JPH11146587A - Rotor of electric rotary machine - Google Patents

Rotor of electric rotary machine

Info

Publication number
JPH11146587A
JPH11146587A JP30202397A JP30202397A JPH11146587A JP H11146587 A JPH11146587 A JP H11146587A JP 30202397 A JP30202397 A JP 30202397A JP 30202397 A JP30202397 A JP 30202397A JP H11146587 A JPH11146587 A JP H11146587A
Authority
JP
Japan
Prior art keywords
rotor
winding
refrigerant gas
retaining ring
end portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30202397A
Other languages
Japanese (ja)
Inventor
Hiroshi Ikeda
浩 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30202397A priority Critical patent/JPH11146587A/en
Publication of JPH11146587A publication Critical patent/JPH11146587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

PROBLEM TO BE SOLVED: To restrict a local temperature rise in a stator winding by avoiding collisions between natural convection in a high centrifugal field and forced convection between rotor windings in a retaining ring in a cooling construction of the end portion of rotor windings, thereby accelerating the heat propagation of convection on the surface of rotor windings. SOLUTION: In a rotor of an electric rotary machine equipped with a cooling construction for cooling the end portion of the rotor windings, comprising a plurality of saddle-shaped coils wound in a multiple ring shape around the core 3 of the rotor by means of a cooling medium gas supplied to the inner peripheral side of the rotor winding end from a fan located at an end portion of the rotor shaft 8, a part of the cooling medium gas flowing in axial direction from the inlet of the retaining ring to a sub-slot 15 is guided to the side of a retaining ring 5, covering the outer periphery of the rotor winding end portion between the rotor windings 2 of the rotor winding end portion, and an air vent passage 20 having a vent hole 21 for discharging this guided cooling medium gas near the inner surface of a retaining ring 5 facing the winding 2 is provided at the inner surface of the retaining ring 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばタービン発
電機等の回転電機の回転子巻線端部の冷却構造に係り、
回転子巻線間に生じる高遠心力場の自然対流及び強制対
流の衝突を回避し、回転子巻線表面の対流熱伝達を促進
し、局部的な温度上昇を抑制するようにした回転子巻線
端部の冷却構造を備えた回転電機の回転子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling structure for a rotor winding end of a rotating electric machine such as a turbine generator.
A rotor winding that avoids collision of natural convection and forced convection in a high centrifugal force field generated between the rotor windings, promotes convective heat transfer on the rotor winding surface, and suppresses local temperature rise. The present invention relates to a rotor of a rotary electric machine having a cooling structure at an end.

【0002】[0002]

【従来の技術】タービン発電機全体の冷却構造として
は、図16に示すようなものがある。図16はタービン
発電機の冷却構造を模式化して示す断面図で、回転子1
は回転子巻線2と回転子鉄心3とからなり、図示しない
軸受機構部を介して固定子4に回転自在に支持されてい
る。回転子鉄心3の両端に突出した回転子巻線端部は、
その外周側が保持環5で覆われ、回転子1が回転する際
に回転子巻線端部に作用する強大な遠心力で回転子巻線
2が変形しないように保護されいる。
2. Description of the Related Art As a cooling structure for an entire turbine generator, there is one shown in FIG. FIG. 16 is a cross-sectional view schematically showing the cooling structure of the turbine generator, and shows the structure of the rotor 1.
Is composed of a rotor winding 2 and a rotor core 3, and is rotatably supported by a stator 4 via a bearing mechanism (not shown). The rotor winding ends protruding from both ends of the rotor core 3
The outer peripheral side is covered with a retaining ring 5 to protect the rotor winding 2 from being deformed by a strong centrifugal force acting on the rotor winding end when the rotor 1 rotates.

【0003】また、固定子4は固定子巻線6と固定子鉄
心7とからなり、回転子1の冷却装置として回転子軸8
の両端に対称に設けたファン9と、回転子鉄心3内に形
成されたスロット10と、固定子鉄心7の積層面に形成
されたラジアルダクト11とで構成され、ファン9で加
圧された冷媒ガスは保持環5により固定子側冷媒ガス流
と回転子側冷媒ガス流とに分岐される。
[0003] The stator 4 comprises a stator winding 6 and a stator core 7, and serves as a cooling device for the rotor 1.
And a radial duct 11 formed on a laminated surface of the stator core 7 and pressurized by the fan 9. The refrigerant gas is branched by the retaining ring 5 into a stator-side refrigerant gas flow and a rotor-side refrigerant gas flow.

【0004】そして、固定子側冷媒ガス流は、ラジアル
ダクト11を通る過程で固定子4を冷却し、排気ダクト
を通って外部に排出される。また、回転子側冷媒ガス流
は、回転子側8の周囲から保持環5内の回転子巻線端部
の隙間に流れ込み、スロット10を通って固定子側に排
出される過程で巻線端部を含む回転子1を冷却し、回転
子1の外周側の回転子1と固定子2との隙間で固定子側
の冷媒ガスと合流し、ラジアルダクト11及び排気ダク
トを通って外部に排出される。
[0004] The stator-side refrigerant gas flow cools the stator 4 in the process of passing through the radial duct 11 and is discharged to the outside through an exhaust duct. In addition, the rotor-side refrigerant gas flow flows from the periphery of the rotor side 8 into the gap between the rotor winding ends in the retaining ring 5, passes through the slots 10, and is discharged to the stator side. The rotor 1 including the portion is cooled, merges with the refrigerant gas on the stator side in the gap between the rotor 1 and the stator 2 on the outer peripheral side of the rotor 1, and is discharged to the outside through the radial duct 11 and the exhaust duct. Is done.

【0005】図17はタービン発電機の従来の回転子巻
線端部の冷却構造を示す斜視断面図である。図17にお
いて、回転子1はその回転子軸8が貫通する回転子鉄心
3と、鞍形コイル12を多重環状に複数ターン巻きした
回転子巻線2とを備えている。回転子巻線2の軸方向両
端に突出した回転子巻線端部の外周は、保持環5で覆わ
れると共に、回転子巻線端部の相互の隙間には絶縁性の
間隔片13を配して隙間を保持することにより、回転子
1の回転に伴って回転子巻線端部に作用する加速度およ
び遠心力に耐える回転子巻線2が形成される。
FIG. 17 is a perspective sectional view showing a conventional cooling structure for an end portion of a rotor winding of a turbine generator. In FIG. 17, a rotor 1 includes a rotor core 3 through which a rotor shaft 8 passes, and a rotor winding 2 in which a saddle-shaped coil 12 is wound a plurality of turns in a multiple annular shape. The outer periphery of the rotor winding end protruding from both ends in the axial direction of the rotor winding 2 is covered with a retaining ring 5, and insulating gaps 13 are arranged in the gap between the rotor winding ends. By maintaining the gap, the rotor winding 2 is formed that withstands the acceleration and centrifugal force acting on the end of the rotor winding as the rotor 1 rotates.

【0006】ところで、回転電機の巻線の可使用寿命時
間が、巻線導体を絶縁被覆する絶縁材料の耐熱性寿命特
性に依存していることは公知であり、耐熱性に優れた絶
縁被覆材料を用いて絶縁被覆の耐熱寿命特性を向上させ
ることが重要な技術課題とされている。
It is well known that the usable life time of a winding of a rotating electrical machine depends on the heat-resistant life characteristic of an insulating material for insulatingly covering a winding conductor. It is an important technical subject to improve the heat-resistant life characteristics of the insulating coating by using the material.

【0007】一方、タービン発電機のように回転子巻線
がその長手方向に大きな温度差を有する場合には、耐熱
寿命特性は最高温度となる回転子巻線端部の冷却性能に
依存する。また、温度分布が一様でない回転子巻線に
は、熱膨脹の増大にも起因している高レベルの歪と振動
が発生する。その結果、温度分布が一様な回転子巻線と
比較して信頼度が低下する。
On the other hand, when the rotor winding has a large temperature difference in the longitudinal direction as in the case of a turbine generator, the heat-resistant life characteristic depends on the cooling performance of the end of the rotor winding at the highest temperature. In addition, high-level distortion and vibration also occur in the rotor winding having an uneven temperature distribution, which is also caused by an increase in thermal expansion. As a result, the reliability decreases as compared with a rotor winding having a uniform temperature distribution.

