JPH11147965A - Fiber-reinforced resin composite and prepreg - Google Patents

Fiber-reinforced resin composite and prepreg

Info

Publication number
JPH11147965A
JPH11147965A JP33358097A JP33358097A JPH11147965A JP H11147965 A JPH11147965 A JP H11147965A JP 33358097 A JP33358097 A JP 33358097A JP 33358097 A JP33358097 A JP 33358097A JP H11147965 A JPH11147965 A JP H11147965A
Authority
JP
Japan
Prior art keywords
fiber
resin
composite material
epoxy resin
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33358097A
Other languages
Japanese (ja)
Inventor
Takeshi Naito
猛 内藤
Masato Ando
正人 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP33358097A priority Critical patent/JPH11147965A/en
Publication of JPH11147965A publication Critical patent/JPH11147965A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a fiber-reinforced resin composite or prepreg which is resistant to ignition, has good mechanical properties after heat exposure, and is suitable for the use in transportation means such as railroad cars. SOLUTION: This composite comprises a fibrous reinforcement and a matrix resin, does not substantially ignite in the ignition test according to the test method No. 81 of the Ministry of Transport, and exhibits a compression strength after impact of 15 kgf/mu<2> or higher and an interlayer shear strength of 7 kgf/mm<2> or higher when measured after heat exposure in a heated oven at 250 deg.C for 10 min. The matrix resin comprises a nonhalogen epoxy resin, a metal oxide, a thermoplastic resin having a glass transition temp. of 120 deg.C or higher, and a curative for an epoxy resin.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐着火性、難燃性
に優れ、しかも耐衝撃性に優れた繊維強化樹脂複合材料
及び該繊維強化樹脂複合材料を得るためのプリプレグに
関する。更に詳しくは、鉄道車両等の交通機関に使用す
るのに好適な繊維強化エポキシ樹脂複合材料及びプリプ
レグに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced resin composite material having excellent ignition resistance, flame retardancy and impact resistance, and a prepreg for obtaining the fiber-reinforced resin composite material. More specifically, the present invention relates to a fiber-reinforced epoxy resin composite material and a prepreg suitable for use in transportation such as railway vehicles.

【0002】[0002]

【従来の技術】炭素繊維を強化材とした樹脂との複合材
料は、その優れた機械的特性からスポーツ用品を初めと
して産業資材、交通機関等の分野に利用されてきてい
る。特に航空宇宙分野、車両分野等を対象とした分野で
は、各種エポキシ樹脂を主成分としたマトリックス樹脂
との複合材料が開発されてきているが、近年、特に難燃
性・耐衝撃性の向上が強く要望されるようになってきて
いる。
2. Description of the Related Art Composite materials with carbon fiber-reinforced resins have been used in the fields of sports goods, industrial materials, transportation, etc. due to their excellent mechanical properties. Especially in the fields of aerospace and vehicles, composite materials with matrix resins containing various epoxy resins as main components have been developed. There is a strong demand.

【0003】従来、エポキシ樹脂をマトリックスとした
繊維強化複合材料の難燃化方法としては、 a.ハロゲン化エポキシ樹脂をマトリックスに配合する
繊維強化複合材料の難燃化方法(例えば、特開昭55−
92757号公報); b.ハロゲン化合物、リン化合物等の添加物をマトリッ
クスに配合する繊維強化複合材料の難燃化方法; c.水酸化アルミニウム等の無機質充填材をマトリック
スに配合する繊維強化複合材料の難燃化方法(例えば、
特開平1−197554号公報);等が知られている。
[0003] Conventionally, methods for flame retarding fiber-reinforced composite materials using an epoxy resin as a matrix include: a. Flame-retardant methods for fiber-reinforced composite materials in which a halogenated epoxy resin is blended in a matrix (see, for example,
No. 92775); b. A method for flame retarding a fiber reinforced composite material in which additives such as a halogen compound and a phosphorus compound are blended in a matrix; c. Flame-retardant methods for fiber-reinforced composite materials in which an inorganic filler such as aluminum hydroxide is blended in the matrix (for example,
JP-A-1-197554); and the like.

【0004】上記a〜cの難燃化方法の対象物は強化繊
維とマトリックス樹脂との積層物からなる複合材料であ
り、燃焼時に対象物から発生するハロゲンガスや水蒸気
等によって、複合材料と空気とを遮断し、酸素の供給を
止め、複合材料の燃焼を制御しようとする方法である。
また、無機粉末成分添加によって、有機成分いわゆる可
燃成分を少なくし、燃焼を制御する方法である。
The object of the flame-retarding methods a to c is a composite material composed of a laminate of a reinforcing fiber and a matrix resin. To stop the supply of oxygen and control the combustion of the composite material.
In addition, this is a method of controlling combustion by reducing an organic component, that is, a combustible component, by adding an inorganic powder component.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、複合材
料は、一般に薄い材料の積層物であるため、上記の積層
物と空気とを遮断する手法によると、対象物である複合
材料が熱に暴露した時に、複合材料の表層付近の層間に
気泡が生じ、積層前の各単位である薄い各積層材に剥離
し、その結果、薄い積層材に着火し、燃焼初期に表層が
燃焼し、ついで対象物から発生するハロゲンガスや水蒸
気等によって、空気を遮断する現象を生ずる。
However, since the composite material is generally a laminate of a thin material, according to the above-described technique of shutting off the laminate and the air, the composite material as an object is exposed to heat. Occasionally, air bubbles are generated between layers near the surface layer of the composite material, and peeled off into thin laminated materials that are each unit before lamination, and as a result, the thin laminated material is ignited, and the surface layer is burned in the early stage of combustion, and then the target object is burned. Halogen gas or water vapor generated from the air causes a phenomenon of shutting off air.

【0006】このように一端着火すると、燃焼によるガ
スバリアを生じ難燃化目的が達成されるが、この際に生
ずるハロゲンガスや燃焼ガスによって人体に悪影響を及
ぼす結果となる。
[0006] When the ignition is performed once as described above, a gas barrier due to combustion is generated to achieve the purpose of flame retardation, but the halogen gas and the combustion gas generated at this time have a bad effect on the human body.

【0007】交通機関用の材料では、まず着火しないこ
とが重要であり、運輸省鉄運81号でも耐着火性の判定
基準を定め、材料の耐着火性を求めている。
[0007] It is important that a material for transportation use is not ignited first, and the Ministry of Transport, Iron Transportation No. 81 also sets a criterion for determining the ignition resistance and seeks the ignition resistance of the material.

【0008】また、上述のように、火災の初期段階での
熱暴露によって積層物内にガスを生じると、機械的特
性、特に衝撃後の強度が極端に低下し、難燃化の目的は
達成されても、内部構造材として機能し得ないという問
題を生ずる。
Further, as described above, when gas is generated in the laminate by heat exposure at an early stage of a fire, mechanical properties, particularly strength after impact, are extremely reduced, and the object of flame retardancy is achieved. Even if it is performed, there arises a problem that it cannot function as an internal structural material.

