JPH11144890A - Plasma generation accelerator - Google Patents

Plasma generation accelerator

Info

Publication number
JPH11144890A
JPH11144890A JP9304037A JP30403797A JPH11144890A JP H11144890 A JPH11144890 A JP H11144890A JP 9304037 A JP9304037 A JP 9304037A JP 30403797 A JP30403797 A JP 30403797A JP H11144890 A JPH11144890 A JP H11144890A
Authority
JP
Japan
Prior art keywords
plasma
electrode
spiral
magnetic force
force line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9304037A
Other languages
Japanese (ja)
Inventor
Kingo Azuma
欣吾 東
Yasutsugu Oda
泰嗣 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9304037A priority Critical patent/JPH11144890A/en
Publication of JPH11144890A publication Critical patent/JPH11144890A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

PROBLEM TO BE SOLVED: To shorten magnetizing plasma by forming a tip of an internal electrode into a spiral electrode, and by forming its threaded direction of spiral to make a direction of a magnetic force line generated in the outside of the electrode consistent with a direction of a magnetic force line in a bias coil. SOLUTION: A spiral electrode 20 is formed in a tip of an internal electrode 3, and its threaded direction of spiral is formed to make a direction of a magnetic force line generated by the electrode 20 in its outside consistent with a direction of a magnetic force line 10a in a bias coil. When initial plasma 11a is discharged from a plasma generating region (b) while dragging a magnetic force line, current flows to the spiral electrode 20 to generate a magnetic force line 10c (c). Since the magnetic force line 10c pushes out an inside magnetic force line of the radial direction out of the magnetic force lines 10a dragged by the plasma, a wall of magnetic field is formed in a rear side of the plasma to restrain expansion toward a rear side of the plasma. As the result, recombination of the magnetic force lines is promoted, and magnetizing plasma is formed in early timing to shorten length of the plasma.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁場閉じ込め型核
融合炉内に適用される燃料粒子供給装置としてのプラズ
マ生成加速装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma generation acceleration device as a fuel particle supply device applied to a magnetic field confinement type fusion reactor.

【0002】[0002]

【従来の技術】図3は従来のプラズマ生成加速装置の一
例を示しており、外部電極1、内部電極3、加速電極2
が同心に順に配置され、これら電極間はその端部にて絶
縁フランジ5により絶縁され密閉されている。外部電極
1の外側には、この外部電極1を取りまくように内部電
極3と略同じ長さのバイアスコイル4が配置される。ま
た、外部電極1にはパルス状にガスを注入する高速電磁
弁6がつながっており、ガス源7からガスが供給される
ようになっている。また、図中8はプラズマ生成電極、
9は加速電極である。
2. Description of the Related Art FIG. 3 shows an example of a conventional plasma generation accelerating device, in which an external electrode 1, an internal electrode 3, and an accelerating electrode 2 are shown.
Are arranged concentrically in order, and between these electrodes is insulated and sealed at its ends by an insulating flange 5. A bias coil 4 having substantially the same length as the internal electrode 3 is arranged outside the external electrode 1 so as to surround the external electrode 1. A high-speed solenoid valve 6 for injecting gas in a pulsed form is connected to the external electrode 1, and a gas is supplied from a gas source 7. In the figure, 8 is a plasma generating electrode,
9 is an accelerating electrode.

【0003】かかる構造にあって、プラズマ生成加速装
置は、大きく分けて図4に示す磁化プラズマ11bを生
成する磁化プラズマ生成部と、磁化プラズマを加速する
プラズマ加速部とからなる。磁化プラズマ生成部は、真
空容器を兼ねる外部電極1、高速電磁弁6からパルス状
に注入されるガスにプラズマを点火する内部電極3、ソ
レノイド状のバイアスコイル4からなり、プラズマ加速
部は、外部電極1と生成される磁化プラズマを加速する
加速電極2とからなる。
In such a structure, the plasma generation accelerating device is roughly divided into a magnetized plasma generating section for generating the magnetized plasma 11b shown in FIG. 4, and a plasma accelerating section for accelerating the magnetized plasma. The magnetized plasma generating unit includes an external electrode 1 also serving as a vacuum vessel, an internal electrode 3 for igniting plasma to a gas injected in a pulse form from a high-speed solenoid valve 6, and a solenoid-shaped bias coil 4. It comprises an electrode 1 and an accelerating electrode 2 for accelerating the generated magnetized plasma.