【0008】すなわち、回転子巻線端部の温度が、絶縁
被覆の許容耐熱温度を超えない範囲内で回転子巻線導体
の発熱密度を決定することになるため、これが原因で巻
線導体の断面積の増大、換言すれば回転電機の大型化、
あるいは回転電機の出力の抑制を余儀なくされるという
問題がある。
That is, the heat density of the rotor winding conductor is determined within a range in which the temperature of the rotor winding end does not exceed the allowable heat-resistant temperature of the insulating coating. Increase in cross-sectional area, in other words, increase in the size of the rotating electric machine,
Alternatively, there is a problem that the output of the rotating electric machine must be suppressed.

【0009】また、従来の回転子巻線端部では、保持環
5内へ流れ込んだ冷媒ガスは、保持環5内の回転子巻線
側面に設けられた通風孔入口14あるいは巻層された回
転子巻線2下方の回転子鉄心3内に設けられたサブスロ
ット入口15を通り、回転子鉄心3内の回転子巻線2を
冷却して固定子4側へ排出される。
In addition, at the end of the conventional rotor winding, the refrigerant gas flowing into the holding ring 5 is subjected to a ventilation hole inlet 14 provided on the side surface of the rotor winding in the holding ring 5 or the wound rotating rotor. Through the sub-slot inlet 15 provided in the rotor core 3 below the child winding 2, the rotor winding 2 in the rotor core 3 is cooled and discharged to the stator 4 side.

【0010】この場合、冷媒ガスが回転子巻線2間に淀
むことなく流動し、巻線2から冷媒ガスへの熱移動が円
滑に行われることが、均一な巻線温度分布につながる。
図18は回転子巻線間の流れを示す断面図である。
In this case, the flow of the refrigerant gas without stagnation between the rotor windings 2 and the smooth transfer of heat from the windings 2 to the refrigerant gas leads to a uniform winding temperature distribution.
FIG. 18 is a sectional view showing the flow between the rotor windings.

【0011】保持環5内は高遠心力場であるため、回転
子巻線2の表面に遠心力16と逆向きに強大な浮力が働
き、自然対流19が駆動される。この巻線2間で生じる
高遠心力場での自然対流17と強制対流19による流れ
が衝突しており、巻線2から冷媒ガスへの熱移動を抑制
する要因となってる。
Since the inside of the retaining ring 5 has a high centrifugal force field, a strong buoyancy acts on the surface of the rotor winding 2 in a direction opposite to the centrifugal force 16, and the natural convection 19 is driven. The natural convection 17 and the forced convection 19 in the high centrifugal force field generated between the windings 2 collide with each other, which is a factor for suppressing heat transfer from the windings 2 to the refrigerant gas.

【0012】[0012]

【発明が解決しようとする課題】以上のように従来の回
転子巻線部の冷却構造を備えた回転電機の回転子におい
ては、一様な温度分布と良好な冷却が困難であることか
ら、回転電機の大型化、回転電機の出力の抑制を余儀な
くされるという問題があった。
As described above, in a conventional rotor of a rotating electrical machine having a cooling structure for a rotor winding portion, it is difficult to achieve uniform temperature distribution and good cooling. There has been a problem that the size of the rotating electric machine must be increased and the output of the rotating electric machine must be suppressed.

【0013】本発明は上記のような問題を解消するため
なされたもので、保持環内の巻線間における高遠心力場
での自然対流と強制対流の衝突を回避し、回転子巻線表
面の対流熱伝達を促進させることが可能な回転子巻線端
部の冷却構造を備えた回転電機の回転子を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is intended to avoid collision between natural convection and forced convection in a high centrifugal force field between windings in a retaining ring, and to reduce the surface of the rotor winding. An object of the present invention is to provide a rotor of a rotating electrical machine having a cooling structure of a rotor winding end portion capable of promoting convective heat transfer.

【0014】[0014]

【課題を解決するための手段】本発明は上記のような目
的を達成するため、次のような手段により回転電機の回
転子を構成するものである。請求項1に対応する発明
は、回転子鉄心に多重環状に巻装された複数の鞍形コイ
ルからなる回転子巻線端部の外周を保持環により覆い、
且つ回転子軸端部に設けたファンから前記回転子巻線端
部の内周側に供給される冷媒ガスにより冷却する冷却構
造を備えた回転電機の回転子において、前記回転子巻線
端部の回転子巻線間に前記保持環側へ前記保持環の入口
からサブスロットに向かって軸方向に流れる冷媒ガスの
一部を導入し、巻線側に面した前記保持環の内面近傍に
前記導入した冷媒ガスを吐き出すための通風孔を有する
通風路を前記保持環の内面に設ける。
According to the present invention, in order to achieve the above object, a rotor of a rotating electric machine is constituted by the following means. According to a first aspect of the present invention, an outer periphery of a rotor winding end portion composed of a plurality of saddle-shaped coils wound around a rotor core in a multiple annular shape is covered with a holding ring,
And a rotor of a rotary electric machine having a cooling structure for cooling by a refrigerant gas supplied from a fan provided at an end of the rotor shaft to an inner peripheral side of the end of the rotor winding, wherein the end of the rotor winding is provided. A part of the refrigerant gas flowing in the axial direction from the inlet of the holding ring toward the sub-slot is introduced into the holding ring side between the rotor windings, and the portion near the inner surface of the holding ring facing the winding side is introduced. A ventilation path having a ventilation hole for discharging the introduced refrigerant gas is provided on the inner surface of the holding ring.

【0015】請求項2に対応する発明は、回転子鉄心に
多重環状に巻装された複数の鞍形コイルからなる回転子
巻線端部の外周を保持環により覆い、且つ回転子軸端部
に設けたファンから前記回転子巻線端部の内周側に供給
される冷媒ガスにより冷却する冷却構造を備えた回転電
機の回転子において、前記回転子巻線端部の回転子巻線
間に前記保持環側へ前記保持環の入口からサブスロット
に向かって軸方向に流れる冷媒ガスの一部を導入し、回
転子中央側の巻線に面した前記保持環の内面近傍に前記
導入された冷媒ガスを吐き出すための通風孔を有する高
熱伝導材料の通風路を前記保持環の内面に設ける。
According to a second aspect of the present invention, an outer periphery of a rotor winding end comprising a plurality of saddle-shaped coils wound around a rotor iron core in a multiple annular shape is covered by a retaining ring, and a rotor shaft end is provided. In a rotor of a rotating electrical machine having a cooling structure for cooling by a refrigerant gas supplied to an inner peripheral side of the rotor winding end from a fan provided at the rotor winding end, A part of the refrigerant gas flowing in the axial direction from the inlet of the holding ring toward the sub-slot is introduced to the holding ring side, and the refrigerant gas is introduced near the inner surface of the holding ring facing the winding at the center of the rotor. A ventilation path of a high heat conductive material having ventilation holes for discharging the discharged refrigerant gas is provided on the inner surface of the holding ring.

【0016】従って、請求項1及び請求項2に対応する
発明の回転電機の回転子にあっては、保持環入口からサ
ブスロットに向って軸方向に流れる冷媒ガスの一部を保
持環内面側の巻線間に導くような通風路を保持環内面に
設置することにより、自然対流と強制対流の衝突を回避
し、さらに保持環内面側に送り込まれた冷媒ガスは強大
な浮力によって巻線表面の熱を受取りながら回転子軸側
へ移動する。
Therefore, in the rotor of the rotating electric machine according to the first and second aspects of the present invention, a part of the refrigerant gas flowing in the axial direction from the inlet of the holding ring toward the sub-slot is transferred to the inner surface of the holding ring. By installing a ventilation path on the inner surface of the holding ring that guides between the windings, collision between natural convection and forced convection is avoided, and the refrigerant gas sent into the inner surface of the holding ring has a strong buoyancy that causes While moving to the rotor shaft side.

