JPH11148402A - Deceleration timing control device for internal combustion engine - Google Patents

Deceleration timing control device for internal combustion engine

Info

Publication number
JPH11148402A
JPH11148402A JP10161056A JP16105698A JPH11148402A JP H11148402 A JPH11148402 A JP H11148402A JP 10161056 A JP10161056 A JP 10161056A JP 16105698 A JP16105698 A JP 16105698A JP H11148402 A JPH11148402 A JP H11148402A
Authority
JP
Japan
Prior art keywords
deceleration
correction
engine
amount
ignition timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10161056A
Other languages
Japanese (ja)
Inventor
Masahiko Hashimoto
雅彦 橋本
Naoki Osada
尚樹 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP10161056A priority Critical patent/JPH11148402A/en
Priority to US09/150,209 priority patent/US5934247A/en
Publication of JPH11148402A publication Critical patent/JPH11148402A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0005Controlling intake air during deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/0015Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for using exhaust gas sensors
    • F02D35/0023Controlling air supply
    • F02D35/003Controlling air supply by means of by-pass passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PROBLEM TO BE SOLVED: To control rotational fluctuation in returning to idling by torque correction in accordance with a decelerated state. SOLUTION: The number of engine revolutions Ne is detected (S1), and deceleration ΔNe is calculated. Air compensation quantity ISCDEC is set on an increasing side (S11) to increase the quantity of air by an auxiliary air control valve and the like based on the deceleration ΔNe and number of engine revolutions Ne until prescribed compensation time (timer) is elapsed or the number of engine revolutions Ne becomes prescribed compensation finishing engine revolution number Ne2 or blow after the number of engine revolutions Ne becomes prescribed compensation starting engine revolution number Ne1 or below at speed reduction. Also, an ignition timing compensation amount ADVDEC is set on a spark advancing side (S12) to compensate the ignition timing to the spark advancing side in order to compensate the response delay of air compensation based on the deceleration ΔNe and the number of engine revolutions Ne.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の減速時
制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deceleration control device for an internal combustion engine.

【0002】[0002]

【従来の技術】従来の内燃機関の減速時制御装置とし
て、例えば、特開平6−288327号公報に示される
ように、減速時、特に減速燃料カットからの復帰後のア
イドルへの戻り時に、機関への空気量を所定量増量する
一方、目標回転数との偏差に応じて点火時期を補正し
て、機関回転数の急激な落ち込みによるエンストや回転
変動を防止するようにしたものがある。
2. Description of the Related Art As a conventional deceleration control device for an internal combustion engine, as shown in Japanese Patent Application Laid-Open No. 6-288327, for example, when the engine is decelerated, particularly when returning to idle after returning from deceleration fuel cut, While increasing the amount of air to the engine by a predetermined amount, the ignition timing is corrected in accordance with the deviation from the target engine speed to prevent engine stall or engine speed fluctuation due to a sharp drop in engine speed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の内燃機関の減速時制御装置にあっては、次の
ような問題点があった。減速状態は、緩やかな減速、急
減速と様々であり、また、運転状態(回転数、減速度、
供給空気量)によりアイドルへの戻り時の吸気マニホー
ルド内の吸入負圧が変化することなどから、条件によ
り、アイドルへの戻り時の回転数低下が異なり、空気量
の増量を一定にして、点火時期によるフィードバック制
御を行うのみでは、全ての条件で回転変動を抑えること
ができない。
However, such a conventional deceleration control device for an internal combustion engine has the following problems. The deceleration state is various such as gradual deceleration and sudden deceleration, and the operation state (rotation speed, deceleration,
Because the suction negative pressure in the intake manifold at the time of return to idle changes depending on the (supply air amount), depending on the conditions, the decrease in the number of revolutions at the time of return to idle differs depending on the conditions, and the increase in the air amount is kept constant and the ignition is performed The rotation fluctuation cannot be suppressed under all the conditions only by performing the feedback control based on the timing.

【0004】本発明は、このような従来の問題点に鑑
み、減速状態に応じたトルク補正を行うことにより、ア
イドル戻り時の回転変動を抑制することを目的とする。
SUMMARY OF THE INVENTION [0004] In view of such a conventional problem, an object of the present invention is to suppress the rotation fluctuation at the time of idling return by performing a torque correction according to a deceleration state.

【0005】[0005]

【課題を解決するための手段】このため、請求項1に係
る発明では、図1に示すように、機関の減速中に機関回
転数及び減速度を検出する減速状態検出手段と、機関の
減速中に機関回転数及び減速度に基づいて機関への供給
空気量を増大側に補正する空気量補正手段と、を設け
て、内燃機関の減速時制御装置を構成する。
Therefore, according to the present invention, as shown in FIG. 1, a deceleration state detecting means for detecting an engine speed and a deceleration during deceleration of the engine, and a deceleration state of the engine An air amount correcting means for correcting the amount of air supplied to the engine to an increasing side based on the engine speed and the deceleration is provided therein to constitute a deceleration control device for the internal combustion engine.