【0004】かかる構造において、図3、図4にてプラ
ズマの挙動は次のようになる。 (1)まず、バイアスコイル4の電源を立ち上げ、内部
電極3の前縁部にて装置の径方向(r方向)に磁力線1
0aを発生させる。この場合、バイアスコイル4が発生
する磁場としては外部電極1と内部電極3との間にプラ
ズマが存在する時間よりも長い時間ほぼ一定であればよ
い。 (2)次に、高速電磁弁6を開き、プラズマ化するガス
が詰め込まれたガス源7から外部電極1と内部電極3と
の間にガスを注入する。 (3)外部電極1と内部電極3との間にある程度ガスが
拡散した瞬間にプラズマ生成電源8から内部電極3に高
電圧を加え、ガスをプラズマ化する。 (4)生成されたトーラス状の初期プラズマ11aには
電流パスが形成され、そこに大電流が流れるため、内部
電極3−プラズマ−外部電極1の閉ループに生じる方位
角方向(θ方向)の磁場とプラズマ電流が相互作用して
ローレンツ力が発生する。この力を受けて、プラズマは
内部電極3の先端方向へ移動する。 (5)強く電離したプラズマ11aは反磁性であるた
め、図4(b)のようにバイアスコイル4により内部電
極3の先端部に形成された磁力線10aを引きずりなが
ら内部電極3と外部電極1で構成されるプラズマ生成領
域から離れていく。 (6)プラズマ11a中の電流には自己保存しようとす
る力が働くため、プラズマの中心部が内部電極3から離
れても、後方のプラズマが磁力線に沿って拡散し電流を
維持するが、プラズマ中心部が内部電極3から十分離れ
てしまうと、プラズマの後方では磁力線の復元力により
プラズマの外周側の磁力線と内周側の磁力線が接近し、
最終的には再結合して図4(c)のように磁力線のつな
ぎ換えが生じる。 (7)磁力線の再結合が起こると、バイアスコイルが形
成する磁力線10aは元の位置に復帰するが、プラズマ
に引きずられた磁力線10bは切り離されてプラズマの
周囲を取り囲むことになる。この結果、プラズマは磁力
線に閉じ込められた磁化プラズマ11bとして孤立す
る。このとき、磁力線に沿って拡散していた若干のプラ
ズマは磁力線再結合の際に生じる磁気中性点12に取り
残され、磁化プラズマ11bのすぐ後方にシートプラズ
マ11cを形成する(図4(d))。 (8)磁化プラズマ11bが形成された直後、加速電源
9から加速電極2に高電圧を印加すると、シートプラズ
マ11cに大電流が流れる。 (9)シートプラズマ11cは自分自身に流れる電流と
内部電極3−プラズマ−外部電極1の閉ループに生じる
方位角方向(θ方向)の磁場との相互作用により生じる
ローレンツ力を受ける。この結果、シートプラズマ11
cは磁化プラズマ11bを電極先端方向へ加速する。 (10)以上のような動作により、磁化プラズマになった
核融合燃料が本装置から高速で射出され、各融合炉内部
の炉心プラズマへ打ち込まれるものである。
In such a structure, the behavior of the plasma in FIGS. 3 and 4 is as follows. (1) First, the power supply of the bias coil 4 is turned on, and the magnetic force lines 1 are formed at the leading edge of the internal electrode 3 in the radial direction (r direction) of the device.
0a is generated. In this case, the magnetic field generated by the bias coil 4 only needs to be substantially constant for a time longer than the time for which the plasma exists between the external electrode 1 and the internal electrode 3. (2) Next, the high-speed electromagnetic valve 6 is opened, and gas is injected between the external electrode 1 and the internal electrode 3 from the gas source 7 filled with the gas to be converted into plasma. (3) At a moment when gas is diffused to some extent between the external electrode 1 and the internal electrode 3, a high voltage is applied from the plasma generation power supply 8 to the internal electrode 3 to convert the gas into plasma. (4) A current path is formed in the generated torus-shaped initial plasma 11a, and a large current flows therethrough. Therefore, a magnetic field in the azimuthal direction (θ direction) generated in the closed loop of the internal electrode 3, the plasma, and the external electrode 1 is formed. And the plasma current interact to generate Lorentz force. Under this force, the plasma moves toward the tip of the internal electrode 3. (5) Since the strongly ionized plasma 11a is diamagnetic, as shown in FIG. 4B, the bias coil 4 drags the magnetic lines of force 10a formed at the tip of the internal electrode 3 so that the plasma is generated between the internal electrode 3 and the external electrode 1. It moves away from the configured plasma generation region. (6) Since a force for self-preservation acts on the current in the plasma 11a, even if the center of the plasma is separated from the internal electrode 3, the rear plasma is diffused along the lines of magnetic force to maintain the current. When the center part is sufficiently separated from the internal electrode 3, the magnetic field lines on the outer and inner sides of the plasma approach each other due to the restoring force of the magnetic lines behind the plasma,
Eventually, they are recombined, and reconnection of the magnetic force lines occurs as shown in FIG. (7) When the magnetic field lines recombine, the magnetic field lines 10a formed by the bias coil return to their original positions, but the magnetic field lines 10b dragged by the plasma are cut off and surround the periphery of the plasma. As a result, the plasma is isolated as the magnetized plasma 11b confined in the magnetic field lines. At this time, a small amount of plasma diffused along the magnetic field lines is left behind at the magnetic neutral point 12 generated at the time of magnetic field recombination, and forms a sheet plasma 11c immediately behind the magnetized plasma 11b (FIG. 4D). ). (8) Immediately after the magnetized plasma 11b is formed, when a high voltage is applied from the acceleration power supply 9 to the acceleration electrode 2, a large current flows through the sheet plasma 11c. (9) The sheet plasma 11c receives the Lorentz force generated by the interaction between the current flowing through itself and the magnetic field in the azimuthal direction (θ direction) generated in the closed loop of the internal electrode 3-plasma-external electrode 1. As a result, the sheet plasma 11
c accelerates the magnetized plasma 11b toward the tip of the electrode. (10) By the above operation, the fusion fuel converted into the magnetized plasma is ejected from the present apparatus at a high speed and is injected into the core plasma in each fusion reactor.