【0017】これにより、回転子巻線表面の対流熱伝達
を促進させることができ、回転子巻線端部の局部的な温
度上昇を抑制することができる。請求項3に対応する発
明は、回転子鉄心に多重環状に巻装された複数の鞍形コ
イルからなる回転子巻線端部の外周を保持環により覆
い、且つ回転子軸端部に設けたファンから前記回転子巻
線端部の内周側に供給される冷媒ガスにより冷却する冷
却構造を備えた回転電機の回転子において、前記回転子
巻線端部の回転子巻線間に前記保持環内に流路を形成
し、且つこの流路へ前記保持環の入口からサブスロット
に向かって軸方向に流れる冷媒ガスの一部を導入するた
めの高熱伝導性材の通風路を設ける。
Thus, convective heat transfer on the surface of the rotor winding can be promoted, and a local temperature rise at the end of the rotor winding can be suppressed. According to a third aspect of the present invention, the outer periphery of a rotor winding end composed of a plurality of saddle coils wound around the rotor core in multiple loops is covered with a retaining ring and provided at the rotor shaft end. In a rotor of a rotating electrical machine having a cooling structure for cooling by a refrigerant gas supplied from a fan to an inner peripheral side of the rotor winding end, the holding between the rotor windings at the rotor winding end is performed. A flow path is formed in the ring, and a ventilation path of a high heat conductive material is provided for introducing a part of the refrigerant gas flowing in the axial direction from the inlet of the holding ring toward the subslot into the flow path.

【0018】請求項4に対応する発明は、請求項3に対
応する発明の回転電機の回転子において、前記通風路を
巻線に密着させて設ける。従って、請求項3及び請求項
4に対応する発明の回転電機の回転子にあっては、保持
環入口からサブスロットに向って軸方向に流れる冷媒ガ
スの一部を保持環内に形成された流路へ導くための高熱
伝導性材の通風路を設けることにより、自然対流と強制
対流の衝突を回避し、さらに請求項3に対応する発明に
おいては巻線表面で加熱された冷媒が通風路表面で冷却
され、請求項4に対応する発明においては巻線で発生し
た熱が通風路を流れる冷媒ガス内に高熱伝導性材を介し
て伝導する。
According to a fourth aspect of the present invention, in the rotor of the rotary electric machine according to the third aspect of the present invention, the ventilation path is provided in close contact with a winding. Therefore, in the rotor of the rotating electric machine according to the third and fourth aspects of the invention, a part of the refrigerant gas flowing in the axial direction from the inlet of the holding ring toward the sub-slot is formed in the holding ring. By providing a ventilation path made of a high thermal conductive material for guiding to the flow path, collision between natural convection and forced convection is avoided, and in the invention according to claim 3, the refrigerant heated on the surface of the windings has a ventilation path. In the invention corresponding to the fourth aspect, the heat generated in the windings is conducted through the high heat conductive material into the refrigerant gas flowing through the ventilation path.

【0019】これにより、請求項3に対応する発明にお
いては回転子巻線表面の自然対流熱伝達が促進され、請
求項4に対応する発明においては巻線で発生する熱の放
熱面積が拡大することによって冷却性能が向上し、回転
子巻線端部の局部的な温度上昇を抑制することができ
る。
Thus, in the invention corresponding to claim 3, natural convection heat transfer on the rotor winding surface is promoted, and in the invention corresponding to claim 4, the heat radiation area of the heat generated in the winding is enlarged. As a result, the cooling performance is improved, and the local temperature rise at the end of the rotor winding can be suppressed.

【0020】請求項5に対応する発明は、回転子鉄心に
多重環状に巻装された複数の鞍形コイルからなる回転子
巻線端部の外周を保持環により覆い、且つ回転子軸端部
に設けたファンから前記回転子巻線端部の内周側に供給
される冷媒ガスにより冷却する冷却構造を備えた回転電
機の回転子において、前記回転子巻線端部の回転子巻線
間に前記保持環の入口からサブスロットに向って軸方向
に流れる冷媒ガスの一部を導入するための通風路を回転
子巻線間に取付けた間隔片に設ける。
According to a fifth aspect of the present invention, an outer periphery of a rotor winding end comprising a plurality of saddle-shaped coils wound in multiple circles around a rotor core is covered by a holding ring, and a rotor shaft end is provided. In a rotor of a rotating electrical machine having a cooling structure for cooling by a refrigerant gas supplied to an inner peripheral side of the rotor winding end from a fan provided at the rotor winding end, Further, a ventilation passage for introducing a part of the refrigerant gas flowing in the axial direction from the inlet of the holding ring toward the sub-slot is provided in the spacing piece attached between the rotor windings.

【0021】従って、請求項5に対応する発明の回転電
機の回転子にあっては、保持環入口からサブスロットに
向って軸方向に流れる冷媒ガスの一部を保持環内面側の
巻線間に導くような通風路を間隔片に設置することによ
り、自然対流と強制対流の衝突を回避し、さらに保持環
内面側に送込まれた冷媒ガスは強大な浮力によって巻線
表面の熱を受取りながら回転子軸側へ移動する。
Accordingly, in the rotor of the rotary electric machine according to the present invention, a part of the refrigerant gas flowing in the axial direction from the inlet of the holding ring toward the sub-slot is transferred between the windings on the inner surface side of the holding ring. By installing a ventilation path in the spacing piece that leads to the wind, collision between natural convection and forced convection is avoided, and the refrigerant gas sent to the inner surface side of the holding ring receives heat on the winding surface due to strong buoyancy While moving to the rotor shaft side.

【0022】これにより、回転子巻線表面の対流熱伝達
を促進させることができ、回転子巻線端部の局部的な温
度上昇を抑制することができる。請求項6に対応する発
明は、回転子鉄心に多重環状に巻装された複数の鞍形コ
イルからなる回転子巻線端部の外周を保持環により覆
い、且つ回転子軸端部に設けたファンから前記回転子巻
線端部の内周側に供給される冷媒ガスにより冷却する冷
却構造を備えた回転電機の回転子において、前記回転子
巻線端部の回転子巻線間に前記保持環の入口からサブス
ロットに向って軸方向に流れる冷媒ガスの一部を導入す
るための前記保持環側に開いた通風路を前記回転子軸に
設ける。
Thus, convection heat transfer on the surface of the rotor winding can be promoted, and a local temperature rise at the end of the rotor winding can be suppressed. According to a sixth aspect of the present invention, an outer periphery of a rotor winding end composed of a plurality of saddle-shaped coils wound around the rotor core in a multi-annular manner is covered with a retaining ring and provided at a rotor shaft end. In a rotor of a rotating electrical machine having a cooling structure for cooling by a refrigerant gas supplied from a fan to an inner peripheral side of the rotor winding end, the holding between the rotor windings at the rotor winding end is performed. The rotor shaft is provided with an air passage open to the holding ring side for introducing a part of the refrigerant gas flowing in the axial direction from the inlet of the ring toward the subslot.

【0023】従って、請求項6に対応する発明の回転電
機の回転子にあっては、保持環入口からサブスロットに
向って軸方向に流れる冷媒ガスの一部を巻線間に導くよ
うな通風路を回転子軸に設けることにより、自然対流と
強制対流の衝突を回避し、さらに巻線間の流れを淀むこ
となく対流させることができる。これにより、回転子巻
線表面の対流熱伝達を促進させることができ、回転子巻
線の局部的な温度上昇を抑制することができる。
Therefore, in the rotor of the rotary electric machine according to the present invention, a portion of the refrigerant gas flowing in the axial direction from the inlet of the holding ring toward the subslot is guided between the windings. By providing the path on the rotor shaft, collision between natural convection and forced convection can be avoided, and the flow between the windings can be convected without stagnation. Thereby, convection heat transfer on the rotor winding surface can be promoted, and a local temperature rise of the rotor winding can be suppressed.

【0024】[0024]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照して説明する。図1は本発明の第1の実施の形態に
よる回転電機の回転子における回転子巻線端部の構成例
を示す断面図であり、図16及び図17、図18と同一
要素には同一符号を付してその説明を省略し、ここでは
異なる部分についてのみ述べる。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing a configuration example of a rotor winding end in a rotor of a rotary electric machine according to a first embodiment of the present invention, and the same elements as those in FIGS. 16, 17 and 18 have the same reference numerals. The description thereof is omitted, and only different parts will be described here.

