JPH11144746A - Phosphoric acid type fuel cell - Google Patents

Phosphoric acid type fuel cell

Info

Publication number
JPH11144746A
JPH11144746A JP9308156A JP30815697A JPH11144746A JP H11144746 A JPH11144746 A JP H11144746A JP 9308156 A JP9308156 A JP 9308156A JP 30815697 A JP30815697 A JP 30815697A JP H11144746 A JPH11144746 A JP H11144746A
Authority
JP
Japan
Prior art keywords
gas
phosphoric acid
fuel
electrode
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9308156A
Other languages
Japanese (ja)
Inventor
Shigemi Kato
茂実 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP9308156A priority Critical patent/JPH11144746A/en
Publication of JPH11144746A publication Critical patent/JPH11144746A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To secure the stabilized operation for a long time, while securing the quantity of phosphoric acid in each unit cell by avoiding scattering and condensation of the phosphoric acid to a return part of a monifold. SOLUTION: A fuel electrode substrate is formed with a first flow passage 31, a second flow passage 32 and a third flow passage 33 by ribs, and provided with a rib cut part 41 at a position separated from a fuel discharge side manifold 22 by a sealing member 14b, and provided with a rib cut part 42 at a position separated from a fuel supply side manifold 21 by a sealing member 14a. With this structure, the described three flow passages are connected by using the rib cut parts, so as to form a return flow type gas flow passage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電解質としてり
ん酸を用い、電気化学反応により電気エネルギを得るり
ん酸型燃料電池に係わり、特にセル内部のガス流路の構
成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphoric acid type fuel cell which uses phosphoric acid as an electrolyte and obtains electric energy by an electrochemical reaction, and more particularly to a gas flow path inside a cell.

【0002】[0002]

【従来の技術】図2は、従来のりん酸型燃料電池の電池
積層体の基本構成例を示す分解斜視図である。電解質と
してのりん酸を保持した方形平板状のマトリックス層1
1を燃料電極12と酸化剤電極13とにより挟持し、燃
料電極12の外面に燃料ガス通流用の溝を備えた燃料電
極基板14を、また酸化剤電極13の外面に酸化剤ガス
通流用の溝を備えた酸化剤電極基板15を配して単電池
1が構成されている。本構成の単電池1をガス不透過性
材料よりなるセパレータを介して複数個積層してブロッ
クを形成し、このブロックを冷却板3を介装してさらに
積層することにより、電池積層体が構成されている。燃
料電極基板14の燃料ガス通流用の溝と酸化剤電極基板
15の酸化剤ガス通流用の溝は、図に見られるように直
交して配されるのが通例であり、電池積層体の各側面に
ガス供給排出用のマニホールドを組み込んで、一方の側
面から相対する側面へと水素を含んだ燃料ガスと酸素を
含んだ酸化剤ガス、例えば空気を通流させて発電が行わ
れる。なお、冷却板3に冷却水を流すことにより発電に
伴う発熱を除去し、電池積層体の温度を一定温度に保持
して発電運転が行われる。
2. Description of the Related Art FIG. 2 is an exploded perspective view showing a basic configuration example of a conventional cell stack of a phosphoric acid type fuel cell. Square flat matrix layer 1 holding phosphoric acid as electrolyte
1 is sandwiched between the fuel electrode 12 and the oxidant electrode 13, and a fuel electrode substrate 14 having a groove for fuel gas flow on the outer surface of the fuel electrode 12 and an oxidant gas flow groove on the outer surface of the oxidant electrode 13. The unit cell 1 is constituted by disposing the oxidant electrode substrate 15 having the groove. By forming a block by stacking a plurality of unit cells 1 of this configuration via a separator made of a gas-impermeable material, and further stacking the blocks with a cooling plate 3 interposed therebetween, a battery stack is formed. Have been. The grooves for the flow of the fuel gas of the fuel electrode substrate 14 and the grooves for the flow of the oxidant gas of the oxidant electrode substrate 15 are generally arranged orthogonally as shown in the figure. A power supply / discharge manifold is incorporated in the side surface, and a fuel gas containing hydrogen and an oxidizing gas containing oxygen, such as air, flow from one side to the opposite side to generate power. The power generation operation is performed by flowing the cooling water through the cooling plate 3 to remove the heat generated by the power generation and keeping the temperature of the battery stack at a constant temperature.