【0005】[0005]

【発明が解決しようとする課題】炉心プラズマへ打ち込
まれる磁化プラズマの生成・加速は上述の如くである
が、ここで磁化プラズマの大きさ(長さ)に問題があ
る。核融合プラズマに打ち込まれる磁化プラズマは、炉
心プラズマを乱さないようにするため、炉心プラズマに
比べて十分小さいことが望ましい。一方、一般にプラズ
マはその密度と温度によって決まるプラズマ圧力によっ
て膨張しようとする性質がある。ここで、初期プラズマ
11aがバイアスコイル4の形成する磁力線領域に入っ
てから磁化プラズマに形成されるまでの間は前方には磁
場により拡散できないため、ローレンツ力により装置射
出方向へ進行する初期プラズマ11aは磁場がほとんど
存在しない後方へ膨張する。このため、図4(c)のよ
うにプラズマ中央部が磁力線領域を通り抜けてしまって
もプラズマに引きずられた磁力線がプラズマの後方でな
かなか接近できない。このような効果のため、磁力線再
結合までの時間がかかってしまい、生成される磁化プラ
ズマ11bが長くなってしまう。したがって、磁化プラ
ズマの長さを短くするためには、磁力線再結合を促進す
る必要がある。
The generation and acceleration of the magnetized plasma to be injected into the core plasma are as described above, but there is a problem in the size (length) of the magnetized plasma. The magnetized plasma injected into the fusion plasma is desirably sufficiently smaller than the core plasma in order not to disturb the core plasma. On the other hand, in general, plasma has a property of expanding due to a plasma pressure determined by its density and temperature. Since the initial plasma 11a cannot be diffused forward by the magnetic field until the initial plasma 11a enters the magnetic field line region formed by the bias coil 4 and is formed into the magnetized plasma, the initial plasma 11a that advances in the apparatus emission direction due to the Lorentz force. Expands backwards with little magnetic field. For this reason, even if the center of the plasma passes through the magnetic field region as shown in FIG. 4C, the magnetic field lines dragged by the plasma cannot easily approach behind the plasma. Due to such an effect, it takes time until magnetic field lines recombine, and the generated magnetized plasma 11b becomes longer. Therefore, in order to shorten the length of the magnetized plasma, it is necessary to promote magnetic field line recombination.