【0006】請求項2に係る発明では、前記空気量補正
手段は、減速度が大きい程、機関への供給空気量の増大
側補正量を大きくするものであることを特徴とする。請
求項3に係る発明では、前記空気量補正手段は、機関の
減速中に、機関回転数が所定の補正開始回転数以下とな
ってから、所定の補正時間が経過するか、機関回転数が
所定の補正終了回転数以下となるまで、機関への供給空
気量を増大側に補正するものであることを特徴とする。
The invention according to claim 2 is characterized in that the air amount correcting means increases the amount of correction on the increasing side of the amount of air supplied to the engine as the deceleration increases. In the invention according to claim 3, the air amount correction means determines whether the predetermined correction time has elapsed since the engine rotation speed became equal to or lower than the predetermined correction start rotation speed during the deceleration of the engine, or the engine rotation speed becomes lower. It is characterized in that the amount of air supplied to the engine is corrected to an increasing side until the rotation speed becomes equal to or lower than a predetermined correction end rotation speed.

【0007】請求項4に係る発明では、前記補正開始回
転数が少なくとも減速度に応じて設定されることを特徴
とする。請求項5に係る発明では、前記補正時間が少な
くとも減速度に応じて設定されることを特徴とする。請
求項6に係る発明では、更に、前記空気量補正手段の応
答遅れ分を点火時期により補正する点火時期補正手段を
設けたことを特徴とする(図1参照)。
The invention according to claim 4 is characterized in that the correction start rotational speed is set at least according to deceleration. The invention according to claim 5 is characterized in that the correction time is set at least according to deceleration. The invention according to claim 6 is characterized by further comprising an ignition timing correcting means for correcting a response delay of the air amount correcting means by an ignition timing (see FIG. 1).

【0008】請求項7に係る発明では、前記点火時期補
正手段は、減速度が大きい程、点火時期の進角側への補
正量を大きくするものであることを特徴とする。請求項
8に係る発明では、前記点火時期補正手段は、減速中の
機関回転数の低下に伴って、点火時期の進角側への補正
量を小さくするものであることを特徴とする。
According to a seventh aspect of the present invention, the ignition timing correction means increases the amount of correction of the ignition timing to the advanced side as the deceleration increases. The invention according to claim 8 is characterized in that the ignition timing correction means reduces the correction amount of the ignition timing to the advance side as the engine speed decreases during deceleration.

【0009】[0009]

【発明の効果】請求項1に係る発明によれば、機関の減
速中に減速状態として機関回転数及び減速度を検出し、
これらに基づいて機関への供給空気量を増大側に補正す
ることにより、減速状態に応じたトルク補正を行うこと
ができて、アイドル戻り時の回転変動を抑制することが
できる。
According to the first aspect of the present invention, the engine speed and the deceleration are detected as the deceleration state during the deceleration of the engine,
By correcting the amount of air supplied to the engine to the increasing side based on these, torque correction according to the deceleration state can be performed, and rotation fluctuation at the time of idling return can be suppressed.

【0010】請求項2に係る発明によれば、減速度が大
きい程、機関への供給空気量の増大側補正量を大きくす
ることにより、急減速時の回転数の落ち込みを確実に防
止できる。請求項3に係る発明によれば、機関の減速中
に、機関回転数が所定の補正開始回転数以下となってか
ら、所定の補正時間が経過するか、機関回転数が所定の
補正終了回転数以下となるまで、機関への供給空気量を
増大側に補正することにより、減速による回転数の落ち
込みを確実に防止できる。
According to the second aspect of the present invention, the larger the deceleration is, the larger the correction amount on the increasing side of the amount of air supplied to the engine is, so that it is possible to reliably prevent the rotational speed from dropping during rapid deceleration. According to the invention according to claim 3, during the deceleration of the engine, a predetermined correction time elapses after the engine speed becomes equal to or lower than the predetermined correction start rotation speed, or the engine rotation speed becomes the predetermined correction end rotation speed. By correcting the amount of air supplied to the engine to the increasing side until the engine speed becomes equal to or less than the number, it is possible to reliably prevent a decrease in the number of revolutions due to deceleration.

【0011】請求項4に係る発明によれば、減速度に応
じ、減速度が大きい程、補正開始回転数を高くすること
により、急減速時の回転数の落ち込みをより確実に防止
できる。請求項5に係る発明によれば、減速度に応じ、
減速度が大きい程、補正時間を長くすることにより、急
減速時の回転数の落ち込みをより確実に防止できる。
[0011] According to the fourth aspect of the present invention, according to the deceleration, the larger the deceleration, the higher the correction start rotation speed, so that the drop in the rotation speed at the time of sudden deceleration can be more reliably prevented. According to the invention according to claim 5, according to the deceleration,
By increasing the correction time as the deceleration is larger, it is possible to more reliably prevent the rotation speed from dropping during sudden deceleration.

【0012】請求項6に係る発明によれば、更に、空気
量補正の応答遅れ分を点火時期により補正することで、
応答遅れなく、トルク補正を行うことができる。請求項
7に係る発明によれば、減速度が大きい程、点火時期の
進角側への補正量を大きくすることにより、急減速時の
回転数の落ち込みをより確実に防止できる。
According to the present invention, the response delay of the air amount correction is further corrected by the ignition timing.
Torque correction can be performed without a response delay. According to the seventh aspect of the present invention, the larger the deceleration is, the larger the amount of correction of the ignition timing to the advanced side is, so that it is possible to more reliably prevent the rotational speed from dropping during rapid deceleration.