【0003】図3は、図2に用いられている燃料電極基
板14の燃料ガス通流用流路の構成を簡略化して示す平
面図である。本構成は、高い利用率で使用される燃料ガ
スの流量変動範囲を広くすることのできる、いわゆるリ
ターンフロー方式の流路を備えたものである。リブを形
成することにより燃料電極基板14の面内には、第1流
路31、第2流路32、第3流路33の三組のガス流路
が設けられており、空気供給側マニホールド23ならび
に空気排出側マニホールド24に面する両側端には、そ
れぞれシール部材14c,14dが配されており、例え
ば耐りん酸性粒子を充填し、その部分にりん酸を蓄えて
液シールする等の方法によりシールされている。本構成
においては、燃料供給側マニホールド21より供給され
た燃料ガスは、第1流路31を通って燃料排出側マニホ
ールド22のリターン部22aへと達し、復流して第2
流路32を通って燃料供給側マニホールド21へと流
れ、リターン部21aで再び復流し、第3流路33を通
って燃料排出側マニホールド22の出口より外部へと排
出されることとなる。
FIG. 3 is a simplified plan view showing the configuration of the fuel gas flow passage of the fuel electrode substrate 14 used in FIG. This configuration is provided with a so-called return flow type flow path that can widen the fluctuation range of the flow rate of the fuel gas used at a high utilization rate. By forming the ribs, three sets of gas flow paths of a first flow path 31, a second flow path 32, and a third flow path 33 are provided in the plane of the fuel electrode substrate 14, and the air supply side manifold is provided. Sealing members 14c and 14d are disposed at both ends facing the air discharge side manifold 23 and the air discharge side manifold 24. For example, a method of filling phosphoric acid resistant particles, storing phosphoric acid in the portion, and performing liquid sealing is used. Sealed by In this configuration, the fuel gas supplied from the fuel supply side manifold 21 reaches the return portion 22a of the fuel discharge side manifold 22 through the first flow path 31 and returns to the second section.
The fuel flows to the fuel supply side manifold 21 through the flow path 32, returns again at the return portion 21 a, and is discharged to the outside from the outlet of the fuel discharge side manifold 22 through the third flow path 33.

【0004】[0004]

【発明が解決しようとする課題】上記のように、従来の
りん酸型燃料電池においては、リターンフロー方式の流
路構成を採用し、供給ガスの流量変動許容範囲を広くし
て運転している。一方、りん酸型燃料電池の運転に際し
ては、蒸発したりん酸が反応ガスとともに飛散すること
が知られており、その飛散量は、反応ガスの流量にほぼ
比例し、運転温度の高いほど多量となる。したがって、
図3に表示したごときリターンフロー方式の流路構成の
場合には、第1流路31を通流するガスは、蒸発したり
ん酸を含んで燃料排出側マニホールド22のリターン部
22aへと達し、第2流路32を通流するガスは、蒸発
したりん酸を含んで燃料供給側マニホールド21のリタ
ーン部21aへと達することとなる。しかるにリターン
部22aおよびリターン部21aは、発熱を生じる電池
積層体に比較して温度が低いので、燃料ガスは冷却さ
れ、含まれるりん酸はリターン部22aあるいはリター
ン部21aの内部に一部凝縮して保持されることとな
り、本リターンフロー方式の流路構成においては、りん
酸の飛散喪失量が大きくなるという難点がある。
As described above, in the conventional phosphoric acid type fuel cell, the flow path configuration of the return flow system is adopted, and the operation is performed with the allowable range of the flow rate fluctuation of the supply gas widened. . On the other hand, during the operation of a phosphoric acid fuel cell, it is known that the evaporated phosphoric acid scatters together with the reaction gas, and the amount of the scattered phosphoric acid is almost proportional to the flow rate of the reaction gas. Become. Therefore,
In the case of the return flow type flow path configuration as shown in FIG. 3, the gas flowing through the first flow path 31 contains the evaporated phosphoric acid and reaches the return portion 22a of the fuel discharge side manifold 22, The gas flowing through the second flow path 32 reaches the return portion 21a of the fuel supply side manifold 21 including the evaporated phosphoric acid. However, since the temperature of the return section 22a and the return section 21a is lower than that of the battery stack that generates heat, the fuel gas is cooled, and the phosphoric acid contained is partially condensed in the return section 22a or the inside of the return section 21a. In this return flow type flow path configuration, there is a disadvantage that the amount of scattering loss of phosphoric acid is increased.