【0006】本発明は、上述の問題点に鑑み、磁力線再
結合を促進するようにして小さな(短な)磁化プラズマ
を得るようにしたプラズマ生成加速装置を提供する。
The present invention has been made in view of the above-mentioned problems, and provides a plasma generation accelerating apparatus which promotes magnetic field recombination to obtain a small (short) magnetized plasma.

【0007】[0007]

【課題を解決するための手段】上述の目的を達成する本
発明は、次の発明特定事項を有する。
The present invention that achieves the above object has the following matters specifying the invention.

【0008】(1)トーラスプラズマを生成・加速する
同軸配置された外部電極、内部電極、加速電極を順に配
置し、上記トーラスプラズマを形成する磁力線を発生さ
せるバイアスコイルを配置し、上記外部電極と内部電極
との間にプラズマとなるガスをパルス状に注入する高速
電磁弁を備え、たプラズマ生成・加速装置において、上
記内部電極先端部をらせん状電極とし、らせんの撚り方
向はこのらせん状電極外側に発生する磁力線の向きが上
記バイアスコイルの磁力線の向きと同じになるようにし
たことを特徴とする。
(1) An external electrode, an internal electrode, and an accelerating electrode which are coaxially arranged for generating and accelerating torus plasma are arranged in order, and a bias coil for generating magnetic lines of force for forming the torus plasma is arranged. In the plasma generation / acceleration apparatus, which is provided with a high-speed electromagnetic valve for injecting a gas to be plasma into a pulse between the internal electrode and the internal electrode, the tip of the internal electrode is a spiral electrode, and the spiral direction of the spiral is the spiral electrode. It is characterized in that the direction of the magnetic field lines generated outside is the same as the direction of the magnetic field lines of the bias coil.

【0009】(2)上記(1)において、上記らせん状
電極はらせん状貫通スリット及びらせん状溝のいずれか
であることを特徴とする。
(2) In the above (1), the spiral electrode is one of a spiral through slit and a spiral groove.

【0010】[0010]

【発明の実施の形態】ここで、図1、図2を参照して本
発明の実施の形態の一例につき述べる。図1において、
図3と同一部分には同符号を付し、その説明を省略す
る。図1においては、内部電極3の先端部にはらせん状
電極20が形成されている。このらせん状電極20は内
部電極3の先端部をらせん状に貫通スリットを穿設して
形成したものであり、らせんの方向は、一方向に撚られ
た形状を有している。この場合、撚りの方向は、らせん
状電極20によってその外側に発生する磁力線の向きを
バイアスコイル4の磁力線10aの向きと同じになるよ
うに方向を決めており、例えば、バイアスコイル4の射
出口側がN極で、内部電極3につながるプラズマ生成電
源8が正極性の場合、らせんの撚り方向をプラズマの進
行方向に添って左向きにねじれた向きに決められる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will now be described with reference to FIGS. In FIG.
The same parts as those in FIG. 3 are denoted by the same reference numerals, and description thereof will be omitted. In FIG. 1, a spiral electrode 20 is formed at the tip of the internal electrode 3. The helical electrode 20 is formed by piercing the tip of the internal electrode 3 with a through slit in a helical manner. The helical direction has a shape twisted in one direction. In this case, the direction of the twist is determined so that the direction of the magnetic field lines generated outside by the spiral electrode 20 is the same as the direction of the magnetic field lines 10 a of the bias coil 4. When the plasma generating power supply 8 connected to the internal electrode 3 has a positive polarity on the side of the N-pole, the helical twisting direction is determined to be a left-handed twist along the plasma traveling direction.