【0013】請求項8に係る発明によれば、減速中の機
関回転数の低下に伴って、点火時期の進角側への補正量
を小さくすることにより、点火時期補正から空気量補正
へスムーズにつなぐことができる。
According to the eighth aspect of the present invention, the amount of correction of the ignition timing to the advanced side is reduced with a decrease in the engine speed during deceleration, so that the correction of the ignition timing to the correction of the air amount can be performed smoothly. Can be connected to

【0014】[0014]

【発明の実施の形態】以下に本発明の実施の形態につい
て説明する。図2は実施の一形態を示す内燃機関のシス
テム図である。先ず、これについて説明する。機関1の
吸気通路2にはスロットル弁3が設けられるが、このス
ロットル弁3をバイパスする補助空気通路4が設けられ
ており、この補助空気通路4にはアイドル回転数制御用
の電磁式の補助空気制御弁5が介装されている。
Embodiments of the present invention will be described below. FIG. 2 is a system diagram of an internal combustion engine showing an embodiment. First, this will be described. A throttle valve 3 is provided in an intake passage 2 of the engine 1, and an auxiliary air passage 4 that bypasses the throttle valve 3 is provided. In this auxiliary air passage 4, an electromagnetic auxiliary for idle speed control is provided. An air control valve 5 is interposed.

【0015】補助空気制御弁5としては、一定周期内に
おけるON時間割合(デューティ)を変化させるデュー
ティ信号により駆動されて、デューティ増大により開度
が増大、デューティ減少により開度が減少する比例ソレ
ノイド方式や、一定周期毎にモータに制御信号を指令し
空気量を増減制御するステップモータ方式がある。ま
た、吸気通路2には各気筒毎に電磁式の燃料噴射弁6が
設けられていて、これにより燃料供給がなされる。そし
て、燃焼室7内に点火栓8が設けられていて、これによ
り混合気に点火される。
The auxiliary air control valve 5 is driven by a duty signal that changes the ON time ratio (duty) within a certain cycle, and the opening is increased by increasing the duty, and the opening is decreased by decreasing the duty. Alternatively, there is a step motor system in which a control signal is commanded to a motor at regular intervals to increase or decrease the amount of air. An electromagnetic fuel injection valve 6 is provided for each cylinder in the intake passage 2 to supply fuel. Then, an ignition plug 8 is provided in the combustion chamber 7, whereby the mixture is ignited.

【0016】補助空気制御弁5、燃料噴射弁6及び点火
栓8の作動を制御するコントロールユニット10には各
種のセンサ・スイッチから信号が入力されている。具体
的には、機関1の所定クランク角毎に信号を出力するク
ランク角センサ11が設けられ、これによりクランク角
を検出し得ると共に、機関回転数Neを算出可能であ
る。
Signals are input to the control unit 10 for controlling the operation of the auxiliary air control valve 5, the fuel injection valve 6, and the ignition plug 8 from various sensors and switches. Specifically, a crank angle sensor 11 that outputs a signal at every predetermined crank angle of the engine 1 is provided, so that the crank angle can be detected and the engine speed Ne can be calculated.

【0017】また、吸気通路2内で吸入空気流量Qaを
検出するエアフローメータ12、スロットル弁3の開度
TVOを検出するスロットルセンサ13、機関冷却水温
Twを検出する水温センサ14、排気空燃比のリッチ・
リーンを検出する酸素センサ15等が設けられている。
ここにおいて、コントロールユニット10内のマイクロ
コンピュータは、次のように、補助空気制御弁5への制
御量を制御して、アイドル回転数を制御する。
Further, an air flow meter 12 for detecting an intake air flow rate Qa in the intake passage 2, a throttle sensor 13 for detecting an opening TVO of the throttle valve 3, a water temperature sensor 14 for detecting an engine cooling water temperature Tw, and an exhaust air-fuel ratio rich·
An oxygen sensor 15 for detecting lean is provided.
Here, the microcomputer in the control unit 10 controls the control amount to the auxiliary air control valve 5 to control the idle speed as follows.

【0018】機関冷却水温Twに応じて基本制御量IS
CTWを定めたテーブルを参照し、実際の水温Twから
基本制御量ISCTWを設定する。また、アイドル回転
数フィードバック制御条件にて、機関冷却水温Twに応
じて目標アイドル回転数Nset を定めたテーブルを参照
し、実際の水温Twから目標アイドル回転数Nset を設
定する。そして、実際のアイドル回転数Neと目標アイ
ドル回転数Nset とを比較し、Ne<Nset の場合は、
フィードバック制御量ISCIを所定の積分分ΔI増大
させる。逆に、Ne>Nset の場合は、フィードバック
制御量ISCIを所定の積分分ΔI減少させる。
Basic control amount IS according to engine cooling water temperature Tw
The basic control amount ISCTW is set based on the actual water temperature Tw with reference to the table defining the CTW. Further, the target idle speed Nset is set from the actual water temperature Tw with reference to a table in which the target idle speed Nset is determined according to the engine cooling water temperature Tw under the idle speed feedback control condition. Then, the actual idle speed Ne and the target idle speed Nset are compared, and if Ne <Nset,
The feedback control amount ISCI is increased by a predetermined integral ΔI. Conversely, if Ne> Nset, the feedback control amount ISCI is decreased by a predetermined integral ΔI.