【0009】また、上記a.b.の手法では、特開昭5
5−92757号公報等で指摘されているように、臭素
含有エポキシ樹脂の配合割合が多くなると、熱暴露前で
も機械的特性、耐熱性に優れた樹脂組成物が得難くなる
という問題を有する。
Further, in the above a. b. In the method of
As pointed out in, for example, Japanese Patent Application Laid-Open No. 5-92757, there is a problem that it becomes difficult to obtain a resin composition having excellent mechanical properties and heat resistance even before exposure to heat, when the proportion of the bromine-containing epoxy resin is increased.

【0010】また、上記c.の手法では、特開平1−1
97554号公報等で指摘されているように、水酸化ア
ルミニウム等の無機質充填材の配合割合が多くなるとチ
クソトロピー性が増し、成形性が不良になる。且つ、機
械的特性も大きく低下してしまう。無機成分の投入によ
る方法では、やはり機械的特性が大きく低下してしま
う。
The above c. According to the method described in
As pointed out in Japanese Patent No. 97554 and the like, when the blending ratio of the inorganic filler such as aluminum hydroxide increases, the thixotropy increases and the moldability deteriorates. In addition, the mechanical properties are greatly reduced. In the method based on the addition of the inorganic component, the mechanical properties are also greatly reduced.

【0011】そこで本発明は、火災暴露によっても着火
せず、熱暴露時にもハロゲンガス、水蒸気等の分解ガス
を発生せず、しかも、熱暴露後の機械的性質が良好で、
成形性にも優れた炭素繊維強化複合材料及び該繊維強化
樹脂複合材料を得るためのプリプレグを提供することを
目的とする。
Therefore, the present invention does not ignite even by fire exposure, does not generate decomposition gases such as halogen gas and water vapor upon heat exposure, and has good mechanical properties after heat exposure.
An object of the present invention is to provide a carbon fiber reinforced composite material excellent in moldability and a prepreg for obtaining the fiber reinforced resin composite material.

【0012】[0012]

【課題を解決するための手段】前記した問題点を解決す
るために本発明は、繊維強化材とマトリックス樹脂から
なる繊維強化樹脂複合材料であって、後述する運輸省鉄
運81号に準処した着火試験で実質的に着火せず、しか
も後述する熱暴露試験後において、衝撃後圧縮強度が1
5kgf/mm2 以上、層間剪断強度が7kgf/mm
2 以上であることを特徴とする繊維強化樹脂複合材料で
あり、さらにまた、この複合材料を製造するためのプリ
プレグである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to a fiber reinforced resin composite material comprising a fiber reinforced material and a matrix resin. Did not substantially ignite in the ignited test, and had a compressive strength after impact of 1 after the heat exposure test described later.
5 kgf / mm 2 or more, interlayer shear strength is 7 kgf / mm
It is a fiber-reinforced resin composite material characterized by being 2 or more, and further a prepreg for producing this composite material.

【0013】本発明の繊維強化樹脂複合材料は、ガス自
体の発生を抑え、着火自体を阻止しようとするものであ
り、従来の難燃化手段の技術思想、即ち、燃焼時にハロ
ゲンガス、水蒸気等を発生させることによって燃焼物と
空気とを遮断し、これによって難燃化の目的を達成する
という技術思想とは、発想自体を異にする。
The fiber-reinforced resin composite material of the present invention is intended to suppress the generation of gas itself and to prevent ignition itself. Therefore, the technical concept of the conventional flame-retardant means, that is, halogen gas, water vapor and the like during combustion. The idea itself is different from the technical idea of shutting off the combustion material and the air by generating the gas, thereby achieving the purpose of flame retardancy.

【0014】本発明の繊維強化樹脂複合材料は上記の着
火しない性質に加え、耐衝撃性にも優れた効果を発揮す
る。このような繊維強化樹脂複合材料は、自動車用材料
や鉄道車両用材料の用途に好適である。
The fiber-reinforced resin composite material of the present invention exerts excellent effects on impact resistance in addition to the above property of not igniting. Such a fiber-reinforced resin composite material is suitable for use as a material for automobiles and a material for railway vehicles.

【0015】本発明において熱暴露試験、着火試験、耐
衝撃試験、層間剪断強度試験、ガラス転移温度測定等の
各種の試験は下記の方法に従う。
In the present invention, various tests such as a heat exposure test, an ignition test, an impact resistance test, an interlaminar shear strength test, and a measurement of a glass transition temperature are performed according to the following methods.

【0016】熱暴露試験 衝撃後圧縮試験及び層間剪断試験用の試験片を機械的特
性を測定する前に、250℃に加熱されたオーブンに1
0分間静置し、熱暴露後の剥離の有無を超音波探傷機で
測定する。各試験に用いられる試料の寸法は後述の各試
験における規格に準処する。
Heat exposure test Specimens for compression test after impact and interlaminar shear test were placed in an oven heated to 250 ° C. before measuring mechanical properties.
After leaving still for 0 minutes, the presence or absence of peeling after heat exposure is measured by an ultrasonic flaw detector. The dimensions of the sample used in each test conform to the standards in each test described later.

【0017】着火試験 運輸省鉄運81号に準処した着火試験を行う。試料の厚
みについては2mmとする。
[0017] performing the ignition test was Junsho to ignition test Ministry of Transport Tetsuun 81 issue. The thickness of the sample is 2 mm.

【0018】鉄運81号に規定の着火試験は次の内容か
らなる。B5判の試料を45°に傾斜させて保持し、試
料下面の中心の垂直下25.4mmのところに容器の中
心がくるように燃料容器を受台に乗せ、エチルアルコー
ル0.5ccを入れて着火し、燃料が燃え尽きるまで放
置する。燃焼性の判定はアルコールの燃焼中と燃焼後に
分け、燃焼中は着火、着炎、発煙状態、炎の状態を観察
し、燃焼後は、残炎、残じん、炭化、変形状態を調べ
る。
[0018] The ignition test specified in Tetsu-No-81 consists of the following contents. A sample of B5 size is held at an inclination of 45 °, and the fuel container is placed on a pedestal so that the center of the container is located 25.4 mm below the center of the lower surface of the sample, and 0.5 cc of ethyl alcohol is put in the pedestal. Ignite and leave until fuel burns out. The determination of flammability is divided into during and after burning of alcohol. During burning, the ignition, ignition, smoke state, and flame state are observed, and after combustion, the after-flame, dust, carbonization, and deformation are examined.