【0011】かかる図1に示す構造のらせん状電極20
を形成した場合、プラズマの挙動としては次のようにな
る。初期プラズマ11aの生成過程は図2(a)に示す
ように図4(a)と同じである。初期プラズマ11aが
図2(b)のように磁力線を引きずってプラズマ生成領
域から放出されると、らせん状電極20に電流が流れ、
らせん状電極20の周囲に磁力線10cが生じる。この
磁力線は、図2(c)に示すように、プラズマによって
引きずられた磁力線10aのうち半径方向内側の磁力線
を外側に押し出すため、プラズマの後方に磁場の壁がで
き、プラズマの後方への膨張が抑えられる。この結果、
磁力線再結合が促進され、図4(c)の場合に比べて早
いタイミングで磁化プラズマ11bが形成され、プラズ
マの長さを短くできる。生成された磁化プラズマ11b
には図4(d)の場合と同じく、図2(d)のように磁
化プラズマ11bの後方にシートプラズマ11cが形成
され、ローレンツ力により加速、射出される。本装置に
より生成される磁化プラズマは、その長さが短かいた
め、各融合炉心プラズマに擾乱を与える可能性が低くな
るとともに、加速段階での電極と磁化プラズマ11b間
の粘性抵抗力が低減されるため、より高速度にまで加速
することが可能になる。
The spiral electrode 20 having the structure shown in FIG.
Is formed, the behavior of the plasma is as follows. The process of generating the initial plasma 11a is the same as that of FIG. 4A as shown in FIG. When the initial plasma 11a is released from the plasma generation region by dragging the lines of magnetic force as shown in FIG. 2B, a current flows through the spiral electrode 20,
Magnetic lines of force 10 c are generated around the spiral electrode 20. As shown in FIG. 2 (c), the magnetic field lines push radially inward magnetic field lines out of the magnetic field lines 10a dragged by the plasma, so that a magnetic field wall is formed behind the plasma, and the plasma expands backward. Is suppressed. As a result,
The recombination of the lines of magnetic force is promoted, and the magnetized plasma 11b is formed at an earlier timing than in the case of FIG. 4C, so that the length of the plasma can be shortened. Generated magnetized plasma 11b
4 (d), a sheet plasma 11c is formed behind the magnetized plasma 11b as shown in FIG. 2 (d), and is accelerated and ejected by Lorentz force. Since the length of the magnetized plasma generated by the present apparatus is short, the possibility of disturbing each fusion core plasma is reduced, and the viscous drag force between the electrode and the magnetized plasma 11b in the acceleration stage is reduced. Therefore, it is possible to accelerate to a higher speed.

【0012】上述の説明では、らせん状電極20は、内
部電極3の先端部にらせん状の貫通スリットを形成した
ものであるが、この貫通スリットによるらせん状電極2
0では、スリットから加速電極2及び内部電極3間にガ
スが直接流入しないように絶縁管21を内部電極3及び
らせん状電極20の内側に配置している。他の例として
は、らせん状電極20として貫通しない有底の溝を形成
してもよい。この場合、溝によるらせん状電極は、プラ
ズマ生成電源8から供給される電流のパルス幅が短い場
合に用いられる。このとき、溝の深さは電流のパルス幅
から決まる表皮厚さより十分深くし、溝の幅は表皮厚さ
と同程度かそれより小さくする。これにより溝の部分は
見かけ上絶縁され、電流がらせん状に流れる。
In the above description, the spiral electrode 20 has a spiral through-slit formed at the tip of the internal electrode 3.
In the case of 0, the insulating tube 21 is arranged inside the internal electrode 3 and the spiral electrode 20 so that gas does not flow directly between the acceleration electrode 2 and the internal electrode 3 from the slit. As another example, a groove with a bottom that does not penetrate as the spiral electrode 20 may be formed. In this case, the spiral electrode formed by the groove is used when the pulse width of the current supplied from the plasma generation power supply 8 is short. At this time, the depth of the groove is made sufficiently deeper than the skin thickness determined by the pulse width of the current, and the width of the groove is made equal to or smaller than the skin thickness. As a result, the groove portion is apparently insulated, and current flows spirally.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、ト
ーラスプラズマを生成・加速する同軸配置された外部電
極、内部電極、加速電極を順に配置し、上記トーラスプ
ラズマを形成する磁力線を発生させるバイアスコイルを
配置し、上記外部電極と内部電極との間にプラズマとな
るガスをパルス状に注入する高速電磁弁を備え、たプラ
ズマ生成・加速装置において、上記内部電極先端部をら
せん状電極とし、らせんの撚り方向はこのらせん状電極
外側に発生する磁力線の向きが上記バイアスコイルの磁
力線の向きと同じになるようにしたことにより、このら
せん状電極による磁力線がプラズマによる磁力線を外側
に押し出すことからプラズマの後方への膨張が抑えら
れ、磁力線再結合が促進されて小さな(短な)磁化プラ
ズマを得ることができる。
As described above, according to the present invention, the outer electrode, the inner electrode, and the accelerating electrode which are coaxially arranged for generating and accelerating the torus plasma are arranged in order, and the lines of magnetic force for forming the torus plasma are generated. A bias coil is disposed, and a high-speed solenoid valve for injecting a gas to be plasma into a pulse between the external electrode and the internal electrode is provided.In a plasma generation / acceleration apparatus, the internal electrode tip is a spiral electrode. The twist direction of the spiral is such that the direction of the magnetic field lines generated outside the spiral electrode is the same as the direction of the magnetic field lines of the bias coil. The expansion of the plasma to the rear is suppressed, and the recombination of the magnetic field lines is promoted to obtain a small (short) magnetized plasma. That.