【0025】第1の実施の形態では、軸方向に向かって
流れる冷媒ガスの一部を回転子巻線端部の回転子巻線2
間に導き、この導かれた冷媒ガスを巻線2の表面に吐き
出すための通風孔21を巻線2に面した保持環5の内面
に設けるものである。
In the first embodiment, part of the refrigerant gas flowing in the axial direction is supplied to the rotor winding 2 at the end of the rotor winding.
A ventilation hole 21 for guiding the refrigerant gas to the space and discharging the introduced refrigerant gas to the surface of the winding 2 is provided on the inner surface of the holding ring 5 facing the winding 2.

【0026】この場合、通風路20は図2に示すように
軸方向に向って流れる冷媒ガスを取入れるための流入口
を、冷媒ガスが取込み易いように傾斜させてある。この
ような構成の回転電機の回転子において、回転子巻線2
間の流れは図3に示すようになる。
In this case, as shown in FIG. 2, the ventilation passage 20 has an inlet for taking in the refrigerant gas flowing in the axial direction, which is inclined so that the refrigerant gas can be taken in easily. In the rotor of the rotating electric machine having such a configuration, the rotor winding 2
The flow between them is as shown in FIG.

【0027】即ち、通風路20の流入口より取込まれた
冷媒ガスは、図3に示すように遠心力によって保持環5
の内面側へ導かれ、巻線2に面した保持環5の内面近傍
に設けられた通風孔21より巻線2の表面に吐出され
る。
That is, as shown in FIG. 3, the refrigerant gas taken in from the inlet of the ventilation passage 20 is centrifugally applied to the holding ring 5.
And is discharged to the surface of the winding 2 from a ventilation hole 21 provided near the inner surface of the holding ring 5 facing the winding 2.

【0028】この巻線2の表面に吐出された冷媒ガス
は、回転子巻線2近傍の流体に作用する強大な浮力によ
って巻線2を冷却しながら巻線2の表面に沿って回転子
軸8方向に流動する。
The refrigerant gas discharged onto the surface of the winding 2 cools the winding 2 by the strong buoyancy acting on the fluid in the vicinity of the rotor winding 2 while cooling the winding 2 along the surface of the rotor 2. Flows in eight directions.

【0029】以上により従来では強制対流と自然対流の
衝突のため、冷媒ガスを円滑に導くことが困難であった
巻線2間の保持環5の内面近傍に通風路20によって冷
媒ガスが導かれるため、強制対流と自然対流の衝突を回
避し、冷媒ガスが巻線2間に淀むことなく対流すること
が可能となる。
As described above, the refrigerant gas is guided by the ventilation passage 20 to the vicinity of the inner surface of the holding ring 5 between the windings 2 where it has been difficult to guide the refrigerant gas smoothly due to the collision of forced convection and natural convection. Therefore, collision between forced convection and natural convection can be avoided, and the refrigerant gas can convect without stagnation between the windings 2.

【0030】これにより、保持環の強度を損なうことな
く、回転子巻線2の表面における対流伝達が促進され、
回転子巻線端部の局部的な温度上昇を抑制して、回転電
機の大容量化を図ることを可能とする回転子巻線端部の
冷却構造を備えた回転電機の回転子を得ることができ
る。
Thereby, convection transmission on the surface of the rotor winding 2 is promoted without impairing the strength of the retaining ring,
Obtaining a rotor for a rotating electric machine having a cooling structure for a rotor winding end that can suppress a local temperature rise of the rotor winding end and increase the capacity of the rotating electric machine. Can be.

【0031】図4は本発明の第2の実施の形態による回
転電機の回転子における通風路を拡大して示す斜視図、
図5は同実施の形態における通風路を保持環内面に設け
たときの回転子巻線間の冷媒ガスの流れを示す断面図で
あり、図2及び図3と同一要素には同一符号を付してそ
の説明を省略し、ここでは異なる部分についてのみ述べ
る。
FIG. 4 is an enlarged perspective view showing a ventilation passage in a rotor of a rotary electric machine according to a second embodiment of the present invention.
FIG. 5 is a cross-sectional view showing the flow of the refrigerant gas between the rotor windings when a ventilation path is provided on the inner surface of the holding ring in the embodiment, and the same elements as those in FIGS. 2 and 3 are denoted by the same reference numerals. The description thereof is omitted, and only different portions will be described here.

【0032】第2の実施の形態では、軸方向に向って流
れる冷媒ガスの一部を回転子巻線端部の回転子巻線2間
に導き、この導かれた冷媒ガスを巻線2の表面に吐出す
ための通風孔21を回転子中央側の巻線2に面した保持
環5の内面近傍に有する高熱伝導性材の通風路22を保
持環5の内面に設けるものである。この通風路22は軸
方向に向って流れる冷媒ガスを取入れるための流入口を
冷媒ガスが取込み易いように傾斜させてある。
In the second embodiment, a part of the refrigerant gas flowing in the axial direction is guided between the rotor windings 2 at the ends of the rotor windings. A ventilation path 22 made of a high thermal conductive material is provided on the inner surface of the holding ring 5 having a ventilation hole 21 for discharging to the surface near the inner surface of the holding ring 5 facing the winding 2 on the center side of the rotor. The ventilation passage 22 has an inlet for taking in the refrigerant gas flowing in the axial direction, which is inclined so that the refrigerant gas can be taken in easily.

【0033】このような構成の回転電機の回転子におい
て、高熱伝導性材の通風路22の流入口より取込まれた
冷媒ガスは、遠心力によって保持環5の内面側へ導か
れ、回転子中央側の巻線2に面した保持環5の内面近傍
に設けられた通風孔21より巻線2の表面に吐出され
る。この巻線2の表面に吐出された冷媒ガスは、回転子
巻線2近傍の流体に作用する強大な浮力によって巻線2
を冷却しながら巻線2の表面に沿って回転子軸方向に流
動する。
In the rotor of the rotating electric machine having such a configuration, the refrigerant gas taken in from the inlet of the ventilation passage 22 made of the high heat conductive material is guided to the inner surface side of the holding ring 5 by centrifugal force. Air is discharged to the surface of the winding 2 from a ventilation hole 21 provided near the inner surface of the holding ring 5 facing the winding 2 on the center side. The refrigerant gas discharged onto the surface of the winding 2 is subjected to strong buoyancy acting on the fluid near the rotor winding 2 so that the refrigerant 2
Flows along the surface of the winding 2 in the axial direction of the rotor while cooling.

【0034】また、通風路22とファン側の巻線2との
空間では巻線2の下方を流れる軸方向の流れによって駆
動される強制対流と巻線2の表面で生じる自然対流17
の流れ方向が衝突しないため、保持環5の内面側で冷媒
ガスを供給することなしに円滑な対流が形成される。
In the space between the ventilation passage 22 and the winding 2 on the fan side, forced convection driven by an axial flow flowing below the winding 2 and natural convection 17 generated on the surface of the winding 2
Does not collide, a smooth convection is formed on the inner surface side of the holding ring 5 without supplying the refrigerant gas.

【0035】さらに、通風路22は高熱伝導材で構成さ
れるので、通風路22面上を流れる冷媒ガスを冷却する
効果が得られる。以上により従来では強制対流と自然対
流の衝突のため、冷媒ガスを円滑に導くことが困難であ
った巻線2間の保持環5内面近傍に通風路22によって
冷媒ガスが導かれるため、強制対流と自然対流の衝突を
回避し、冷媒ガスが巻線2間に淀むことなく対流するこ
とが可能となる。
Further, since the ventilation passage 22 is made of a high heat conductive material, an effect of cooling the refrigerant gas flowing on the surface of the ventilation passage 22 can be obtained. As described above, the refrigerant gas is guided by the ventilation passage 22 to the vicinity of the inner surface of the holding ring 5 between the windings 2 where it was difficult to guide the refrigerant gas smoothly due to the collision between the forced convection and the natural convection. And natural convection can be avoided, and the refrigerant gas can convect without stagnation between the windings 2.