【0019】上記観察結果が、例えば、「着火」あり、
「着炎」あり、「煙」普通、「火勢」炎が試験片の上端
を越えない、「残炎」なし、「残じん」なし、「炭化」
試験片の上端に達する、「変形」縁に達する変形・局部
的貫通であれば、その判定結果は「難燃性」となる。ま
た、「着火」なし、「着炎」なし、「煙」僅少、「炭
化」100mm以下の変色、「変形」100mm以下の
表面的変形であれば、「不燃性」となる。
If the above observation result is, for example, “ignition”,
There is "flaming", "smoke" is normal, "fire" flame does not exceed the upper end of the test piece, "no residual flame", "no residual dust", "carbonized"
If the deformation / local penetration reaches the “deformed” edge reaching the upper end of the test piece, the determination result is “flame retardant”. If there is no "ignition", no "flame", little "smoke", "carbonization" discoloration of 100 mm or less, and "deformation" surface deformation of 100 mm or less, it is "nonflammable".

【0020】尚、鉄運81号は、英著「プラスチックの
難燃化−低発煙化と有害燃焼ガス対策」日刊工業新聞
(1978)及び西沢著「増補新版ポリマーの難燃化−
その科学と実際技術」大成社(1992)に詳説されて
いる。
Incidentally, Tetsu-kun No. 81 is described in the English-language book "Plastic Flame Retardation-Smoke Reduction and Countermeasures against Hazardous Combustion Gases", Nikkan Kogyo Shimbun (1978) and Nishizawa, "Flame-retardant New Polymers-
"Science and Practical Technology", Taiseisha (1992).

【0021】次の垂直燃焼試験と水平燃焼試験は、燃焼
性を定量的に評価するためのUL94規格に準拠した燃
焼試験である。
The following vertical combustion test and horizontal combustion test are combustion tests based on UL94 standard for quantitatively evaluating flammability.

【0022】垂直燃焼試験 垂直燃焼試験は、難燃性を定量的に評価するためのもの
であり、UL94規格に準処した燃焼試験である。その
試験方法は次のようにして行う。
Vertical Burning Test The vertical burning test is for quantitatively evaluating the flame retardancy, and is a combustion test conforming to the UL94 standard. The test method is performed as follows.

【0023】試料寸法は127mm×12.7mm×4
mmとする。ブンゼンバーナーによる火炎を取り去った
後、消火までの平均時間が5秒以内なら94V−0、2
5秒以内なら94V−1となる。平均時間が25秒以内
でも有炎滴下物がある場合は、94V−2となる。垂直
燃焼試験に合格しない場合は、UL94規格に準処する
水平燃焼試験を行う。
The sample size is 127 mm × 12.7 mm × 4
mm. 94V-0, 2 if the average time to extinguishing after removing the flame by the Bunsen burner is within 5 seconds.
If within 5 seconds, it will be 94V-1. If there is a flaming drop even if the average time is within 25 seconds, it will be 94V-2. If the test does not pass the vertical combustion test, a horizontal combustion test according to the UL94 standard is performed.

【0024】水平燃焼試験 試料寸法は127mm×12.7mm×4mmとする。
ブンゼンバーナーによる火炎を取り去った後の燃焼速度
が38mm/分以下ならば、94HBとなる。
The sample size for the horizontal combustion test is 127 mm × 12.7 mm × 4 mm.
If the burning speed after removing the flame by the Bunsen burner is 38 mm / min or less, it will be 94 HB.

【0025】耐衝撃試験(衝撃後の強度試験) プリプレグを32枚擬似等方的に積層し、成形した後、
成形板に1000in−lb/inの落錘衝撃エネルギ
ーを与え、衝撃後圧縮強度を測定する。
Impact resistance test (strength test after impact) After quasi-isotropically laminating 32 prepregs and molding them,
A falling weight impact energy of 1000 in-lb / in is applied to the formed plate, and the compressive strength after impact is measured.

【0026】層間剪断強度試験 プリプレグ14枚を一方向に積層し、成形後、層間剪断
強度(ILSS)をASTM D2344に従い測定す
る。
Interlaminar shear strength test 14 prepregs are laminated in one direction, and after molding, the interlaminar shear strength (ILSS) is measured according to ASTM D2344.

【0027】ガラス転移温度 TMA針入モードを用いて、昇温速度20℃/分で測定
する。
The glass transition temperature is measured at a heating rate of 20 ° C./min using a TMA penetration mode.

【0028】本発明の複合材料は、下記の〔A〕、
〔B〕、〔C〕成分を構成要素として含むことが好まし
い。
The composite material of the present invention comprises the following [A],
It is preferable to include the components [B] and [C] as constituent elements.

【0029】〔A〕:ハロゲンを含有しないエポキシ樹
脂 〔B〕:金属酸化物 〔C〕:ガラス転移温度が120℃以上の熱可塑性樹脂 本発明に使用することができる繊維強化材には、炭素繊
維、炭化ケイ素繊維、ガラス繊維、アルミナ繊維、セラ
ミック繊維等の無機繊維が挙げられる。
[A]: Epoxy resin containing no halogen [B]: Metal oxide [C]: Thermoplastic resin having a glass transition temperature of 120 ° C. or more The fiber reinforcing material that can be used in the present invention includes carbon Inorganic fibers such as fiber, silicon carbide fiber, glass fiber, alumina fiber, ceramic fiber and the like can be mentioned.

【0030】本発明に使用することができる炭素繊維に
は、アクリロニトリル系、ピッチ系炭素繊維が挙げられ
る。これらの炭素繊維は、長繊維、短繊維、チョップ
状、シート状、織物状、編物状、マット状、紙状のいず
れの形状でも使用することができる。
The carbon fibers usable in the present invention include acrylonitrile-based and pitch-based carbon fibers. These carbon fibers can be used in any form of long fiber, short fiber, chop, sheet, woven, knit, mat, or paper.

【0031】〔A〕成分のエポキシ樹脂には、ハロゲン
フリーのものが使用される。具体的には、エポキシ樹脂
はグリシジルアミン型エポキシ樹脂、ノボラック型エポ
キシ樹脂、ビスフェノールA型エポキシ樹脂、ウレタン
変性ビスフェノールA型エポキシ樹脂、脂環式エポキシ
樹脂の単独又は混合物が挙げられる。
A halogen-free epoxy resin is used as the component (A). Specifically, examples of the epoxy resin include a glycidylamine type epoxy resin, a novolak type epoxy resin, a bisphenol A type epoxy resin, a urethane modified bisphenol A type epoxy resin, and a single or a mixture of alicyclic epoxy resins.