【0014】また、らせん状電極はらせん状貫通スリッ
ト及びらせん状溝のいずれかにて形成することができ、
絶縁管を用いる場合や用いる必要がなかったり、溝の深
さや幅の特定の有無が必要であったり等要求に応じた製
造上の変更に適用させることができる。
Further, the spiral electrode can be formed by either a spiral through slit or a spiral groove,
The present invention can be applied to a change in manufacturing according to a request, for example, when an insulating tube is used, or when it is not necessary to use it, or when a specific depth or width of a groove is required.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態の一例の半截断面構成図。FIG. 1 is a half cross-sectional configuration diagram of an example of an embodiment of the present invention.

【図2】図1に係るプラズマの挙動の説明図。FIG. 2 is an explanatory diagram of the behavior of the plasma according to FIG. 1;

【図3】従来例の半截断面構成図。FIG. 3 is a half cross-sectional configuration diagram of a conventional example.

【図4】図3に係るプラズマの挙動の説明図。FIG. 4 is an explanatory diagram of the behavior of the plasma according to FIG. 3;

【符号の説明】 1 外部電極 2 加速電極 3 内部電極 4 バイアスコイル 6 高速電磁弁 8 プラズマ生成電源 9 加速電源 20 らせん状電極 21 絶縁管[Description of Signs] 1 external electrode 2 accelerating electrode 3 internal electrode 4 bias coil 6 high-speed solenoid valve 8 plasma generation power supply 9 acceleration power supply 20 spiral electrode 21 insulating tube

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 トーラスプラズマを生成・加速する同軸
配置された外部電極、内部電極、加速電極を順に配置
し、 上記トーラスプラズマを形成する磁力線を発生させるバ
イアスコイルを配置し、 上記外部電極と内部電極との間にプラズマとなるガスを
パルス状に注入する高速電磁弁を備え、 たプラズマ生成・加速装置において、 上記内部電極先端部をらせん状電極とし、らせんの撚り
方向はこのらせん状電極外側に発生する磁力線の向きが
上記バイアスコイルの磁力線の向きと同じになるように
したことを特徴とするプラズマ生成加速装置。
An outer electrode, an inner electrode, and an accelerating electrode which are coaxially arranged for generating and accelerating a torus plasma; a bias coil for generating magnetic lines of force for forming the torus plasma is arranged; In the plasma generation / acceleration device, which is equipped with a high-speed solenoid valve that injects gas that becomes plasma between the electrodes in a pulsed manner, the tip of the internal electrode is a spiral electrode, and the twist direction of the spiral is outside this spiral electrode. The direction of the lines of magnetic force generated in the bias coil is the same as the direction of the lines of magnetic force of the bias coil.
【請求項2】 上記らせん状電極はらせん状貫通スリッ
ト及びらせん状溝のいずれかであることを特徴とする請
求項1記載のプラズマ生成加速装置。
2. The plasma generation accelerating apparatus according to claim 1, wherein said spiral electrode is one of a spiral through slit and a spiral groove.
JP9304037A 1997-11-06 1997-11-06 Plasma generation accelerator Withdrawn JPH11144890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9304037A JPH11144890A (en) 1997-11-06 1997-11-06 Plasma generation accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9304037A JPH11144890A (en) 1997-11-06 1997-11-06 Plasma generation accelerator