【0019】そして、基本制御量ISCTWにフィード
バック制御量ISCIなどを加算して、制御量ISCO
Nを、 ISCON=ISCTW+ISCI+・・・ により、算出する。そして、制御量ISCONに対応す
る制御信号を出力して、補助空気制御弁5を開閉駆動す
る。
Then, the feedback control amount ISCI and the like are added to the basic control amount ISCTW, and the control amount ISCO
N is calculated by ISCON = ISCTW + ISCI +. Then, a control signal corresponding to the control amount ISCON is output to drive the auxiliary air control valve 5 to open and close.

【0020】また、吸入空気流量Qaと機関回転数Ne
とから、基本燃料噴射量Tp=K×Qa/Ne(Kは定
数)を演算し、これに各種補正を施して、最終的な燃料
噴射量Ti=Tp×COEF(COEFは空燃比フィー
ドバック補正係数を含む各種補正係数)を設定し、機関
回転に同期した所定のタイミングで、Tiに相応するパ
ルス巾の駆動パルス信号を燃料噴射弁6に出力して、燃
料噴射を行わせる。
The intake air flow rate Qa and the engine speed Ne
From the above, the basic fuel injection amount Tp = K × Qa / Ne (K is a constant) is calculated, and various corrections are performed to obtain the final fuel injection amount Ti = Tp × COEF (COEF is the air-fuel ratio feedback correction coefficient. And a drive pulse signal having a pulse width corresponding to Ti is output to the fuel injection valve 6 at a predetermined timing synchronized with the engine rotation to cause fuel injection.

【0021】また、機関回転数Ne及び基本燃料噴射量
Tpに応じて基本点火時期ADVMAPを定めたマップ
を参照するなどして、点火時期ADVを定め、その点火
時期ADVにて点火信号を出力して、点火コイル16を
介し、点火栓8による点火動作を行わせる。次に減速時
制御について説明する。
The ignition timing ADV is determined by referring to a map that defines the basic ignition timing ADVMAP according to the engine speed Ne and the basic fuel injection amount Tp, and an ignition signal is output at the ignition timing ADV. Then, the ignition operation by the ignition plug 8 is performed via the ignition coil 16. Next, control during deceleration will be described.

【0022】図3は減速時制御ルーチンのフローチャー
トであり、本ルーチンは所定時間毎に実行される。ステ
ップ1(図にはS1と記す。以下同様)では、クランク
角センサ11からの信号に基づいて、機関回転数Neを
検出する。ステップ2では、機関回転数の今回の検出値
Neと前回の検出値Neold との差により、減速度ΔN
e=Neold −Neを算出する。
FIG. 3 is a flowchart of a deceleration control routine, which is executed at predetermined time intervals. In step 1 (referred to as S1 in the figure, the same applies hereinafter), the engine speed Ne is detected based on a signal from the crank angle sensor 11. In step 2, the deceleration ΔN is calculated based on the difference between the current detected value Ne of the engine speed and the previous detected value Neold.
e = Neold−Ne is calculated.

【0023】ステップ3では、所定の減速補正条件か否
かを判定する。ここでいう減速補正条件とは、少なくと
もスロットル開度TVO=0(全閉)であることとす
る。減速補正条件の場合は、ステップ4へ進んで、減速
度ΔNe及び機関回転数Neからマップを参照して、補
正開始回転数Ne1を設定する。ここで、減速度ΔNe
が大きい程、補正開始回転数Ne1を高く設定する。
In step 3, it is determined whether a predetermined deceleration correction condition is satisfied. Here, the deceleration correction condition is that the throttle opening TVO = 0 (fully closed). In the case of the deceleration correction condition, the routine proceeds to step 4, where the correction start rotation speed Ne1 is set with reference to the map based on the deceleration ΔNe and the engine rotation speed Ne. Here, the deceleration ΔNe
Is larger, the correction start rotation speed Ne1 is set higher.

【0024】そして、ステップ5で、機関回転数Neと
補正開始回転数Ne1とを比較し、機関回転数Neが補
正開始回転数Ne1以下となった場合(Ne≦Ne1の
場合)に、ステップ6へ進む。ステップ6では、機関回
転数Neが補正開始回転数Ne1以下となった初回か否
かを判定し、初回の場合は、ステップ7で、減速度ΔN
e及び機関回転数Neからマップを参照して、補正時間
として、タイマを設定する。ここで、減速度ΔNeが大
きい程、タイマ(補正時間)を長く設定する。初回以降
の場合は、ステップ8で、補正開始からの経過時間を計
時すべく、タイマを演算(カウント)する。
In step 5, the engine speed Ne is compared with the correction start speed Ne1. If the engine speed Ne is equal to or less than the correction start speed Ne1 (if Ne ≦ Ne1), step 6 is executed. Proceed to. In step 6, it is determined whether or not the engine speed Ne is equal to or less than the correction start speed Ne1 for the first time.
A timer is set as a correction time by referring to a map from e and the engine speed Ne. Here, the timer (correction time) is set longer as the deceleration ΔNe is larger. In the case of the first time or later, in step 8, a timer is calculated (counted) in order to measure the elapsed time from the start of correction.