【0005】また、りん酸型燃料電池においては、図2
に示したごとく、近接する2枚の冷却板3の間には複数
の単電池が積層されており、冷却水により冷却される冷
却板3に隣接する単電池は温度が低くなるのに対して、
冷却板3より離れて配置される単電池の温度は相対的に
高くなり、このため、りん酸の蒸発、飛散量も多量とな
る。リターン部22aにおいては、複数の単電池1の第
1流路31を通流してきた燃料ガスが混合され、分割さ
れて第2流路32へと流れることとなるので、ガス中に
含まれるりん酸のうちリターン部22aで凝縮を免れ、
第2流路32へと送られるりん酸量は、各単電池に均一
化されることとなる。このため、冷却板3より隔たって
配置された、温度が高く、蒸発量の多い単電池において
は、蒸発量に比べて戻り量が少ないので、りん酸量が減
少することとなり、発電特性が低下するという問題点が
ある。
In a phosphoric acid fuel cell, FIG.
As shown in, a plurality of cells are stacked between two adjacent cooling plates 3, and the temperature of a cell adjacent to the cooling plate 3 cooled by the cooling water decreases. ,
The temperature of the unit cells arranged farther from the cooling plate 3 becomes relatively high, and therefore, the evaporation and scattering amount of phosphoric acid also becomes large. In the return section 22a, the fuel gas flowing through the first flow path 31 of the plurality of unit cells 1 is mixed and divided and flows to the second flow path 32, so that the phosphorus contained in the gas is mixed. Condensation in the return portion 22a of the acid escaped,
The amount of phosphoric acid sent to the second flow path 32 is made uniform for each unit cell. For this reason, in a unit cell arranged at a distance from the cooling plate 3 and having a high temperature and a large amount of evaporation, the amount of return is small as compared with the amount of evaporation, so that the amount of phosphoric acid is reduced and the power generation characteristics are reduced. There is a problem that.