【0032】前記のグリシジルアミン型エポキシ樹脂と
しては、エポトートYH434(商品名、東都化成社
製)、YDM120(商品名、東都化成社製)等があ
る。前記のノボラック型エポキシ樹脂のうち、フェノー
ルノボラック型エポキシ樹脂としては例えば、シェル化
学社製のエピコート152(商品名)、エピコート15
4(商品名)、ダウケミカル社製のダウエポキシDEN
431(商品名)、ダウエポキシDEN43(商品
名)、ダウエポキシDEN439(商品名)、また、E
PPN201(商品名、日本化薬社製)、エピクロンN
740(商品名、大日本インキ社製)等が挙げられ、更
にクレゾールノボラック型エポキシ樹脂としては、チバ
・ガイギー社製のアラルダイトECN1273(商品
名)、アラルダイトECN1280(商品名)等が挙げ
られる。
Examples of the glycidylamine type epoxy resin include Epototo YH434 (trade name, manufactured by Toto Kasei Co., Ltd.) and YDM120 (trade name, manufactured by Toto Kasei Co., Ltd.). Among the novolak-type epoxy resins described above, examples of the phenol novolak-type epoxy resin include Epicoat 152 (trade name) and Epicoat 15 manufactured by Shell Chemical Company.
4 (trade name), Dow Epoxy DEN manufactured by Dow Chemical
431 (trade name), Dow Epoxy DEN43 (trade name), Dow Epoxy DEN 439 (trade name), and E
PPN201 (trade name, manufactured by Nippon Kayaku Co., Ltd.), Epicron N
740 (trade name, manufactured by Dainippon Ink) and cresol novolak type epoxy resins include Araldite ECN1273 (trade name) and Araldite ECN1280 (trade name) manufactured by Ciba Geigy Corporation.

【0033】前記のビスフェノールA型エポキシ樹脂と
しては、例えば、シェル化学社製のエピコート827
(商品名)、エピコート828(商品名)、エピコート
1001(商品名)、エピコート1002(商品名)、
エピコート1004(商品名)等が挙げられる。
Examples of the bisphenol A type epoxy resin include, for example, Epicoat 827 manufactured by Shell Chemical Company.
(Trade name), Epicoat 828 (trade name), Epicoat 1001 (trade name), Epicoat 1002 (trade name),
Epicoat 1004 (trade name) and the like.

【0034】前記のウレタン変性ビスフェノールA型エ
ポキシ樹脂としては、旭電化社製のアデカレジンEPU
−6(商品名)、アデカレジンEPU−10(商品
名)、アデカレジンEPU−15(商品名)等があり、
前記の脂環式エポキシ樹脂としては、チバ・ガイギー社
製のアラルダイトCY−179(商品名)、アラルダイ
トCY−178(商品名)、アラルダイトCY−182
(商品名)、アラルダイトCY−183(商品名)等が
挙げられる。
As the urethane-modified bisphenol A type epoxy resin, Adeka Resin EPU manufactured by Asahi Denka Co., Ltd.
-6 (trade name), Adeka Resin EPU-10 (trade name), Adeka Resin EPU-15 (trade name), etc.
Examples of the alicyclic epoxy resin include Araldite CY-179 (trade name), Araldite CY-178 (trade name) and Araldite CY-182 manufactured by Ciba Geigy.
(Trade name), Araldite CY-183 (trade name) and the like.

【0035】本発明における〔A〕成分のエポキシ樹脂
は、単独で使用又は2種類以上を併用してもよい。
The epoxy resin (A) in the present invention may be used alone or in combination of two or more.

【0036】エポキシ樹脂用硬化剤は特に限定されるも
のではないが、芳香族アミン類、ジシアンジアミド、三
フッ化ほう素錯塩類、酸無水物、イミダゾール類の単独
又は混合系を挙げることができる。
The curing agent for the epoxy resin is not particularly limited, and examples thereof include aromatic amines, dicyandiamide, boron trifluoride complex salts, acid anhydrides, and imidazoles alone or in a mixture.

【0037】前記芳香族アミン類としては、メタフェニ
レンジアミン、ジアミノジフェニルメタン、ジアミノジ
フェニルスルフォン、メタキシレンジアミン等がある。
三フッ化ほう素錯塩類としては、BF3 モノエチルア
ミン、B3 ベンジルアミン等が使用できる。
Examples of the aromatic amines include metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, and metaxylenediamine.
As the boron trifluoride complex salts, BF3 monoethylamine, B3 benzylamine and the like can be used.

【0038】前記酸無水物としては、無水フタル酸、ト
リメリット酸無水物、無水ピロメリット酸、無水ベンゾ
フェノンテトラカルボキシル酸等がある。イミダゾール
類としては、2−エチル−4−イミダゾール、2−エチ
ルイミダゾール、2,4−ジメチルイミダゾール、2−
フェニルイミダゾール等が使用できる。
Examples of the acid anhydride include phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic anhydride and the like. Examples of imidazoles include 2-ethyl-4-imidazole, 2-ethylimidazole, 2,4-dimethylimidazole,
Phenylimidazole and the like can be used.

【0039】前記エポキシ樹脂用硬化剤に加えて、例え
ば、3−(3,4−ジクロロフェニル)−1,1−ジメ
チルウレアを硬化促進剤として併用することができる。
In addition to the epoxy resin curing agent, for example, 3- (3,4-dichlorophenyl) -1,1-dimethylurea can be used in combination as a curing accelerator.

【0040】〔B〕成分の金属酸化物は、特に限定され
ないが、耐火性の観点から、酸化マグネシウム、酸化ア
ルミニウムが好ましい。特に熱伝導率が高い酸化マグネ
シウムが難燃性向上に有用であり好ましい。前記酸化マ
グネシウムには、50%粒径が0.5〜20μm範囲の
ものが特に好ましい。
The metal oxide of the component (B) is not particularly limited, but from the viewpoint of fire resistance, magnesium oxide and aluminum oxide are preferred. Particularly, magnesium oxide having a high thermal conductivity is useful for improving the flame retardancy and is preferred. It is particularly preferable that the magnesium oxide has a 50% particle size in the range of 0.5 to 20 μm.

【0041】〔C〕成分の熱可塑性樹脂としては、ガラ
ス転移温度Tgで120℃以上の樹脂、例えば、ポリア
ミドイミド樹脂(Tg260℃)、ポリイミド樹脂(T
g259℃)、ポリエーテルサルフォン樹脂(Tg22
3℃)、ポリエーテルイミド樹脂(Tg216℃)等で
ある。特にポリエーテルイミド樹脂がエポキシ樹脂の耐
衝撃性向上に有用であるために望ましい。
Examples of the thermoplastic resin (C) include resins having a glass transition temperature Tg of 120 ° C. or higher, for example, polyamideimide resin (Tg 260 ° C.), polyimide resin (Tg
g259 ° C), polyethersulfone resin (Tg22
3 ° C.), polyetherimide resin (Tg 216 ° C.) and the like. In particular, a polyetherimide resin is desirable because it is useful for improving the impact resistance of an epoxy resin.

【0042】本発明における樹脂組成物中の含有比率は
以下の比が望ましい。すなわち、〔A〕成分100重量
部に対して〔B〕成分である金属酸化物は、10〜30
重量部が好ましい。10重量部未満では難燃性が不十分
であり、30重量部を越えると機械的特性の低下が大き
くなる。
The content ratio in the resin composition of the present invention is desirably the following ratio. That is, the metal oxide as the component (B) is 10 to 30 parts by weight based on 100 parts by weight of the component (A).
Parts by weight are preferred. If the amount is less than 10 parts by weight, the flame retardancy is insufficient. If the amount exceeds 30 parts by weight, the mechanical properties are greatly reduced.