【0025】次にステップ9では、タイマの設定内、す
なわち、補正時間内か否かを判定し、補正時間内であれ
ば、ステップ10へ進む。ステップ10では、機関回転
数Neと補正終了回転数Ne2とを比較し、機関回転数
Neが補正終了回転数Ne2より高い場合(Ne>Ne
2の場合)に、ステップ11へ進む。
Next, at step 9, it is determined whether or not the time is within the setting of the timer, that is, within the correction time. If it is within the correction time, the process proceeds to step 10. In step 10, the engine speed Ne is compared with the correction end rotation speed Ne2, and when the engine rotation speed Ne is higher than the correction end rotation speed Ne2 (Ne> Ne).
In the case of (2), the process proceeds to step 11.

【0026】ステップ11では、減速度ΔNe及び機関
回転数Neに応じて空気補正量ISCDECを定めたマ
ップを参照し、実際のΔNe,Neから、空気補正量I
SCDECを設定する。ここで、減速度ΔNeが大きい
程、空気補正量ISCDECを大きく設定する。次のス
テップ12では、減速度ΔNe及び機関回転数Neに応
じて点火時期補正量ADVDECを定めたマップを参照
し、実際のΔNe,Neから、点火時期補正量ADVD
ECを設定して、本ルーチンを終了する。ここで、減速
度ΔNeが大きい程、進角側への点火時期補正量ADV
DECを大きく設定する。また、減速中の機関回転数N
eの低下に伴って進角側への点火時期補正量ADVDE
Cを小さくする。
In step 11, a map in which the air correction amount ISCDEC is determined according to the deceleration ΔNe and the engine speed Ne is referred to, and based on the actual ΔNe and Ne, the air correction amount I
Set SCDEC. Here, the larger the deceleration ΔNe is, the larger the air correction amount ISCDEC is set. In the next step 12, the ignition timing correction amount ADVD is determined from the actual ΔNe and Ne by referring to a map that defines the ignition timing correction amount ADVDEC according to the deceleration ΔNe and the engine speed Ne.
EC is set, and this routine ends. Here, the larger the deceleration ΔNe, the more the ignition timing correction amount ADV to the advance side
Set DEC large. Also, the engine speed N during deceleration
e, the ignition timing correction amount ADDVD to the advance side with the decrease of e
Decrease C.

【0027】一方、ステップ3での判定で減速補正条件
ではない場合、ステップ5での判定で機関回転数Neが
補正開始回転数Ne1より高い場合、ステップ9での判
定でタイマの設定外内の場合(補正時間が終了した場
合)、ステップ10での判定で機関回転数Neが補正終
了回転数Ne2以下となった場合は、ステップ13,1
4へ進む。
On the other hand, if the condition is not the deceleration correction condition in the determination in step 3, if the engine speed Ne is higher than the correction start speed Ne1 in the determination in step 5, if the determination in step 9 is outside the setting of the timer, In this case (when the correction time has ended), if the engine speed Ne is equal to or less than the correction end speed Ne2 in the determination in step 10, steps 13 and 1
Proceed to 4.

【0028】ステップ13では、空気補正量ISCDE
C=0とし、また、ステップ14では、点火時期補正量
ADVDEC=0として、本ルーチンを終了する。図4
は空気量補正ルーチンのフローチャートである。ステッ
プ21では、補助空気制御弁5に対する基本制御量IS
CTWに、フィードバック制御量ISCIの他、図3の
減速時制御ルーチンによる減速時の空気補正量ISCD
ECを加算して、制御量ISCONを、 ISCON=ISCTW+ISCI+・・・+ISCD
EC により、算出する。
In step 13, the air correction amount ISCDE
C is set to 0, and in step 14, the ignition timing correction amount AVDEC = 0 is set, and the routine ends. FIG.
9 is a flowchart of an air amount correction routine. In step 21, the basic control amount IS for the auxiliary air control valve 5
The CTW includes, in addition to the feedback control amount ISCI, the air correction amount ISCD during deceleration by the deceleration control routine in FIG.
By adding EC, the control amount ISCON is calculated as: ISCON = ISCTW + ISCI +... + ISCD
It is calculated by EC.

【0029】そして、ステップ22で、制御量ISCO
Nに対応する制御信号を出力して、補助空気制御弁5を
開閉駆動する。図6は点火時期補正ルーチンのフローチ
ャートである。ステップ31では、機関回転数Ne及び
基本燃料噴射量Tpに応じて定めた基本点火時期ADV
MAPに、図3の減速時制御ルーチンによる減速時の点
火時期補正量ADVDECを加算して、点火時期ADV
を、 ADV=ADVMAP+・・・+ADVDEC により算出する。
Then, in step 22, the control amount ISCO
A control signal corresponding to N is output to open / close the auxiliary air control valve 5. FIG. 6 is a flowchart of the ignition timing correction routine. In step 31, the basic ignition timing ADV determined according to the engine speed Ne and the basic fuel injection amount Tp
An ignition timing correction amount ADDEC at the time of deceleration by the deceleration control routine of FIG. 3 is added to MAP, and the ignition timing ADV
Is calculated by ADV = ADVMAP +... + ADVDEC.