【0036】これにより、保持環の強度を損なうことな
く、回転子巻線2の表面における対流伝達が促進され、
回転子巻線端部の局部的な温度上昇を抑制して、回転電
機の大容量化を図ることを可能とする回転子巻線端部の
冷却構造を備えた回転電機の回転子を得ることができ
る。
Thereby, convection transmission on the surface of the rotor winding 2 is promoted without impairing the strength of the retaining ring,
Obtaining a rotor for a rotating electric machine having a cooling structure for a rotor winding end that can suppress a local temperature rise of the rotor winding end and increase the capacity of the rotating electric machine. Can be.

【0037】図6は本発明の第3の実施の形態による回
転電機の回転子における回転子巻線端部の構成例を示す
断面図であり、図16及び図17、図18と同一要素に
は同一符号を付してその説明を省略し、ここでは異なる
部分についてのみ述べる。
FIG. 6 is a sectional view showing a configuration example of a rotor winding end portion in a rotor of a rotary electric machine according to a third embodiment of the present invention, which is the same as FIG. 16, FIG. 17, and FIG. Are denoted by the same reference numerals and description thereof is omitted, and only different portions will be described here.

【0038】第3の実施の形態では、軸方向に向かって
流れる冷媒ガスの一部を回転子巻線端部の回転子巻線2
間を通って保持環5内に形成された流路23へ導くため
の通風路22を保持環5の内面に設ける。この通風路2
2は図7に示すように高熱伝導性材から構成され、軸方
向に向って流れる冷媒ガスを取入れるための流入口より
冷媒ガスが取込み易いように傾斜させてある。また、保
持環5内に形成された流路23は巻線2間の通風路22
によって導かれた冷媒ガスが回転子鉄心3の端面近傍に
吐出されるように、しかも流出口近傍は、逆流を防ぐた
め流路幅をだんだん狭くして流出口を鉄心端面側に傾斜
させてある。
In the third embodiment, a part of the refrigerant gas flowing in the axial direction is supplied to the rotor winding 2 at the end of the rotor winding.
An air passage 22 is provided on the inner surface of the holding ring 5 to guide the air to a flow path 23 formed in the holding ring 5 through the gap. This ventilation path 2
As shown in FIG. 7, 2 is made of a highly heat conductive material and is inclined so that the refrigerant gas can be easily taken in from an inlet for taking the refrigerant gas flowing in the axial direction. In addition, the flow path 23 formed in the holding ring 5 is a ventilation path 22 between the windings 2.
In order that the refrigerant gas guided by the flow is discharged to the vicinity of the end face of the rotor core 3, and in the vicinity of the outlet, the width of the flow path is gradually narrowed to prevent backflow, and the outlet is inclined toward the end face of the core. .

【0039】このような構成の回転電機の回転子とすれ
ば、回転子巻線2間の流れは図8に示すようになる。即
ち、高熱伝導性材の通風路22の流入口より取込まれた
冷媒ガスは、遠心力によって保持環5内に形成された流
路23に導かれる。このとき、通風路22は高熱伝導性
材より構成されているので、通風路22面上を流れる冷
媒ガスの冷却効果が得られ、通風路22と巻線2間で円
滑な自然対流17が形成される。
If the rotor of the rotating electric machine having such a configuration is used, the flow between the rotor windings 2 is as shown in FIG. That is, the refrigerant gas taken in from the inflow port of the ventilation path 22 of the high thermal conductive material is guided to the flow path 23 formed in the holding ring 5 by centrifugal force. At this time, since the ventilation passage 22 is made of a high thermal conductive material, a cooling effect of the refrigerant gas flowing on the surface of the ventilation passage 22 is obtained, and a smooth natural convection 17 is formed between the ventilation passage 22 and the winding 2. Is done.

【0040】以上により巻線2の表面で加熱され、浮力
によって回転子巻線2の表面に沿って回転子軸8方向に
流動する冷媒ガスを通風路22内を流れる加熱されてい
ない冷媒ガスによって高熱伝導性材を介して冷却するこ
とができる。さらに、回転子巻線2間における強制対流
と自然対流の衝突を回避し、冷媒ガスが巻線2間に淀む
ことなく対流することが可能となる。
As described above, the refrigerant gas, which is heated on the surface of the winding 2 and flows in the direction of the rotor shaft 8 along the surface of the rotor winding 2 by buoyancy, flows through the air passage 22 through the unheated refrigerant gas. Cooling can be performed through the high thermal conductive material. Further, collision between forced convection and natural convection between the rotor windings 2 can be avoided, and the refrigerant gas can convect without stagnation between the windings 2.

【0041】これにより、回転子巻線2の表面における
対流伝達が促進され、回転子巻線端部の局部的な温度上
昇を抑制して、回転電機の大容量化を図ることを可能と
する回転子巻線端部の冷却構造を備えた回転電機の回転
子を得ることができる。
Thereby, convection transmission on the surface of the rotor winding 2 is promoted, and a local temperature rise at the end of the rotor winding is suppressed, so that the capacity of the rotating electric machine can be increased. It is possible to obtain a rotor of a rotating electric machine having a cooling structure for a rotor winding end.

【0042】図9は本発明の第4の実施の形態による回
転電機の回転子における回転子巻線端部の構成例を示す
断面図であり、図16及び図17、図18と同一要素に
は同一符号を付してその説明を省略し、ここでは異なる
部分についてのみ述べる。
FIG. 9 is a sectional view showing a configuration example of a rotor winding end portion in a rotor of a rotary electric machine according to a fourth embodiment of the present invention, which is the same as FIG. 16, FIG. 17, and FIG. Are denoted by the same reference numerals and description thereof is omitted, and only different portions will be described here.

【0043】第4の実施の形態では、軸方向に向って流
れる冷媒ガスの一部を回転子巻線端部の回転子巻線2間
を通って、保持環5内に形成された流路23へ導くため
の回転子巻線2に密着した通風路22を保持環5の内面
に設けるものである。
In the fourth embodiment, a part of the refrigerant gas flowing in the axial direction passes between the rotor windings 2 at the ends of the rotor windings and passes through a flow passage formed in the holding ring 5. A ventilation path 22 that is in close contact with the rotor winding 2 for leading to the rotor 23 is provided on the inner surface of the holding ring 5.

【0044】この場合、保持環5内に形成された流路2
3は巻線2間の通風路22によって導かれた冷媒ガスが
回転子鉄心3の端面近傍に吐出されるように、しかも流
出口近傍は、逆流を防ぐため流路幅をだんだん狭くして
流出口を鉄心端面側に傾斜させてある。
In this case, the flow path 2 formed in the holding ring 5
Numeral 3 is such that the refrigerant gas guided by the ventilation passage 22 between the windings 2 is discharged near the end face of the rotor core 3 and near the outlet, the flow passage width is gradually reduced to prevent backflow. The outlet is inclined toward the end face of the iron core.

【0045】このような構成の回転電機の回転子とすれ
ば、回転子巻線2間の流れは図10に示すようになる。
即ち、高熱伝導性材の通風路22の流入口より取込まれ
た冷媒ガスは、遠心力によって保持環5内に形成された
流路23に導かれる。このとき、通風路22は高熱伝導
性材より構成され、回転子巻線2に密着しているので、
巻線2で発生した熱は熱伝導により高熱伝導性材を通過
し、通風路22内を流れる冷媒ガスに伝わる。
If the rotor of the rotating electric machine having such a configuration is used, the flow between the rotor windings 2 is as shown in FIG.
That is, the refrigerant gas taken in from the inflow port of the ventilation path 22 of the high thermal conductive material is guided to the flow path 23 formed in the holding ring 5 by centrifugal force. At this time, since the ventilation passage 22 is made of a high heat conductive material and is in close contact with the rotor winding 2,
The heat generated in the windings 2 passes through the highly heat conductive material by heat conduction, and is transmitted to the refrigerant gas flowing in the ventilation passage 22.

【0046】以上により巻線2で発生した熱は高熱伝導
性材22を介して冷却されるため、放熱面積が拡大され
るので、冷却性能が向上する。さらに、回転子巻線2間
における強制対流と自然対流の衝突を回避し、冷媒ガス
が巻線2間に淀むことなく、対流することが可能とな
る。
As described above, since the heat generated in the windings 2 is cooled through the high thermal conductive material 22, the heat radiation area is enlarged, and the cooling performance is improved. Further, collision between forced convection and natural convection between the rotor windings 2 can be avoided, and the refrigerant gas can convect without stagnation between the windings 2.

