを特徴とする蓄熱装
置。
1. A first heat storage tank filled with a heat storage agent that reversibly absorbs and radiates heat and has a heat absorption temperature and a heat radiation temperature that are substantially different from each other, and radiates heat of the heat storage agent filled in the first heat storage tank. A second heat storage tank filled with a latent heat storage agent having a phase transition temperature lower than the temperature, wherein the first heat storage tank and the second heat storage tank are heat-exchangeable. Heat storage device.
【請求項2】 可逆的に吸熱、放熱を行い、実質的に吸
熱温度と放熱温度が異なる蓄熱剤が充填された第1の蓄
熱槽と、第1の蓄熱槽に充填された蓄熱剤の吸熱温度よ
り高い相転移温度を有する潜熱型蓄熱剤が充填された第
2の蓄熱槽とからなり、第1の蓄熱槽と第2の蓄熱槽と
が熱交換可能となされていることを特徴とする蓄熱装
置。
2. A first heat storage tank filled with a heat storage agent that reversibly absorbs and radiates heat and has a heat absorption temperature and a heat radiation temperature that are substantially different from each other, and heat absorption of the heat storage agent filled in the first heat storage tank. A second heat storage tank filled with a latent heat type heat storage agent having a phase transition temperature higher than the temperature, wherein the first heat storage tank and the second heat storage tank are heat-exchangeable. Heat storage device.
JP9315555A 1997-11-17 1997-11-17 Heat accumulator Pending JPH11148788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9315555A JPH11148788A (en) 1997-11-17 1997-11-17 Heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9315555A JPH11148788A (en) 1997-11-17 1997-11-17 Heat accumulator

Publications (1)

Publication Number Publication Date
JPH11148788A true JPH11148788A (en) 1999-06-02

Family

ID=18066763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9315555A Pending JPH11148788A (en) 1997-11-17 1997-11-17 Heat accumulator

Country Status (1)

Country Link
JP (1) JPH11148788A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511848A (en) * 2005-10-10 2009-03-19 エムジー イノベーションズ コーポレーション Phase change material heat exchanger
JP2013516380A (en) * 2010-01-05 2013-05-13 ビーエーエスエフ ソシエタス・ヨーロピア Heat and fluid storage fluids for polysulfide-based extreme temperatures
JP2014095294A (en) * 2012-11-07 2014-05-22 Toyota Industries Corp Exhaust emission control system
KR101877869B1 (en) * 2015-11-12 2018-07-12 한국에너지기술연구원 Device for storing and using of heat by thermochemical material and method for controling the device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009511848A (en) * 2005-10-10 2009-03-19 エムジー イノベーションズ コーポレーション Phase change material heat exchanger
JP2013516380A (en) * 2010-01-05 2013-05-13 ビーエーエスエフ ソシエタス・ヨーロピア Heat and fluid storage fluids for polysulfide-based extreme temperatures
JP2014095294A (en) * 2012-11-07 2014-05-22 Toyota Industries Corp Exhaust emission control system
KR101877869B1 (en) * 2015-11-12 2018-07-12 한국에너지기술연구원 Device for storing and using of heat by thermochemical material and method for controling the device

Similar Documents

Publication Publication Date Title
N'Tsoukpoe et al. A review on the use of calcium chloride in applied thermal engineering
US6997010B2 (en) Regenerative heat pump system
JP2664506B2 (en) Cooling and / or heating device by solid-gas reaction
US20090020264A1 (en) Method of heat accumulation and heat accumulation system
Li et al. Development of sorption thermal battery for low-grade waste heat recovery and combined cold and heat energy storage
Yong et al. Adsorption refrigeration: a survey of novel technologies
US4309980A (en) Closed vaporization heat transfer system
KR102543809B1 (en) System and method for thermochemical storage of energy
JP2005024231A5 (en)
US11709023B2 (en) Enhanced TCM production and use
JP4889650B2 (en) Generation of cryogenic cooling in thermochemical equipment.
JPH11148788A (en) Heat accumulator
EP1550830A1 (en) Heat pump system
JP4889528B2 (en) Chemical heat pump and heat utilization system using the same
JP2002031426A (en) Heat storage device
JP2005036197A (en) Heat-utilizing material and its application
Aristov et al. New composite sorbents of water and ammonia for chemical and adsorption heat pumps
JP5101297B2 (en) Method of generating cooling for building air conditioning by thermochemical method
JPH05332690A (en) Heat storage device
JPS61285284A (en) Chemical heat accumulation and apparatus therefor
JP2005220334A (en) Heat-utilization material and application thereof
JPS58120084A (en) Closing type vaporization-heat transmission system and method of transmitting heat of vaporization
JPS58224281A (en) Chemical heat pump type air-conditioning hot-water supply device
JPH0252786B2 (en)
JP5123666B2 (en) Generation of cryogenic cooling in thermochemical equipment.