【0030】ステップ32では、算出された点火時期A
DVを所定のレジスタにセットする。これにより、その
点火時期ADVにて点火信号が出力され、点火コイル1
6を介し、点火栓8による点火動作が行われる。尚、図
3のステップ1,2の部分が減速状態検出手段に相当
し、図3のステップ3〜11及び図4のステップ21の
部分が空気量補正手段に相当する。また、図3のステッ
プ12及び図4のステップ31の部分が点火時期補正手
段に相当する。
In step 32, the calculated ignition timing A
DV is set in a predetermined register. As a result, an ignition signal is output at the ignition timing ADV, and the ignition coil 1
The ignition operation by the ignition plug 8 is performed via 6. Steps 1 and 2 in FIG. 3 correspond to deceleration state detection means, and steps 3 to 11 in FIG. 3 and step 21 in FIG. 4 correspond to air amount correction means. Further, the portions of step 12 in FIG. 3 and step 31 in FIG. 4 correspond to ignition timing correction means.

【0031】次に図6のタイムチャートを参照して作用
を説明する。走行状態から、スロットル弁3が全閉にな
って、減速状態に移行することにより、機関回転数Ne
が低下する。このとき、減速燃料カットもなされる。そ
して、機関回転数Neが補正開始回転数Ne1まで低下
すると、減速燃料カットからの復帰とほぼ同時に又はこ
れに先立って、空気量補正が開始され、空気補正量IS
CDECの分、機関への供給空気量が増量される。ここ
で、減速度ΔNeが大きい程、補正開始回転数Ne1が
高回転に設定され、空気補正量ISCDECも大きく設
定される。
Next, the operation will be described with reference to the time chart of FIG. From the running state, the throttle valve 3 is fully closed and the state shifts to the deceleration state, whereby the engine speed Ne is increased.
Decrease. At this time, a deceleration fuel cut is also performed. When the engine rotational speed Ne decreases to the correction start rotational speed Ne1, the air amount correction is started almost simultaneously with or before the return from the deceleration fuel cut, and the air correction amount IS
The amount of air supplied to the engine is increased by the amount of CDEC. Here, as the deceleration ΔNe is larger, the correction start rotation speed Ne1 is set to a higher rotation, and the air correction amount ISCDEC is set to be larger.

【0032】また、この空気量補正の開始と同時に、空
気量補正の応答遅れを補償するように、点火時期補正が
開始されて、点火時期補正量ADVDECの分、点火時
期が進角補正される。この点火時期補正量ADVDEC
は減速度が大きい程大きく設定され、その後の機関回転
数Neの低下に伴って小さくなり、空気量補正が十分効
くときには、略0になる。
Simultaneously with the start of the air amount correction, the ignition timing correction is started so as to compensate for the response delay of the air amount correction, and the ignition timing is advanced by the amount of the ignition timing correction amount ADDEC. . This ignition timing correction amount AVDEC
Is set to be larger as the deceleration is larger, becomes smaller as the engine speed Ne decreases, and becomes substantially zero when the air amount correction is sufficiently effective.

【0033】このような、空気量補正と点火時期補正と
により、アイドル戻り時の回転数の落ち込みによるエン
ストを防止できることはもちろん、回転変動を抑制し
て、安定性を高めることができる。一方、タイマによる
補正時間が経過するか、機関回転数Neが補正終了回転
数Ne2に達するかのいずれかにより、空気量補正が終
了する。ここで、減速度ΔNeが大きい程、補正時間は
長く設定される。
With such air amount correction and ignition timing correction, it is possible not only to prevent engine stall due to a decrease in the number of revolutions at the time of returning to idling, but also to suppress fluctuations in rotation and improve stability. On the other hand, the air amount correction ends when either the correction time by the timer elapses or when the engine rotation speed Ne reaches the correction end rotation speed Ne2. Here, the larger the deceleration ΔNe, the longer the correction time is set.

【0034】尚、本実施形態では、空気量補正に、補助
空気制御弁5を用いたが、電制スロットル弁を備える機
関では、これを用いるようにしてもよい。すなわち、図
7に本発明の実施の他の形態を示すように、電子制御式
スロットルコントローラ17によりスロットル弁3を直
接回動制御する方式(電制スロットル弁)では、スロッ
トル弁3の開度を補正制御して、空気量補正を行うよう
にしてもよい。
In this embodiment, the auxiliary air control valve 5 is used for air amount correction. However, this may be used in an engine equipped with an electronically controlled throttle valve. That is, as shown in another embodiment of the present invention in FIG. 7, in a system in which the electronic control type throttle controller 17 directly controls the rotation of the throttle valve 3 (electrically controlled throttle valve), the opening degree of the throttle valve 3 is controlled. The air amount may be corrected by performing the correction control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の構成を示す機能ブロック図FIG. 1 is a functional block diagram showing a configuration of the present invention.

【図2】 本発明の実施の一形態を示す内燃機関のシス
テム図
FIG. 2 is a system diagram of an internal combustion engine showing an embodiment of the present invention.

【図3】 減速時制御ルーチンのフローチャートFIG. 3 is a flowchart of a deceleration control routine.

【図4】 空気量補正ルーチンのフローチャートFIG. 4 is a flowchart of an air amount correction routine.

【図5】 点火時期補正ルーチンのフローチャートFIG. 5 is a flowchart of an ignition timing correction routine.