【0043】〔C〕成分は、〔A〕成分100重量部に
対して3〜30重量部とするのが好ましい。3重量部未
満では耐衝撃性が不十分であり、30重量部を越える
と、溶融粘度が高くなるので、プリプレグ製造時の作業
性及びプリプレグの成形性が不良となり、積層板に欠陥
を生じ易くなる。
The component (C) is preferably used in an amount of 3 to 30 parts by weight based on 100 parts by weight of the component (A). If the amount is less than 3 parts by weight, the impact resistance is insufficient, and if the amount exceeds 30 parts by weight, the melt viscosity becomes high, so that the workability during prepreg production and the moldability of the prepreg become poor, and the laminate tends to have defects. Become.

【0044】エポキシ樹脂用硬化剤の配合量は、特に限
定されないが、例えば、硬化剤として4,4’−ジアミ
ノジフェニルスルホンを使用した場合は、エポキシ樹脂
100重量部に対して化学量論的に求められる添加量、
すなわち、(アミン当量/エポキシ当量)×100重量
部の70〜90%を配合する。また、ジシアンジアミド
を用いた場合は、エポキシ樹脂100重量部に対して、
1〜10重量部、好ましくは、3〜8重量部である。
The amount of the epoxy resin curing agent is not particularly limited. For example, when 4,4'-diaminodiphenyl sulfone is used as the curing agent, the stoichiometric amount is based on 100 parts by weight of the epoxy resin. Required addition amount,
That is, 70 to 90% of (amine equivalent / epoxy equivalent) × 100 parts by weight is blended. When dicyandiamide is used, the epoxy resin is used in an amount of 100 parts by weight.
It is 1 to 10 parts by weight, preferably 3 to 8 parts by weight.

【0045】〔A〕、〔B〕、〔C〕成分及びエポキシ
樹脂用硬化剤の各成分はこの含有比率の範囲内において
適宜選択される。
The components [A], [B] and [C] and the respective components of the epoxy resin curing agent are appropriately selected within the range of this content ratio.

【0046】繊維強化材の使用量は用途によって異なる
が、積層材や成形材料としては、樹脂組成物100重量
部に対して400重量部まで使用できる。
The amount of the fiber reinforcing material used varies depending on the application, but as a laminate or a molding material, it can be used up to 400 parts by weight based on 100 parts by weight of the resin composition.

【0047】任意成分:本発明の複合材料成分には、本
発明の目的を害さない範囲で、必要に応じて次の(1)
〜(4)の成分を添加することができる。
Optional components: The composite material component of the present invention may optionally include the following (1) as long as the object of the present invention is not impaired.
Components (4) to (4) can be added.

【0048】(1)難燃助剤、例えば三酸化アンチモ
ン、五酸化アンチモン等である。これら難燃助剤の使用
量は、エポキシ樹脂100重量部に対して10重量部未
満、好ましくは5重量部未満が望ましい。
(1) Flame retardant aids, for example, antimony trioxide, antimony pentoxide and the like. The amount of these flame retardant aids used is less than 10 parts by weight, preferably less than 5 parts by weight, based on 100 parts by weight of the epoxy resin.

【0049】(2)粉末状の補強材、充填材及びチクソ
トロピー付与剤、例えばシリカ、酸性白土、ベントナイ
ト、ガラスビーズ、カーボンブラック、ゼオライト、ケ
イソウ土、マイカ、カオリン、タルク等である。これら
の補強材や充填材の使用量は、エポキシ樹脂100重量
部に対して5重量部未満が望ましい。
(2) Powdered reinforcing materials, fillers and thixotropic agents, for example, silica, acid clay, bentonite, glass beads, carbon black, zeolite, diatomaceous earth, mica, kaolin, talc and the like. The amount of these reinforcing materials and fillers used is preferably less than 5 parts by weight based on 100 parts by weight of the epoxy resin.

【0050】(3)着色剤、顔料、例えば二酸化チタ
ン、黄鉛、カーボンブラック等である。これら着色剤、
顔料の使用量は、エポキシ樹脂100重量部に対して5
重量部未満が望ましい。
(3) Colorants and pigments such as titanium dioxide, graphite, carbon black and the like. These colorants,
The amount of the pigment used is 5 per 100 parts by weight of the epoxy resin.
Less than parts by weight is desirable.

【0051】(4)硬化促進剤、例えば、3−(3,4
−ジクロロフェニル)−1,1−ジメチルウレアを前記
エポキシ樹脂用硬化剤と併用することができる。エポキ
シ樹脂に対する硬化促進剤の配合量は、エポキシ樹脂1
00重量部に対して1〜5重量部が望ましい。
(4) A curing accelerator, for example, 3- (3,4)
-Dichlorophenyl) -1,1-dimethylurea can be used in combination with the curing agent for epoxy resin. The compounding amount of the curing accelerator to the epoxy resin is as follows.
1 to 5 parts by weight with respect to 00 parts by weight is desirable.

【0052】樹脂の調製方法:本発明のプリプレグにお
ける樹脂組成物の調製は、例えば、以下の方法により行
うことができる。即ち、各成分を混練装置に供給し、加
熱混練する。この際の加熱温度はエポキシ樹脂の硬化開
始温度より低温とする。この際、エポキシ樹脂用硬化剤
は最後に加熱混練するのがよい。通常は、50〜100
℃の温度にて調製する。
Method for Preparing Resin: The resin composition in the prepreg of the present invention can be prepared, for example, by the following method. That is, each component is supplied to a kneading device and heated and kneaded. The heating temperature at this time is lower than the curing start temperature of the epoxy resin. At this time, the epoxy resin curing agent is preferably kneaded with heat last. Usually 50-100
Prepare at a temperature of ° C.

【0053】プリプレグの製造方法:本発明のプリプレ
グの製造方法は特に限定されないが、例えば、ホットメ
ルト法あるいは溶剤法を採用することが可能である。
Production method of prepreg: The production method of the prepreg of the present invention is not particularly limited. For example, a hot melt method or a solvent method can be adopted.

【0054】[0054]

【実施例】本発明について実施例を挙げて更に詳しく説
明する。特に指定しない限り「%」、「部」は重量基準
である。
EXAMPLES The present invention will be described in more detail with reference to examples. Unless otherwise specified, “%” and “parts” are based on weight.