【0047】これにより、回転子巻線端部の局部的な温
度上昇が抑制され、回転電機の大容量化を図ることを可
能とする回転子巻線端部の冷却構造を備えた回転電機の
回転子を得ることができる。
As a result, a local rise in temperature at the ends of the rotor windings is suppressed, and a rotary electric machine having a cooling structure at the ends of the rotor windings capable of increasing the capacity of the rotating electric machine. A rotor can be obtained.

【0048】図11は本発明の第5の実施の形態による
回転電機の回転子における回転子巻線端部の構成例を示
す断面図であり、図16及び図17、図18と同一要素
には同一符号を付してその説明を省略し、ここでは異な
る部分についてのみ述べる。
FIG. 11 is a sectional view showing a configuration example of a rotor winding end portion in a rotor of a rotary electric machine according to a fifth embodiment of the present invention. Are denoted by the same reference numerals and description thereof is omitted, and only different portions will be described here.

【0049】第5の実施の形態では、軸方向に向って流
れる冷媒ガスの一部を回転子巻線端部の回転子巻線2間
に導き、この導かれた冷媒ガスを保持環5の内面近傍に
吐出すための通風路25を回転子巻線2間に設けられて
いる間隔片13に取付けるようにしたものである。この
場合、通風路25は軸方向に向って流れる冷媒ガスを取
入れるための流入口より冷媒ガスが取込み易いように傾
斜させてある。
In the fifth embodiment, a part of the refrigerant gas flowing in the axial direction is guided between the rotor windings 2 at the ends of the rotor windings. A ventilation passage 25 for discharging air to the vicinity of the inner surface is attached to the spacing piece 13 provided between the rotor windings 2. In this case, the ventilation passage 25 is inclined so that the refrigerant gas can be easily taken in from the inlet for taking the refrigerant gas flowing in the axial direction.

【0050】このような構成の回転電機の回転子とすれ
ば、回転子巻線2間の流れは図12に示すようになる。
即ち、通風路25の流入口より取込まれた冷媒ガスは、
遠心力によって保持環5内面側に導かれ、回転子巻線2
近傍の流体に作用する強大な浮力によって巻線2を冷却
しながら巻線2の表面に沿って回転子軸8方向に流動す
る。また、通風路25を間隔片13に取付けているの
で、通風路25面上には通風孔を設ける必要がなく、間
隔片13と共に巻線2間に取付けることができる。
With the rotor of the rotating electric machine having such a configuration, the flow between the rotor windings 2 is as shown in FIG.
That is, the refrigerant gas taken in from the inlet of the ventilation passage 25 is
It is guided to the inner surface side of the retaining ring 5 by centrifugal force, and the rotor winding 2
The cooling fluid 2 flows along the surface of the winding 2 in the direction of the rotor shaft 8 while cooling the winding 2 by a strong buoyancy acting on a nearby fluid. In addition, since the ventilation passage 25 is attached to the spacing piece 13, there is no need to provide a ventilation hole on the surface of the ventilation passage 25, and the ventilation piece can be attached between the windings 2 together with the spacing piece 13.

【0051】以上により従来では強制対流と自然対流の
衝突のため、冷媒ガスを円滑に導くことが困難であった
巻線2間の保持環5内面近傍に通風路25によって冷媒
ガスが導かれるため、強制対流と自然対流の衝突を回避
し、冷媒ガスが巻線2間に淀むことなく対流することが
可能となる。
As described above, the refrigerant gas is guided by the ventilation passage 25 to the vicinity of the inner surface of the holding ring 5 between the windings 2 where it has been difficult to guide the refrigerant gas smoothly due to the collision of forced convection and natural convection. Thus, collision between forced convection and natural convection can be avoided, and the refrigerant gas can convect without stagnation between the windings 2.

【0052】これにより、保持環の強度を損なうことな
く、回転子巻線2の表面における対流伝達が促進され、
回転子巻線端部の局部的な温度上昇を抑制して、回転電
機の大容量化を図ることを可能とする回転子巻線端部の
冷却構造を備えた回転電機の回転子を得ることができ
る。
Thus, convection transmission on the surface of the rotor winding 2 is promoted without impairing the strength of the retaining ring,
Obtaining a rotor for a rotating electric machine having a cooling structure for a rotor winding end that can suppress a local temperature rise of the rotor winding end and increase the capacity of the rotating electric machine. Can be.

【0053】図13は本発明の第6の実施の形態による
回転電機の回転子における回転子巻線端部の構成例を示
す断面図であり、図16及び図17、図18と同一要素
には同一符号を付してその説明を省略し、ここでは異な
る部分についてのみ述べる。
FIG. 13 is a sectional view showing a configuration example of a rotor winding end portion in a rotor of a rotary electric machine according to a sixth embodiment of the present invention, which is the same as FIG. 16, FIG. 17, and FIG. Are denoted by the same reference numerals and description thereof is omitted, and only different portions will be described here.

【0054】第6の実施の形態では、軸方向に向って流
れる冷媒ガスの一部を回転子巻線端部の回転子巻線2間
に導くための保持環5側に開いた通風路26を回転子軸
8に設けるものである。
In the sixth embodiment, an air passage 26 opened on the holding ring 5 side for guiding a part of the refrigerant gas flowing in the axial direction between the rotor windings 2 at the end of the rotor winding. Is provided on the rotor shaft 8.

【0055】この通風路26は、図14に示すように軸
方向に流れる冷媒ガスをラジアル方向に導くための流入
口を有している。このような構成の回転電機の回転子に
おいて、回転子軸8方向に流れる冷媒ガスは通風路26
の流入口より取込んでラジアル方向の流れとなり、遠心
力により巻線2間に送り込まれる。この巻線2間に送込
まれた冷媒ガスは回転子巻線2の表面で形成されている
自然対流を促進させる方向に作用する。
The ventilation passage 26 has an inlet for guiding the refrigerant gas flowing in the axial direction in the radial direction as shown in FIG. In the rotor of the rotating electric machine having such a configuration, the refrigerant gas flowing in the direction of the rotor shaft 8 is supplied to the ventilation passage 26.
Is taken in from the inflow port and becomes a radial flow, and is sent between the windings 2 by centrifugal force. The refrigerant gas sent between the windings 2 acts in a direction to promote natural convection formed on the surface of the rotor winding 2.

【0056】以上により従来では強制対流と自然対流の
衝突のため、冷媒ガスを円滑に導くことが困難であった
巻線2間に通風路26によって冷媒ガスが送り込まれる
ため、強制対流と自然対流の衝突を回避し、冷媒ガスが
巻線2間に淀むことなく対流させることが可能となる。
As described above, since the refrigerant gas is sent through the ventilation passage 26 between the windings 2 where it was difficult to guide the refrigerant gas smoothly due to the collision between the forced convection and the natural convection, the forced convection and the natural convection have hitherto occurred. Collision can be avoided, and the refrigerant gas can be convected without stagnation between the windings 2.

【0057】これにより、保持環の強度を損なうことな
く、回転子巻線2の表面における対流伝達が促進され、
回転子巻線端部の局部的な温度上昇を抑制して、回転電
機の大容量化を図ることを可能とする回転子巻線端部の
冷却構造を備えた回転電機の回転子を得ることができ
る。
Thus, the convection transmission on the surface of the rotor winding 2 is promoted without impairing the strength of the retaining ring,
Obtaining a rotor for a rotating electric machine having a cooling structure for a rotor winding end that can suppress a local temperature rise of the rotor winding end and increase the capacity of the rotating electric machine. Can be.

【0058】[0058]

【発明の効果】以上のべたように本発明によれば、保持
環内の巻線間における高遠心力場での自然対流と強制対
流の衝突を回避し、回転子巻線表面の対流熱伝達を促進
させることが可能な回転子巻線端部の冷却構造を備えた
回転電機の回転子を提供することができる。
As described above, according to the present invention, collision between natural convection and forced convection in a high centrifugal force field between the windings in the retaining ring is avoided, and convection heat transfer on the rotor winding surface is prevented. It is possible to provide a rotor of a rotating electrical machine having a cooling structure of a rotor winding end portion that can be accelerated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による回転電機の回転子の第1の実施の
形態における回転子巻線端部を示す断面図。
FIG. 1 is a sectional view showing a rotor winding end in a first embodiment of a rotor of a rotary electric machine according to the present invention.