【0006】本発明の目的は、リターンフロー方式を用
いるものにあっても、マニホールドへのりん酸の飛散、
凝縮が回避され、各単電池のりん酸量が確保されて長期
にわたり安定して運転できるりん酸型燃料電池を提供す
ることにある。
An object of the present invention is to provide a method using a return flow method, in which phosphoric acid scatters into a manifold,
It is an object of the present invention to provide a phosphoric acid fuel cell which can avoid condensation, secure the amount of phosphoric acid in each cell, and operate stably for a long period of time.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、りん酸を保持した方形平板状
のマトリックス層を燃料電極と酸化剤電極により挟持
し、さらにその両外面にガス通流溝を備えた電極基材を
配して単電池を構成し、該単電池を、ガス不透過性材料
よりなるセパレータを介し、さらに適宜冷却板を介装し
て、複数個積層して直方体状の電池積層体を形成し、そ
の側面にそれぞれガスマニホールドを配して、燃料電極
に相対する電極基材のガス通流溝に燃料ガスを、また酸
化剤電極に相対する電極基材のガス通流溝に酸化剤ガス
を通流させて電気化学反応により電気エネルギを得るり
ん酸型燃料電池において、燃料電極に相対する電極基材
と酸化剤電極に相対する電極基材のうち、少なくともい
ずれか一方の電極基材が、前記各ガスを同一面内で複数
回往復させて流すリターンフロー方式のガス流路を有
し、かつ、前記各ガスをガスマニホールドへ排出させる
ことなくガス通流方向を反転させる折り返し部を有する
ように構成することとし、例えば、電極基材に備えられ
たリブとリブとの間に形成される溝によりリターンフロ
ー方式のガス流路を形成し、リブの一部を切除してガス
を復流する複数のガス通流溝の連通部とすることとす
る。
In order to achieve the above-mentioned object, in the present invention, a rectangular flat matrix layer holding phosphoric acid is sandwiched between a fuel electrode and an oxidizing electrode, and furthermore, on both outer surfaces thereof. A unit cell is formed by arranging an electrode substrate having a gas flow groove, the unit cell is interposed through a separator made of a gas-impermeable material, and further appropriately interposed with a cooling plate. To form a cell stack in the shape of a rectangular parallelepiped, arranging gas manifolds on the side surfaces thereof, supplying a fuel gas to the gas flow grooves of the electrode substrate facing the fuel electrode, and an electrode substrate facing the oxidizing electrode. In a phosphoric acid type fuel cell in which an oxidizing gas is passed through a gas flow groove to obtain electric energy by an electrochemical reaction, of an electrode substrate facing the fuel electrode and an electrode substrate facing the oxidizing electrode, At least one of the electrode bases However, it has a return flow type gas flow path in which each gas is reciprocated a plurality of times in the same plane, and a folded portion that reverses the gas flow direction without discharging each gas to the gas manifold. For example, a return flow type gas flow path is formed by a groove formed between a rib provided on an electrode substrate and a rib provided on an electrode substrate, and a part of the rib is cut off to remove gas. It is defined as a communicating portion of a plurality of gas flow grooves that return.

【0008】上記のごとく、リターンフロー方式の流路
構成において、ガス通流溝の連通部をガスマニホールド
と気密を保持して配し、この連通部でガスをリターンさ
せることとすれば、ガスは温度の低いガスマニホールド
を経由することなく、基材内を通流してリターンフロー
を形成するので、従来見られたごときガスマニホールド
へのりん酸の凝縮が回避される。また、各単電池がそれ
ぞれ独立したリターンフロー回路を形成しているので、
冷却板から離れ、温度の高く、りん酸の蒸発、飛散量の
多い単電池にあっても、蒸発、飛散したりん酸は自身の
回路中を通流して戻されるので、従来例のごとき積層位
置によるりん酸量の不足を生じる恐れはない。
As described above, in the flow configuration of the return flow system, if the communicating portion of the gas flow groove is disposed so as to be airtight with the gas manifold, and the gas is returned at the communicating portion, the gas can be returned. Since the return flow is formed by flowing through the base material without passing through the low-temperature gas manifold, the condensation of phosphoric acid in the gas manifold as conventionally observed is avoided. In addition, since each cell forms an independent return flow circuit,
Even in a unit cell that is away from the cooling plate and has a high temperature and a large amount of phosphoric acid evaporates and scatters, the evaporated and scattered phosphoric acid flows back into its own circuit and returns. There is no danger that the amount of phosphoric acid will be insufficient.

【0009】[0009]

【発明の実施の形態】図1は、本発明のりん酸型燃料電
池の実施例の燃料ガス通流用流路の構成を簡略化して示
す平面図である。本構成においても、従来例と同様に、
第1流路31、第2流路32、および第3流路33を連
結してなるリターンフロー方式のガス通路が用いられて
いる。
FIG. 1 is a plan view schematically showing the structure of a fuel gas flow passage in an embodiment of a phosphoric acid fuel cell according to the present invention. In this configuration, as in the conventional example,
A return flow type gas passage formed by connecting the first flow path 31, the second flow path 32, and the third flow path 33 is used.