【0055】〔実施例1〜8及び比較例1〜7〕〔A〕
〜〔C〕成分を下記の表1に示す配合処方の組成比で混
合し、更に硬化剤10重量部、硬化促進剤3重量部を加
え、本実施例1〜8及び比較例1〜7の各難燃性エポキ
シ樹脂組成物を得た。フィルムコーターを用いてこれら
の各樹脂組成物から各樹脂フィルムを作製した。これら
の各樹脂フィルムを、引き揃えた炭素繊維ベスファイト
IM−400(登録商標、東邦レーヨン(株)製、引張
強度4510MPa、引張弾性率294GPa)の両面
から圧着させ、炭素繊維目付150g/m2 、樹脂含有
率34%の本実施例1〜8及び比較例1〜7の各一方向
プリプレグを得た。
[Examples 1 to 8 and Comparative Examples 1 to 7] [A]
The components [C] to [C] were mixed at the composition ratios shown in Table 1 below, and 10 parts by weight of a curing agent and 3 parts by weight of a curing accelerator were further added. Each flame-retardant epoxy resin composition was obtained. Each resin film was produced from each of these resin compositions using a film coater. Each of these resin films is pressed from both sides of aligned carbon fiber Vesfight IM-400 (registered trademark, manufactured by Toho Rayon Co., Ltd., tensile strength 4510 MPa, tensile modulus 294 GPa), and the carbon fiber weight is 150 g / m 2. The unidirectional prepregs of Examples 1 to 8 and Comparative Examples 1 to 7 having a resin content of 34% were obtained.

【0056】これらの各プリプレグを、125℃、5k
g/cm2 、2時間の条件でオートクレーブ成形し、前
述の試験方法で以下の項目を評価した。
Each of these prepregs was heated at 125 ° C. for 5 k
Autoclave molding was performed under the conditions of g / cm 2 and 2 hours, and the following items were evaluated by the test method described above.

【0057】着火性:鉄運81号 強制的に着火させた後の難燃性:UL94規格 火災初期の熱暴露を想定した熱安定性:熱暴露後の膨れ
の有無 熱暴露後の機械的特性:衝撃後圧縮強度(CAI)、層
間剪断強度(ILSS) これらの結果を下記の表1(実施例1〜8)、表2(比
較例1〜7)に示す。
Flammability after forced ignition: UL94 standard Thermal stability assuming heat exposure in the early stage of fire: Presence or absence of blistering after heat exposure Mechanical properties after heat exposure : Compressive strength after impact (CAI), Interlaminar shear strength (ILSS) These results are shown in Table 1 (Examples 1 to 8) and Table 2 (Comparative Examples 1 to 7) below.

【0058】[0058]

【表1】 [Table 1]

【0059】[0059]

【表2】 [Table 2]

【0060】*1 エピコート834:ビスフェノール
Aジグリシジルエーテル型エポキシ樹脂(油化シェルエ
ポキシ(株)製) *2 エピコート1002:ビスフェノールAジグリシ
ジルエーテル型エポキシ樹脂(油化シェルエポキシ
(株)製) *3 エピコート604:N,N,N’,N’−テトラ
グリシジルジアミノジフェニルメタン(油化シェルエポ
キシ(株)製) *4 EPU−6:ウレタン変性エポキシ樹脂(旭電化
工業(株)製) *5 PEI Ultem1000:ポリエーテルイミ
ド樹脂(日本ジーイープラスチック(株)製) *6 PES 5003P:ポリエーテルサルフォン樹
脂(住友化学工業(株)製) *7 DDS:4,4’−ジアミノジフェニルスルホン *8 DCMU:3−(3,4−ジクロロフェニル)−
1,1−ジメチルウレア *9 PPS T−4:ポリフェニレンスルフィド
((株)トープレン製) *10 着火性試験片の繊維体積含有率 *11 250℃×10分熱暴露後に超音波探傷機で検
査 *12 250℃×10分熱暴露後に1000in−l
b/inの衝撃エネルギーを付与した後、圧縮強度を測
定 *13 250℃×10分熱暴露後に測定 *14 熱暴露後に膨れを生じたので、測定不可
* 1 Epicoat 834: Bisphenol A diglycidyl ether type epoxy resin (manufactured by Yuka Shell Epoxy) * 2 Epicoat 1002: Bisphenol A diglycidyl ether type epoxy resin (manufactured by Yuka Shell Epoxy) * 3 Epicoat 604: N, N, N ', N'-tetraglycidyldiaminodiphenylmethane (manufactured by Yuka Shell Epoxy) * 4 EPU-6: urethane-modified epoxy resin (manufactured by Asahi Denka Kogyo) * 5 PEI Ultem 1000: polyether imide resin (manufactured by Nippon GE Plastics) * 6 PES 5003P: polyether sulfone resin (manufactured by Sumitomo Chemical Co., Ltd.) * 7 DDS: 4,4'-diaminodiphenyl sulfone * 8 DCMU: 3- (3,4-dichlorophenyl)-
1,1-dimethylurea * 9 PPS T-4: polyphenylene sulfide (manufactured by Topren Co., Ltd.) * 10 Fiber volume content of ignitable test piece * 11 Inspection with ultrasonic flaw detector after exposure to heat at 250 ° C. for 10 minutes * 12 1000 in-l after exposure to heat at 250 ° C for 10 minutes
Compressive strength is measured after applying b / in impact energy. * 13 Measured after heat exposure at 250 ° C x 10 minutes. * 14 Measurement not possible due to swelling after heat exposure.

【0061】前記表1及び表2によれば、本発明の実施
例は比較例に比べて以下の効果を有することが理解され
る。
According to Tables 1 and 2, it is understood that the examples of the present invention have the following effects as compared with the comparative examples.

【0062】実施例1及び比較例1を対比すると明らか
なように、〔B〕成分として酸化マグネシウム、〔C〕
成分としてポリエーテルイミドを配合することで、熱暴
露後の衝撃後圧縮強度(CAI)、耐着火性及び難燃性
を向上させることが可能である。
As is apparent from comparison between Example 1 and Comparative Example 1, magnesium oxide and [C] were used as the component [B].
By blending polyetherimide as a component, it is possible to improve the compressive strength after impact (CAI), ignition resistance and flame retardancy after heat exposure.

【0063】実施例1、比較例2及び比較例3を対比す
ると明らかなように、〔B〕成分が無い場合は、耐着火
性が不十分であり、〔C〕成分がない場合は、熱暴露後
の衝撃後圧縮強度が大幅に低下する。
As is clear from the comparison between Example 1, Comparative Example 2 and Comparative Example 3, when there is no component [B], the ignition resistance is insufficient. The compressive strength after impact after exposure is greatly reduced.

【0064】実施例1、実施例2、比較例3を対比する
と明らかなように、〔C〕成分のポリエーテルイミド配
合量の増加に伴い、熱暴露後の衝撃後圧縮強度が増加す
る。
As is clear from comparison between Example 1, Example 2, and Comparative Example 3, the compressive strength after impact after heat exposure increases with an increase in the amount of the polyetherimide of the component [C].

【0065】実施例1、実施例3及び実施例4を対比す
ると明らかなように、〔B〕成分の酸化マグネシウムが
12重量部の場合、若干難燃性が低く、28重量部の場
合、熱暴露後の耐衝撃性及び機械的特性が若干低下す
る。
As is apparent from comparison of Examples 1, 3 and 4, when the magnesium oxide component (B) is 12 parts by weight, the flame retardancy is slightly low. The impact resistance and mechanical properties after exposure are slightly reduced.