【図2】同実施の形態における通風路を拡大して示す斜
視図。
FIG. 2 is an enlarged perspective view showing a ventilation path in the embodiment.

【図3】同実施の形態において、回転子巻線間の冷媒ガ
スの流れを説明するための断面図。
FIG. 3 is a cross-sectional view for explaining a flow of a refrigerant gas between rotor windings in the embodiment.

【図4】本発明による回転電機の回転子の第2の実施の
形態における回転子巻線端部の通風路を拡大して示す斜
視図。
FIG. 4 is an enlarged perspective view showing a ventilation path at an end of a rotor winding in a second embodiment of the rotor of the rotary electric machine according to the present invention.

【図5】同実施の形態において、回転子巻線間の冷媒ガ
スの流れを説明するための断面図。
FIG. 5 is a sectional view for explaining a flow of a refrigerant gas between rotor windings in the embodiment.

【図6】本発明による回転電機の回転子の第3の実施の
形態における回転子巻線端部を示す断面図。
FIG. 6 is a sectional view showing a rotor winding end in a third embodiment of the rotor of the rotary electric machine according to the present invention.

【図7】同実施の形態における通風路を拡大して示す斜
視図。
FIG. 7 is an enlarged perspective view showing a ventilation path in the embodiment.

【図8】同実施の形態において、回転子巻線間の冷媒ガ
スの流れを説明するための断面図。
FIG. 8 is a sectional view for explaining the flow of the refrigerant gas between the rotor windings in the embodiment.

【図9】本発明による回転電機の回転子の第4の実施の
形態における回転子巻線端部を示す断面図。
FIG. 9 is a cross-sectional view illustrating a rotor winding end in a fourth embodiment of the rotor of the rotary electric machine according to the present invention.

【図10】同実施の形態において、回転子巻線間の冷媒
ガスの流れを説明するための断面図。
FIG. 10 is a sectional view for explaining the flow of the refrigerant gas between the rotor windings in the embodiment.

【図11】本発明による回転電機の回転子の第5の実施
の形態における回転子巻線端部を示す断面図。
FIG. 11 is a sectional view showing an end portion of a rotor winding of a rotor of a rotary electric machine according to a fifth embodiment of the present invention.

【図12】同実施の形態において、回転子巻線間の冷媒
ガスの流れを説明するための断面図。
FIG. 12 is a sectional view for explaining the flow of the refrigerant gas between the rotor windings in the embodiment.

【図13】本発明による回転電機の回転子の第6の実施
の形態における回転子巻線端部を示す断面図。
FIG. 13 is a cross-sectional view showing a rotor winding end in a sixth embodiment of the rotor of the rotating electric machine according to the present invention.

【図14】同実施の形態における通風路を拡大して示す
斜視図。
FIG. 14 is an enlarged perspective view showing a ventilation path in the embodiment.

【図15】同実施の形態において、回転子巻線間の冷媒
ガスの流れを説明するための断面図。
FIG. 15 is a sectional view for explaining the flow of the refrigerant gas between the rotor windings in the embodiment.

【図16】タービン発電機全体の冷却構造を示す断面
図。
FIG. 16 is a sectional view showing a cooling structure of the entire turbine generator.

【図17】従来のタービン発電機の回転子巻線端部の冷
却構造を断面して示す斜視図。
FIG. 17 is a perspective view showing a cross-section of a cooling structure at an end of a rotor winding of a conventional turbine generator.

【図18】従来の回転子巻線間の冷媒ガスの流れを説明
するための断面図。
FIG. 18 is a cross-sectional view for explaining a flow of a refrigerant gas between conventional rotor windings.

【符号の説明】[Explanation of symbols]

1……回転子 2……回転子巻線 3……回転子鉄心 4……固定子 5……保持環 6……固定子巻線 7……固定子鉄心 8……回転子軸 9……ファン 10……スロット 11……ラジアルダクト 12……鞍形コイル 13……間隔片 14……通風孔入口 15……サブスロット入口 16……遠心力 17……自然対流 18……軸方向流れ 19……強制対流 20……保持環内面に設けられた通風路 21……通風孔 22……高熱伝導性材通風路 23……保持環内流路 24……熱伝導 25……間隔片に設けられた通風路 26……回転子軸に設けられた通風路 DESCRIPTION OF SYMBOLS 1 ... Rotor 2 ... Rotor winding 3 ... Rotor core 4 ... Stator 5 ... Holding ring 6 ... Stator winding 7 ... Stator core 8 ... Rotor shaft 9 ... Fan 10 Slot 11 Radial duct 12 Saddle coil 13 Spacing piece 14 Ventilation hole entrance 15 Subslot entrance 16 Centrifugal force 17 Natural convection 18 Axial flow 19 ... forced convection 20 ... ventilation path provided on the inner surface of the holding ring 21 ... ventilation hole 22 ... ventilation path of high thermal conductivity material 23 ... flow path in the holding ring 24 ... heat conduction 25 ... provided on the spacing piece Ventilation passage 26 ... Ventilation passage provided on the rotor shaft