【0010】図3に示した従来の構成においては、第1
流路31と第2流路32を連通する折り返し部、および
第2流路32と第3流路33を連通する折り返し部が、
それぞれ燃料排出側マニホールド22および燃料供給側
マニホールド21に配されていたのに対して、本実施例
では、これらの折り返し部を、シール部材によってマニ
ホールドと気密に隔てられた燃料電極基板14の面内に
形成している点が特徴である。すなわち、本実施例で
は、燃料電極基板14の空気供給側マニホールド23に
相対する側端および燃料排出側マニホールド22の第1
流路31と第2流路32の部分に相対する側端にシール
部材14bが、また、空気排出側マニホールド24に相
対する側端および燃料供給側マニホールド21の第2流
路32と第3流路33の部分に相対する側端にシール部
材14aが配され、さらに、燃料排出側マニホールド2
2とシール部材14bにより隔てられた部分にリブを備
えないリブ切除部41を形成して、第1流路31と第2
流路32を連通する折り返し部とし、燃料供給側マニホ
ールド21とシール部材14aにより隔てられた部分に
リブを備えないリブ切除部42を形成して、第2流路3
2と第3流路33を連通する折り返し部としている。
In the conventional configuration shown in FIG.
A folded portion that communicates the flow path 31 with the second flow path 32 and a folded part that communicates the second flow path 32 with the third flow path 33 include:
In the present embodiment, these folded portions are formed in the plane of the fuel electrode substrate 14 which is air-tightly separated from the manifold by a seal member, whereas the fuel discharge side manifold 22 and the fuel supply side manifold 21 are arranged respectively. The feature is that it is formed in. That is, in the present embodiment, the side end of the fuel electrode substrate 14 facing the air supply side manifold 23 and the first end of the fuel discharge side manifold 22
A seal member 14b is provided at a side end of the flow passage 31 and the second flow passage 32, and a second end of the fuel supply side manifold 21 and a third flow passage of the fuel supply side manifold 21. A seal member 14a is disposed at a side end opposite to the portion of the passage 33, and furthermore, a fuel discharge side manifold 2 is provided.
A rib cut portion 41 having no rib is formed in a portion separated by the seal member 14b from the second flow path 2 so that the first flow path 31 and the second flow path
A rib cut portion 42 having no rib is formed at a portion separated by the fuel supply side manifold 21 and the seal member 14 a as a folded portion that communicates the flow channel 32, and the second flow channel 3 is formed.
The second and third flow paths 33 are turned back to communicate with each other.

【0011】すなわち、本構成においては、燃料供給側
マニホールド21より供給された燃料ガスは、第1流路
31を流れてリブ切除部41へと達し、折り返して第2
流路32を流れ、リブ切除部42へと達し、再び折り返
して第3流路33を流れ、燃料排出側マニホールド22
より外部へ排出されることとなり、中途でマニホールド
部へ入ることなく、一貫して燃料電極基板の面内を流れ
ることとなる。したがって、発電運転に伴って燃料ガス
中へりん酸が蒸発、飛散しても、従来のごとくマニホー
ルド部へ凝縮することなく自身の回路内に止まり、回収
される。また、各単電池がそれぞれ独立したリターンフ
ロー回路を形成しているので、冷却板から離れた位置に
積層された、りん酸の蒸発、飛散量の多い単電池にあっ
ても、蒸発、飛散したりん酸は自身の回路中を通流し、
回収されるので、従来例のごとき積層位置によるりん酸
量の不足を生じる恐れはない。
That is, in the present configuration, the fuel gas supplied from the fuel supply side manifold 21 flows through the first flow path 31 and reaches the rib cutout 41, where it is turned back to the second position.
After flowing through the flow path 32, reaching the rib cutout section 42, turning back again and flowing through the third flow path 33, the fuel discharge side manifold 22
The gas is further discharged to the outside, and flows consistently in the plane of the fuel electrode substrate without entering the manifold partway. Therefore, even if the phosphoric acid evaporates and scatters in the fuel gas during the power generation operation, the phosphoric acid stops in its own circuit and is collected without being condensed to the manifold portion as in the related art. In addition, since each unit cell forms an independent return flow circuit, even a unit cell with a large amount of phosphoric acid evaporated and scattered, which was stacked at a position away from the cooling plate, was evaporated and scattered. Phosphoric acid flows through its own circuit,
Since it is recovered, there is no possibility that the amount of phosphoric acid will be insufficient due to the lamination position as in the conventional example.