【0066】実施例1及び比較例4を対比すると明らか
なように、ガラス転移温度が120℃以下のPPS樹脂
(Tg85℃)を使用すると、難燃性が若干低下する。
As is clear from comparison between Example 1 and Comparative Example 4, when a PPS resin having a glass transition temperature of 120 ° C. or lower (Tg of 85 ° C.) is used, the flame retardancy is slightly reduced.

【0067】実施例5及び比較例1を対比すると明らか
なように、〔B〕成分として酸化アルミニウム、〔C〕
成分としてポリエーテルイミドを配合することで、熱暴
露後の衝撃後圧縮強度、耐着火性及び難燃性を向上させ
ることが可能である。
As is clear from comparison between Example 5 and Comparative Example 1, aluminum oxide and [C] were used as the component [B].
By blending polyetherimide as a component, it is possible to improve the compressive strength after impact after heat exposure, ignition resistance, and flame retardancy.

【0068】実施例1及び比較例5を対比すると明らか
なように、難燃剤として、水酸化アルミニウムを用いる
と、熱暴露試験時の積層板に膨れを生じ、強度測定不可
となるので、構造材として機能し得なくなる。
As is clear from the comparison between Example 1 and Comparative Example 5, when aluminum hydroxide was used as the flame retardant, the laminate was swelled during the heat exposure test, and the strength could not be measured. Can no longer function as

【0069】実施例1、実施例6及び実施例7を対比す
ると明らかなように、繊維体積含有率が56%の場合、
若干難燃性が低く、64%の場合、熱暴露後の機械的特
性が若干低下する。
As is clear from comparison between Examples 1, 6 and 7, when the fiber volume content is 56%,
When the flame retardancy is slightly low, and when it is 64%, the mechanical properties after heat exposure are slightly reduced.

【0070】実施例1、比較例6及び比較例7を対比す
ると明らかなように、繊維体積含有率が50%の場合、
耐着火性、難燃性が低く、72%の場合、熱暴露後の機
械的特性が低下する。
As is clear from comparison of Example 1, Comparative Examples 6 and 7, when the fiber volume content is 50%,
When the ignition resistance and the flame retardancy are low, and when it is 72%, the mechanical properties after heat exposure are reduced.

【0071】実施例8及び比較例1を対比すると明らか
なように、〔B〕成分として酸化マグネシウム、〔C〕
成分としてポリエーテルサルフォンを配合することで、
熱暴露後の衝撃後圧縮強度、耐着火性及び難燃性を向上
させることが可能である。
As is clear from comparison between Example 8 and Comparative Example 1, magnesium oxide and [C] were used as the component [B].
By blending polyether sulfone as an ingredient,
It is possible to improve compressive strength after impact after heat exposure, ignition resistance and flame retardancy.

【0072】以上の結果より、実施例1〜実施例8、特
に実施例1、2、5、8の場合、比較例1〜比較例7と
比べ耐着火性、難燃性、熱安定性、熱暴露後の機械的特
性においてバランスに優れた複合材料であることが分か
る。
From the above results, it was found that Examples 1 to 8 and especially Examples 1, 2, 5, and 8 exhibited ignition resistance, flame retardancy, thermal stability, and the like as compared with Comparative Examples 1 to 7. It can be seen that the composite material has an excellent balance in mechanical properties after heat exposure.

【0073】[0073]

【発明の効果】本発明のプリプレグを用いて製造された
繊維強化樹脂複合材料は、耐着火性を有し、しかも熱暴
露時にもハロゲンガス、水蒸気等の分解ガスを発生せ
ず、しかも、熱暴露後に機械的強度の低下がない。本発
明の繊維強化樹脂複合材料は運輸省鉄運81号の試験に
合格し、鉄道車両の用途に用いることができる。
The fiber reinforced resin composite material produced by using the prepreg of the present invention has ignition resistance, and does not generate decomposition gases such as halogen gas and water vapor even when exposed to heat. No decrease in mechanical strength after exposure. The fiber reinforced resin composite material of the present invention has passed the test of the Ministry of Transportation, Iron Transportation No. 81, and can be used for railway vehicles.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI // C08L 63:00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI // C08L 63:00