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 回転子鉄心に多重環状に巻装された複数
の鞍形コイルからなる回転子巻線端部の外周を保持環に
より覆い、且つ回転子軸端部に設けたファンから前記回
転子巻線端部の内周側に供給される冷媒ガスにより冷却
する冷却構造を備えた回転電機の回転子において、 前記回転子巻線端部の回転子巻線間に前記保持環側へ前
記保持環の入口からサブスロットに向かって軸方向に流
れる冷媒ガスの一部を導入し、巻線側に面した前記保持
環の内面近傍に前記導入した冷媒ガスを吐き出すための
通風孔を有する通風路を前記保持環の内面に設けたこと
を特徴とする回転電機の回転子。
1. A rotor provided with a plurality of saddle-shaped coils wound around a rotor core in a multi-annular form, wherein the outer circumference of a rotor winding end is covered by a retaining ring, and a fan provided at an end of the rotor shaft rotates the rotor. In a rotor of a rotating electrical machine having a cooling structure for cooling by a refrigerant gas supplied to an inner peripheral side of an end portion of a rotor winding, the rotor ring end portion between the rotor windings to the holding ring side. Ventilation having a ventilation hole for introducing a part of the refrigerant gas flowing in the axial direction from the inlet of the retaining ring toward the sub-slot and for discharging the introduced refrigerant gas near the inner surface of the retaining ring facing the winding side. A rotor for a rotating electric machine, wherein a path is provided on an inner surface of the holding ring.
【請求項2】 回転子鉄心に多重環状に巻装された複数
の鞍形コイルからなる回転子巻線端部の外周を保持環に
より覆い、且つ回転子軸端部に設けたファンから前記回
転子巻線端部の内周側に供給される冷媒ガスにより冷却
する冷却構造を備えた回転電機の回転子において、 前記回転子巻線端部の回転子巻線間に前記保持環側へ前
記保持環の入口からサブスロットに向かって軸方向に流
れる冷媒ガスの一部を導入し、回転子中央側の巻線に面
した前記保持環の内面近傍に前記導入された冷媒ガスを
吐き出すための通風孔を有する高熱伝導材料の通風路を
前記保持環の内面に設けたことを特徴とする回転電機の
回転子。
2. A fan provided at an end of a rotor shaft, wherein an outer periphery of a rotor winding end composed of a plurality of saddle-shaped coils wound around a rotor core in a multi-annular form is covered by a holding ring, and said rotor is rotated by a fan. In a rotor of a rotating electrical machine having a cooling structure for cooling by a refrigerant gas supplied to an inner peripheral side of an end portion of a rotor winding, the rotor ring end portion between the rotor windings to the holding ring side. For introducing a part of the refrigerant gas flowing in the axial direction from the inlet of the retaining ring toward the sub-slot and discharging the introduced refrigerant gas to the vicinity of the inner surface of the retaining ring facing the winding at the center of the rotor. A rotor for a rotary electric machine, wherein a ventilation path of a high heat conductive material having ventilation holes is provided on an inner surface of the holding ring.
【請求項3】 回転子鉄心に多重環状に巻装された複数
の鞍形コイルからなる回転子巻線端部の外周を保持環に
より覆い、且つ回転子軸端部に設けたファンから前記回
転子巻線端部の内周側に供給される冷媒ガスにより冷却
する冷却構造を備えた回転電機の回転子において、 前記回転子巻線端部の回転子巻線間に前記保持環内に流
路を形成し、且つこの流路へ前記保持環の入口からサブ
スロットに向かって軸方向に流れる冷媒ガスの一部を導
入するための高熱伝導性材の通風路を設けたことを特徴
とする回転電機の回転子。
3. A fan provided at an end of a rotor shaft, wherein an outer periphery of a rotor winding end composed of a plurality of saddle coils wound around a rotor core in a multi-annular form is covered by a holding ring, and said rotor is rotated by a fan. In a rotor of a rotating electrical machine having a cooling structure for cooling by a refrigerant gas supplied to an inner peripheral side of an end portion of a rotor winding, a flow in the retaining ring is provided between rotor windings at an end portion of the rotor winding. A passage is formed, and a ventilation passage of a high heat conductive material is provided for introducing a part of the refrigerant gas flowing in the axial direction from the inlet of the retaining ring toward the sub-slot to the passage. Rotor of rotating electric machine.
【請求項4】 請求項3記載の回転電機の回転子におい
て、前記通風路を巻線に密着させて設けたことを特徴と
する回転電機の回転子。
4. The rotor for a rotating electric machine according to claim 3, wherein said ventilation path is provided in close contact with a winding.
【請求項5】 回転子鉄心に多重環状に巻装された複数
の鞍形コイルからなる回転子巻線端部の外周を保持環に
より覆い、且つ回転子軸端部に設けたファンから前記回
転子巻線端部の内周側に供給される冷媒ガスにより冷却
する冷却構造を備えた回転電機の回転子において、 前記回転子巻線端部の回転子巻線間に前記保持環の入口
からサブスロットに向って軸方向に流れる冷媒ガスの一
部を導入するための通風路を回転子巻線間に取付けた間
隔片に設けたことを特徴とする回転電機の回転子。
5. A rotor provided with a plurality of saddle-shaped coils wound around a rotor core in a multi-annular form, wherein the outer periphery of a rotor winding end is covered by a retaining ring, and a fan provided at an end of the rotor shaft rotates the rotor. In a rotor of a rotating electrical machine having a cooling structure for cooling by a refrigerant gas supplied to an inner peripheral side of an end portion of a rotor winding, an inlet of the retaining ring is provided between rotor windings at an end portion of the rotor winding. A rotor for a rotary electric machine, wherein a ventilation path for introducing a part of refrigerant gas flowing in an axial direction toward a sub-slot is provided in a spacing piece attached between rotor windings.
【請求項6】 回転子鉄心に多重環状に巻装された複数
の鞍形コイルからなる回転子巻線端部の外周を保持環に
より覆い、且つ回転子軸端部に設けたファンから前記回
転子巻線端部の内周側に供給される冷媒ガスにより冷却
する冷却構造を備えた回転電機の回転子において、 前記回転子巻線端部の回転子巻線間に前記保持環の入口
からサブスロットに向って軸方向に流れる冷媒ガスの一
部を導入するための前記保持環側に開いた通風路を前記
回転子軸に設けたことを特徴とする回転電機の回転子。
6. A rotor provided with a plurality of saddle-shaped coils wound around a rotor core in a multi-annular form, wherein the outer periphery of a rotor winding end is covered by a retaining ring, and a fan provided at an end of the rotor shaft rotates the rotor. In a rotor of a rotating electrical machine having a cooling structure for cooling by a refrigerant gas supplied to an inner peripheral side of an end portion of a rotor winding, an inlet of the retaining ring is provided between rotor windings at an end portion of the rotor winding. A rotor for a rotary electric machine, wherein a ventilation path opened on the holding ring side for introducing a part of refrigerant gas flowing in an axial direction toward a sub-slot is provided on the rotor shaft.
JP30202397A 1997-11-04 1997-11-04 Rotor of electric rotary machine Pending JPH11146587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30202397A JPH11146587A (en) 1997-11-04 1997-11-04 Rotor of electric rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30202397A JPH11146587A (en) 1997-11-04 1997-11-04 Rotor of electric rotary machine

Publications (1)

Publication Number Publication Date
JPH11146587A true JPH11146587A (en) 1999-05-28

Family

ID=17903974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30202397A Pending JPH11146587A (en) 1997-11-04 1997-11-04 Rotor of electric rotary machine

Country Status (1)

Country Link
JP (1) JPH11146587A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027377B4 (en) * 1999-06-02 2006-09-14 Hitachi, Ltd. Electric machine
JP2007259674A (en) * 2006-03-27 2007-10-04 Hitachi Ltd Rotor for rotary electric machine
CN100352142C (en) * 2000-12-19 2007-11-28 通用电气公司 Spaceblock deflector for increased electric generator endwinding cooling
GB2470107A (en) * 2009-05-05 2010-11-10 Gen Electric Generator coil cooling baffles
JP2013166385A (en) * 2008-03-11 2013-08-29 Seiko Epson Corp Liquid ejecting apparatus
CN112564358A (en) * 2020-11-10 2021-03-26 湖南科技大学 Design method of axial ventilation slot of alternating-current traction motor rotor tooth part

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10027377B4 (en) * 1999-06-02 2006-09-14 Hitachi, Ltd. Electric machine
DE10027377C5 (en) * 1999-06-02 2013-05-08 Hitachi, Ltd. Electric machine
CN100352142C (en) * 2000-12-19 2007-11-28 通用电气公司 Spaceblock deflector for increased electric generator endwinding cooling
JP2007259674A (en) * 2006-03-27 2007-10-04 Hitachi Ltd Rotor for rotary electric machine
JP2013166385A (en) * 2008-03-11 2013-08-29 Seiko Epson Corp Liquid ejecting apparatus
GB2470107A (en) * 2009-05-05 2010-11-10 Gen Electric Generator coil cooling baffles
US7893576B2 (en) 2009-05-05 2011-02-22 General Electric Company Generator coil cooling baffles
GB2470107B (en) * 2009-05-05 2015-11-11 Gen Electric Generator coil cooling baffles
CN112564358A (en) * 2020-11-10 2021-03-26 湖南科技大学 Design method of axial ventilation slot of alternating-current traction motor rotor tooth part
CN112564358B (en) * 2020-11-10 2022-06-28 湖南科技大学 Design method of axial ventilation slot of alternating-current traction motor rotor tooth part

Similar Documents

Publication Publication Date Title
US6268668B1 (en) Gas cooled generator stator structure and method for impingement cooling of generator stator coil
US5633543A (en) Pressure equalizer and method for reverse flow ventilated armature in power generator
JP2006353086A (en) Cooling system for electrical machine equipped with center rotor cooling duct
JP7038074B2 (en) Rotating machine and rotor shaft
EP3136550B1 (en) Rotor assembly having improved cooling path
JPS6112466B2 (en)
JP5918656B2 (en) Rotating electric machine
JPH11146587A (en) Rotor of electric rotary machine
US7763996B2 (en) Method and apparatus for cooling generators
JPH07213000A (en) Structure for cooling end of rotor coil in electric rotating machine
US6759770B1 (en) Cooling system for modular field windings of a generator
JPH09285046A (en) Dynamo-electric machine and its stator
JP2000041362A (en) Electric rotary machine
JP2003018772A (en) Rotary electric machine having air-cooled structure
US11967877B2 (en) Rotating electric machine
JP2005185095A (en) Heat management of rotor end coil
JP3635812B2 (en) Rotating machine rotor
JPH1014148A (en) Rotor for dynamo-electric machine
KR100858290B1 (en) Air-cooled motor
JP2000050576A (en) Apparatus for cooling rotor of rotating electric machine
JPH11150898A (en) Rotor for dynamoelectric machine
JP7263107B2 (en) Rotor of rotary electric machine
JPS62296735A (en) Cooling device for motor
JP3894114B2 (en) Fully enclosed motor
JPH0951655A (en) Cooler for rotor coil end of turbine generator