【図6】 減速時制御のタイムチャートFIG. 6 is a time chart of deceleration control.

【図7】 本発明の実施の他の形態を示す内燃機関のシ
ステム図
FIG. 7 is a system diagram of an internal combustion engine showing another embodiment of the present invention.

【符号の説明】 1 機関 2 吸気通路 3 スロットル弁 4 バイパス通路 5 補助空気制御弁 6 燃料噴射弁 8 点火栓 10 コントロールユニット 11 クランク角センサ 17 電子制御式スロットルコントローラ[Description of Signs] 1 Engine 2 Intake passage 3 Throttle valve 4 Bypass passage 5 Auxiliary air control valve 6 Fuel injection valve 8 Spark plug 10 Control unit 11 Crank angle sensor 17 Electronically controlled throttle controller

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】機関の減速中に機関回転数及び減速度を検
出する減速状態検出手段と、 機関の減速中に機関回転数及び減速度に基づいて機関へ
の供給空気量を増大側に補正する空気量補正手段と、 を含んで構成される内燃機関の減速時制御装置。
1. A deceleration state detecting means for detecting an engine speed and a deceleration while the engine is decelerating, and correcting the amount of air supplied to the engine to an increasing side based on the engine speed and the deceleration while the engine is decelerating. A deceleration control device for an internal combustion engine, comprising:
【請求項2】前記空気量補正手段は、減速度が大きい
程、機関への供給空気量の増大側補正量を大きくするも
のであることを特徴とする請求項1記載の内燃機関の減
速時制御装置。
2. The deceleration of an internal combustion engine according to claim 1, wherein the air amount correction means increases the amount of correction on the increasing side of the amount of air supplied to the engine as the deceleration increases. Control device.
【請求項3】前記空気量補正手段は、機関の減速中に、
機関回転数が所定の補正開始回転数以下となってから、
所定の補正時間が経過するか、機関回転数が所定の補正
終了回転数以下となるまで、機関への供給空気量を増大
側に補正するものであることを特徴とする請求項1又は
請求項2記載の内燃機関の減速時制御装置。
3. The method according to claim 2, wherein the air amount correcting means is configured to output the air amount during the deceleration of the engine.
After the engine speed becomes equal to or less than the predetermined correction start speed,
2. The method according to claim 1, wherein the amount of air supplied to the engine is increased until the predetermined correction time elapses or the engine speed becomes equal to or less than the predetermined correction end rotation speed. 3. The deceleration control device for an internal combustion engine according to 2.
【請求項4】前記補正開始回転数が少なくとも減速度に
応じて設定されることを特徴とする請求項3記載の内燃
機関の減速時制御装置。
4. The deceleration control device for an internal combustion engine according to claim 3, wherein the correction start rotational speed is set at least according to deceleration.
【請求項5】前記補正時間が少なくとも減速度に応じて
設定されることを特徴とする請求項3記載の内燃機関の
減速時制御装置。
5. The deceleration control device for an internal combustion engine according to claim 3, wherein the correction time is set at least according to deceleration.
【請求項6】前記空気量補正手段の応答遅れ分を点火時
期により補正する点火時期補正手段を設けたことを特徴
とする請求項1〜請求項5のいずれか1つに記載の内燃
機関の減速時制御装置。
6. An internal combustion engine according to claim 1, further comprising an ignition timing correcting means for correcting a response delay of said air amount correcting means by an ignition timing. Control device during deceleration.
【請求項7】前記点火時期補正手段は、減速度が大きい
程、点火時期の進角側への補正量を大きくするものであ
ることを特徴とする請求項6記載の内燃機関の減速時制
御装置。
7. The deceleration control of an internal combustion engine according to claim 6, wherein the ignition timing correction means increases the correction amount of the ignition timing to the advanced side as the deceleration increases. apparatus.
【請求項8】前記点火時期補正手段は、減速中の機関回
転数の低下に伴って、点火時期の進角側への補正量を小
さくするものであることを特徴とする請求項6又は請求
項7記載の内燃機関の減速時制御装置。
8. The ignition timing correction means for reducing the correction amount of the ignition timing to the advance side as the engine speed decreases during deceleration. Item 7. The deceleration control device for an internal combustion engine according to Item 7.
JP10161056A 1997-09-10 1998-06-09 Deceleration timing control device for internal combustion engine Pending JPH11148402A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP10161056A JPH11148402A (en) 1997-09-10 1998-06-09 Deceleration timing control device for internal combustion engine
US09/150,209 US5934247A (en) 1997-09-10 1998-09-09 Engine deceleration control device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24548897 1997-09-10
JP9-245488 1997-09-10
JP10161056A JPH11148402A (en) 1997-09-10 1998-06-09 Deceleration timing control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH11148402A true JPH11148402A (en) 1999-06-02

Family

ID=26487326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10161056A Pending JPH11148402A (en) 1997-09-10 1998-06-09 Deceleration timing control device for internal combustion engine

Country Status (2)