【0012】なお、上記の実施例では、折り返し部を2
ヶ所備えたリターンフロー回路を備える構成としている
が、折り返し部は2ヶ所に限るものではなく、より多数
の折り返し部を持つものでも良い。また、上記の実施例
では、燃料電極基板に設ける燃料ガス流路を上記のごと
く構成するものとしているが、酸化剤電極基板に設ける
酸化剤ガス流路を上記のごとく構成するものとしても同
様の効果が得られることは例示するまでもなく明らかで
ある。
In the above-described embodiment, the folded portion is formed by two.
Although the return flow circuit is provided at two locations, the number of return portions is not limited to two, and a return flow circuit having a larger number of return portions may be used. Further, in the above embodiment, the fuel gas flow channel provided on the fuel electrode substrate is configured as described above. However, the same applies when the oxidant gas flow channel provided on the oxidant electrode substrate is configured as described above. It is obvious that the effect can be obtained without need of illustration.

【0013】[0013]

【発明の効果】上述のごとく、本発明によれば、りん酸
を保持した方形平板状のマトリックス層を燃料電極と酸
化剤電極により挟持し、さらにその両外面にガス通流溝
を備えた電極基材を配して単電池を構成し、該単電池
を、ガス不透過性材料よりなるセパレータを介し、さら
に適宜冷却板を介装して、複数個積層して直方体状の電
池積層体を形成し、その側面にそれぞれガスマニホール
ドを配して、燃料電極に相対する電極基材のガス通流溝
に燃料ガスを、また酸化剤電極に相対する電極基材のガ
ス通流溝に酸化剤ガスを通流させて電気化学反応により
電気エネルギを得るりん酸型燃料電池において、燃料電
極に相対する電極基材と酸化剤電極に相対する電極基材
のうち、少なくともいずれか一方の電極基材が、前記各
ガスを同一面内で複数回往復させて流すリターンフロー
方式のガス流路を有し、かつ、前記各ガスをガスマニホ
ールドへ排出させることなくガス通流方向を反転させる
折り返し部を有するよう構成することとし、例えば、電
極基材に備えられたリブとリブとの間に形成される溝に
よりリターンフロー方式のガス流路を形成し、リブの一
部を切除してガスを復流する複数のガス通流溝の連通部
とすることとしたので、リターンフロー方式を用いるも
のにあっても、マニホールドへのりん酸の飛散、凝縮が
回避され、各単電池のりん酸量が確保されて長期にわた
り安定して運転できるりん酸型燃料電池が得られること
となった。
As described above, according to the present invention, according to the present invention, a rectangular flat matrix layer holding phosphoric acid is sandwiched between a fuel electrode and an oxidant electrode, and further, an electrode provided with gas flow grooves on both outer surfaces thereof. A unit cell is formed by arranging a base material, the unit cell is interposed via a separator made of a gas-impermeable material, and a cooling plate is further interposed appropriately, and a plurality of units are stacked to form a rectangular parallelepiped battery stack. A gas manifold is disposed on each side of the fuel cell, and a fuel gas is supplied to a gas flow groove of the electrode substrate facing the fuel electrode, and an oxidant is supplied to a gas flow groove of the electrode substrate facing the oxidant electrode. In a phosphoric acid fuel cell in which gas is passed to obtain electric energy by an electrochemical reaction, at least one of an electrode substrate facing the fuel electrode and an electrode substrate facing the oxidizing electrode. However, each of the above gases is It has a return flow type gas flow path which is reciprocated and flows, and has a folded portion for reversing the gas flow direction without discharging each gas to the gas manifold, for example, an electrode base A communication part of a plurality of gas flow grooves for forming a return flow gas flow path by means of a groove formed between ribs provided on the material and cutting off a part of the rib to return gas. Therefore, even if the return flow method is used, the phosphoric acid is prevented from scattering and condensing into the manifold, the phosphoric acid amount of each cell is secured, and the phosphoric acid can be operated stably for a long period of time. An acid fuel cell was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のりん酸型燃料電池の実施例の燃料ガス
通流用流路の構成を簡略化して示す平面図
FIG. 1 is a plan view schematically showing the configuration of a fuel gas flow passage in an embodiment of a phosphoric acid fuel cell according to the present invention.