Publications (1)

Publication Number Publication Date
JPH11144890A true JPH11144890A (en) 1999-05-28

Family

ID=17928303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9304037A Withdrawn JPH11144890A (en) 1997-11-06 1997-11-06 Plasma generation accelerator

Country Status (1)

Country Link
JP (1) JPH11144890A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517085A (en) * 2009-02-04 2012-07-26 ジェネラル フュージョン インコーポレイテッド System and method for compressing a plasma
US8891719B2 (en) 2009-07-29 2014-11-18 General Fusion, Inc. Systems and methods for plasma compression with recycling of projectiles
CN108990248A (en) * 2018-10-11 2018-12-11 南京苏曼等离子科技有限公司 A kind of plasma producing apparatus and its application

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517085A (en) * 2009-02-04 2012-07-26 ジェネラル フュージョン インコーポレイテッド System and method for compressing a plasma
US8537958B2 (en) 2009-02-04 2013-09-17 General Fusion, Inc. Systems and methods for compressing plasma
US9424955B2 (en) 2009-02-04 2016-08-23 General Fusion Inc. Systems and methods for compressing plasma
US9875816B2 (en) 2009-02-04 2018-01-23 General Fusion Inc. Systems and methods for compressing plasma
US10984917B2 (en) 2009-02-04 2021-04-20 General Fusion Inc. Systems and methods for compressing plasma
US8891719B2 (en) 2009-07-29 2014-11-18 General Fusion, Inc. Systems and methods for plasma compression with recycling of projectiles
US9271383B2 (en) 2009-07-29 2016-02-23 General Fusion, Inc. Systems and methods for plasma compression with recycling of projectiles
CN108990248A (en) * 2018-10-11 2018-12-11 南京苏曼等离子科技有限公司 A kind of plasma producing apparatus and its application
CN108990248B (en) * 2018-10-11 2024-03-26 南京苏曼等离子科技有限公司 Plasma generating device and application thereof

Similar Documents

Publication Publication Date Title
US4172008A (en) Nuclear fusion reactor
Korovin et al. Pulsed power-driven high-power microwave sources
US7486758B1 (en) Combined plasma source and liner implosion system
US4650631A (en) Injection, containment and heating device for fusion plasmas
JPH03501074A (en) Electromagnetic radiation generator and high current electron gun
US4292124A (en) System and method for generating steady state confining current for a toroidal plasma fusion reactor
US10192709B2 (en) Relativistic magnetron using a virtual cathode
KR102523488B1 (en) Systems and methods for generating and accelerating magnetized plasma
JPS61118938A (en) Ignition method and apparatus for superhigh frequency ion source
JPH11144890A (en) Plasma generation accelerator
US3388291A (en) Annular magnetic hall current accelerator
US6568362B2 (en) Rotating arc spark plug
US3321919A (en) Apparatus for generating high density plasma
US3643123A (en) Plasma containment device
JP2863237B2 (en) Method for accelerating a magnetized rotating plasma in a pulse accelerator
US20240079151A1 (en) Plasma injection and confinement systems and methods
JP3073436B2 (en) Control method of fusion plasma
CN113035379A (en) Single-stage high-speed feeding system based on compact ring plasma
Turchi Problems and prospects for microsecond pulsed power above ten megamperes
JPH08179066A (en) Plasma generating/accelerating device
JPH06151093A (en) Plasma generating accelerating device
JPWO2020237380A5 (en)
Chetverikov Onset of steady oscillations in free electron lasers
Benford E-Beam ICF for Daedalus Reconsidered
Syresin Effect of oscillating electrons on the operation of a diode during the injection of a relativistic electron beam into a strong magnetic mirror

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050201