Country Link
US (1) US5934247A (en)
JP (1) JPH11148402A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020049320A (en) * 2000-12-19 2002-06-26 이계안 An idle control method for a inertial moving vehicle
JP2003518580A (en) * 1999-12-24 2003-06-10 オービタル、エンジン、カンパニー(オーストラリア)、プロプライエタリ、リミテッド Engine idling speed control method
US6969341B2 (en) 2002-10-21 2005-11-29 Nissan Motor Co., Ltd. Engine deceleration control system
CN108612594A (en) * 2018-04-09 2018-10-02 三国(上海)企业管理有限公司 Idling for internal combustion engine rotating speed controls

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6029624A (en) * 1998-12-17 2000-02-29 Daimlerchrysler Corporation Method for preventing powertrain vibration
US6505594B1 (en) * 1999-08-23 2003-01-14 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine and method of controlling internal combustion engine
JP4173260B2 (en) 1999-10-14 2008-10-29 ヤマハマリン株式会社 Ship propulsion unit
JP4208108B2 (en) 1999-10-14 2009-01-14 ヤマハマリン株式会社 Fuel injection type 4-cycle engine
JP4462682B2 (en) 1999-11-30 2010-05-12 ヤマハ発動機株式会社 Small ship propulsion device
US6434467B1 (en) 2000-09-26 2002-08-13 Ford Global Technologies, Inc. Vehicle control method for vehicle having a torque converter
US6516778B1 (en) 2000-09-26 2003-02-11 Ford Global Technologies, Inc. Engine airflow control
US6945910B1 (en) 2000-09-26 2005-09-20 Ford Global Technologies, Llc Vehicle trajectory control system
US6506140B1 (en) 2000-09-26 2003-01-14 Ford Global Technologies, Inc. Control for vehicle with torque converter
GB2368924B (en) 2000-09-26 2004-12-15 Ford Global Tech Inc A method and apparatus for controlling a powertrain
US6600988B1 (en) 2000-09-26 2003-07-29 Ford Global Technologies, Inc. Vehicle trajectory control system and method
JP2002202038A (en) * 2001-01-09 2002-07-19 Honda Motor Co Ltd Ignition timing control device of engine
ITMI20010701A1 (en) * 2001-04-02 2002-10-02 Ducati Energia Spa METHOD AND EQUIPMENT FOR THE CONTROL OF HARMFUL EMISSIONS OF INTERNAL COMBUSTION ENGINES
US6770009B2 (en) * 2002-12-16 2004-08-03 Ford Global Technologies, Llc Engine speed control in a vehicle during a transition of such vehicle from rest to a moving condition
JP4539211B2 (en) * 2004-07-23 2010-09-08 日産自動車株式会社 Control device for internal combustion engine
US7478621B2 (en) * 2006-04-11 2009-01-20 Zf Friedrichshafen Ag Method of compensating for engine speed overshoot
JP5030851B2 (en) * 2008-04-23 2012-09-19 本田技研工業株式会社 First idle control device for vehicle engine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05106484A (en) * 1991-10-17 1993-04-27 Mitsubishi Electric Corp Internal combustion engine control device and method thereof
JPH0626431A (en) * 1992-05-07 1994-02-01 Nissan Motor Co Ltd Ignition timing control device of internal combustion engine
JP3281993B2 (en) * 1993-03-31 2002-05-13 マツダ株式会社 Engine control device
JP2923849B2 (en) * 1996-02-21 1999-07-26 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003518580A (en) * 1999-12-24 2003-06-10 オービタル、エンジン、カンパニー(オーストラリア)、プロプライエタリ、リミテッド Engine idling speed control method
KR20020049320A (en) * 2000-12-19 2002-06-26 이계안 An idle control method for a inertial moving vehicle
US6969341B2 (en) 2002-10-21 2005-11-29 Nissan Motor Co., Ltd. Engine deceleration control system
CN108612594A (en) * 2018-04-09 2018-10-02 三国(上海)企业管理有限公司 Idling for internal combustion engine rotating speed controls

Also Published As

Publication number Publication date
US5934247A (en) 1999-08-10

Similar Documents

Publication Publication Date Title
JPH11148402A (en) Deceleration timing control device for internal combustion engine
JPH0626431A (en) Ignition timing control device of internal combustion engine
JPH0783150A (en) Ignition timing control device for internal combustion engine
JP3141563B2 (en) Air flow control device for internal combustion engine
JPH0599055A (en) Controller for internal combustion engine with assist air supply device
JP3622273B2 (en) Control device for internal combustion engine
JP3281993B2 (en) Engine control device
JPH0783148A (en) Control device for internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JPH0626432A (en) Ignition timing control device of internal combustion engine
JPH0379543B2 (en)
JP3489204B2 (en) Control device for internal combustion engine
JPH07310570A (en) Lean burn controller for internal combustion engine
JP2930256B2 (en) Engine throttle valve controller
JP2001090581A (en) Control device for internal combustion engine
JPH0742876B2 (en) Electronic control unit for internal combustion engine
JP3123357B2 (en) Air-fuel ratio control device for internal combustion engine
JPH09242654A (en) Ignition timing controller for engine
JP2627099B2 (en) Ignition timing control device for internal combustion engine
JPH0559994A (en) Control device for engine
JP2565345B2 (en) Fuel supply device for internal combustion engine
JP3561142B2 (en) Control device for internal combustion engine
JPH0415963Y2 (en)
JPS61283748A (en) Acceleration shock relieving device in internal-combustion engine
JPH0612087B2 (en) Electronically controlled fuel injection device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050405