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 繊維強化材とマトリックス樹脂とからな
る繊維強化樹脂複合材料であって、運輸省鉄運81号に
準処した着火試験で実質的に着火せず、しかも250℃
に加熱されたオーブンに10分間静置してなる熱暴露試
験後において、衝撃後圧縮強度が15kgf/mm2
上、層間剪断強度が7kgf/mm2以上であることを
特徴とする繊維強化樹脂複合材料。
1. A fiber-reinforced resin composite material comprising a fiber-reinforced material and a matrix resin, which does not substantially ignite in an ignition test according to the Ministry of Transport, Iron Transport No. 81, and has a temperature of 250 ° C.
A fiber reinforced resin composite having a compressive strength after impact of 15 kgf / mm 2 or more and an interlayer shear strength of 7 kgf / mm 2 or more after a heat exposure test left standing in an oven heated for 10 minutes. material.
【請求項2】 前記熱暴露試験で実質的に分解ガスの発
生のない請求項1記載の繊維強化樹脂複合材料。
2. The fiber-reinforced resin composite material according to claim 1, wherein substantially no decomposition gas is generated in the heat exposure test.
【請求項3】 前記衝撃後圧縮強度が18kgf/mm
2 以上、層間剪断強度が9kgf/mm2 以上である請
求項1記載の繊維強化樹脂複合材料。
3. The compression strength after impact is 18 kgf / mm.
2. The fiber-reinforced resin composite material according to claim 1, wherein the shear strength is 2 kg or more and the shear strength between layers is 9 kgf / mm 2 or more.
【請求項4】 前記繊維強化材が炭素繊維である請求項
1記載の繊維強化樹脂複合材料。
4. The fiber-reinforced resin composite material according to claim 1, wherein said fiber-reinforced material is carbon fiber.
【請求項5】 前記強化繊維の体積含有率が55〜65
%である請求項1記載の繊維強化樹脂複合材料。
5. The volume fraction of the reinforcing fibers is 55 to 65.
%. The fiber reinforced resin composite material according to claim 1.
【請求項6】 前記マトリックス樹脂が、次の〔A〕、
〔B〕、〔C〕成分及びエポキシ樹脂用硬化剤を必須と
して含有する請求項1記載の繊維強化樹脂複合材料: 〔A〕:ハロゲンを含有しないエポキシ樹脂; 〔B〕:金属酸化物; 〔C〕:ガラス転移温度が120℃以上の熱可塑性樹
脂。
6. The method according to claim 1, wherein the matrix resin comprises the following [A]:
2. The fiber-reinforced resin composite material according to claim 1, which contains [B] and [C] components and a curing agent for an epoxy resin as essential components: [A]: an epoxy resin containing no halogen; [B]: a metal oxide; C]: a thermoplastic resin having a glass transition temperature of 120 ° C. or higher.
【請求項7】 前記ハロゲンを含有しないエポキシ樹脂
がグリシジルアミン型エポキシ樹脂、ノボラック型エポ
キシ樹脂、ピスフェノールA型エポキシ樹脂、ウレタン
変性ビスフェノールA型エポキシ樹脂、脂環式エポキシ
樹脂から選ばれたハロゲンを含有しないエポキシ樹脂の
単独又は2種以上の混合物である請求項6記載の繊維強
化樹脂複合材料。
7. The halogen-free epoxy resin is a halogen selected from glycidylamine type epoxy resin, novolak type epoxy resin, pisphenol A type epoxy resin, urethane modified bisphenol A type epoxy resin and alicyclic epoxy resin. 7. The fiber-reinforced resin composite material according to claim 6, which is a single epoxy resin or a mixture of two or more epoxy resins.
【請求項8】 前記熱可塑性樹脂が、ポリアミドイミド
樹脂、ポリイミド樹脂、ポリエーテルサルフォン樹脂、
ポリエーテルイミド樹脂から選ばれた熱可塑性樹脂の単
独又は2種以上の混合物である請求項6記載の繊維強化
樹脂複合材料。
8. The thermoplastic resin is a polyamide-imide resin, a polyimide resin, a polyether sulfone resin,
The fiber-reinforced resin composite material according to claim 6, which is a thermoplastic resin selected from a polyetherimide resin alone or a mixture of two or more.
【請求項9】 前記金属酸化物が酸化マグネシウム及び
酸化アルミニウムから選ばれた単独又は2種の混合物で
ある請求項6記載の繊維強化樹脂複合材料。
9. The fiber-reinforced resin composite material according to claim 6, wherein the metal oxide is a single material or a mixture of two materials selected from magnesium oxide and aluminum oxide.
【請求項10】 前記〔A〕、〔B〕、〔C〕成分の配
合重量比が、下記の割合である請求項6記載の繊維強化
樹脂複合材料: 〔A〕:100重量部; 〔B〕:10〜30重量部; 〔C〕: 3〜30重量部。
10. The fiber-reinforced resin composite material according to claim 6, wherein the component weight ratio of the components [A], [B] and [C] is as follows: [A]: 100 parts by weight; ]: 10 to 30 parts by weight; [C]: 3 to 30 parts by weight.
【請求項11】 次の〔A〕、〔B〕、〔C〕成分及び
エポキシ樹脂用硬化剤を必須として含有するマトリック
ス樹脂が、繊維強化材に含浸されてなるプリプレグ: 〔A〕:ハロゲンを含有しないエポキシ樹脂; 〔B〕:金属酸化物; 〔C〕:ガラス転移温度が120℃以上の熱可塑性樹
脂。
11. A prepreg obtained by impregnating a fiber reinforcement with a matrix resin essentially containing the following components [A], [B], [C] and a curing agent for an epoxy resin: [A]: halogen [B]: metal oxide; [C]: a thermoplastic resin having a glass transition temperature of 120 ° C. or higher.
JP33358097A 1997-11-18 1997-11-18 Fiber-reinforced resin composite and prepreg Pending JPH11147965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33358097A JPH11147965A (en) 1997-11-18 1997-11-18 Fiber-reinforced resin composite and prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33358097A JPH11147965A (en) 1997-11-18 1997-11-18 Fiber-reinforced resin composite and prepreg

Publications (1)

Publication Number Publication Date
JPH11147965A true JPH11147965A (en) 1999-06-02

Family

ID=18267642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33358097A Pending JPH11147965A (en) 1997-11-18 1997-11-18 Fiber-reinforced resin composite and prepreg

Country Status (1)

Country Link
JP (1) JPH11147965A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1526152A1 (en) * 2003-10-24 2005-04-27 United Technologies Corporation Composite material, its manufacturing method and its use
JP2006169481A (en) * 2004-12-20 2006-06-29 Sumitomo Bakelite Co Ltd Resin composition, prepreg, and laminate
JP2007084595A (en) * 2005-09-20 2007-04-05 Kanebo Ltd Epoxy resin composition
EP2543693A1 (en) 2004-02-27 2013-01-09 Toray Industries, Inc. Epoxy resin composition for carbon-fiber-reinforced composite material, prepreg, integrated molding, fiber-reinforced composite sheet, and casing for electrical/electronic equipment
JP2015081329A (en) * 2013-10-24 2015-04-27 Dic株式会社 Urethane-modified epoxy resin, curable composition, cured product thereof, fiber- reinforced composite material and fiber- reinforced resin molded article

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1526152A1 (en) * 2003-10-24 2005-04-27 United Technologies Corporation Composite material, its manufacturing method and its use
EP2543693A1 (en) 2004-02-27 2013-01-09 Toray Industries, Inc. Epoxy resin composition for carbon-fiber-reinforced composite material, prepreg, integrated molding, fiber-reinforced composite sheet, and casing for electrical/electronic equipment
JP2006169481A (en) * 2004-12-20 2006-06-29 Sumitomo Bakelite Co Ltd Resin composition, prepreg, and laminate
JP2007084595A (en) * 2005-09-20 2007-04-05 Kanebo Ltd Epoxy resin composition
JP2015081329A (en) * 2013-10-24 2015-04-27 Dic株式会社 Urethane-modified epoxy resin, curable composition, cured product thereof, fiber- reinforced composite material and fiber- reinforced resin molded article

Similar Documents

Publication Publication Date Title
JP5472330B2 (en) Epoxy resin composition for carbon fiber reinforced composite material, prepreg, integrated molded product, fiber reinforced composite material plate, and casing for electric / electronic device
CN110612205B (en) Composite material with structural and flame retardant capabilities
JP2005239939A (en) Fiber reinforced resin composite material
Toldy et al. Mechanical properties of reactively flame retarded cyanate ester/epoxy resin blends and their carbon fibre reinforced composites
JP2017510683A (en) Composite material
JP3216291B2 (en) Flame-retardant epoxy resin composition and prepreg
US5389435A (en) Flame retardant epoxy composite
JPH11147965A (en) Fiber-reinforced resin composite and prepreg
CA2835404C (en) Epoxy resin composition for fiber-reinforced composite material
JP2005272672A (en) Flame-retardant master batch, thermosetting resin composition, prepreg and fiber-reinforced composite material
US20240093003A1 (en) Flame retardant composition, prepreg, and fiber reinforced composite material
US20240101755A1 (en) Flame retardant epoxy resin composition
EP0397860B1 (en) Epoxy resin composition
CA3123577A1 (en) Flame-retardant epoxy composition and method of using the same
JP6854028B1 (en) Prepreg and non-combustible materials
JP2006160972A (en) Fiber-reinforced resin composite material, resin composition, and prepreg
WO2023176883A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
Sunder et al. A systematic investigation of the transfer of polyphosphate/inorganic silicate flame retardants from epoxy resins to layered glass fiber‐reinforced composites and their post‐furnace flexural properties
JPH04275321A (en) Thermosetting powder composition