【図2】従来のりん酸型燃料電池の電池積層体の基本構
成例を示す分解斜視図
FIG. 2 is an exploded perspective view showing a basic configuration example of a conventional cell stack of a phosphoric acid fuel cell.

【図3】図2の従来例に用いられている燃料電極基板の
燃料ガス通流用流路の構成を簡略化して示す平面図
FIG. 3 is a plan view showing a simplified configuration of a fuel gas flow passage of a fuel electrode substrate used in the conventional example of FIG. 2;

【符号の説明】[Explanation of symbols]

14 燃料電極基板 14a シール部材 14b シール部材 21 燃料供給側マニホールド 22 燃料排出側マニホールド 23 空気供給側マニホールド 24 空気排出側マニホールド 31 第1流路 32 第2流路 33 第3流路 41 リブ切除部 42 リブ切除部 Reference Signs List 14 fuel electrode substrate 14a seal member 14b seal member 21 fuel supply-side manifold 22 fuel discharge-side manifold 23 air supply-side manifold 24 air discharge-side manifold 31 first flow path 32 second flow path 33 third flow path 41 rib cutting section 42 Rib cutout

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】りん酸を保持した方形平板状のマトリック
ス層を燃料電極と酸化剤電極により挟持し、さらにその
両外面にガス通流溝を備えた電極基材を配して単電池を
構成し、該単電池を、ガス不透過性材料よりなるセパレ
ータを介し、さらに適宜冷却板を介装して、複数個積層
して直方体状の電池積層体を形成し、その側面にそれぞ
れガスマニホールドを配して、燃料電極に相対する電極
基材のガス通流溝に燃料ガスを、また酸化剤電極に相対
する電極基材のガス通流溝に酸化剤ガスを通流させて電
気化学反応により電気エネルギを得るりん酸型燃料電池
において、 前記の燃料電極に相対する電極基材と酸化剤電極に相対
する電極基材のうち、少なくともいずれか一方の電極基
材が、前記各ガスを同一面内で複数回往復させて流すリ
ターンフロー方式のガス流路を有し、かつ、前記各ガス
をガスマニホールドへ排出させることなくガス通流方向
を反転させる折り返し部を有することを特徴とするりん
酸型燃料電池。
1. A unit cell comprising a rectangular flat matrix layer holding phosphoric acid sandwiched between a fuel electrode and an oxidant electrode, and an electrode substrate provided with gas flow grooves on both outer surfaces thereof. Then, the unit cell, via a separator made of a gas-impermeable material, further interposed a cooling plate as appropriate, to form a stack of a plurality of rectangular parallelepiped battery stack, each side of the gas manifold on its side The fuel gas is passed through the gas flow groove of the electrode base material facing the fuel electrode, and the oxidant gas is flowed through the gas flow groove of the electrode base material facing the oxidant electrode. In a phosphoric acid fuel cell that obtains electric energy, at least one of the electrode base material facing the fuel electrode and the electrode base material facing the oxidant electrode has the same gas on the same surface. Return to reciprocate multiple times within A phosphoric acid fuel cell comprising: a flow type gas flow path; and a folded portion for reversing a gas flow direction without discharging each of the gases to a gas manifold.
【請求項2】請求項1に記載のりん酸型燃料電池におい
て、前記のリターンフロー方式のガス流路が、電極基材
に備えられたリブとリブとの間に形成される溝を有し、
前記折り返し部が、リブの一部を切除して構成されてい
ることを特徴とするりん酸型燃料電池。
2. The phosphoric acid fuel cell according to claim 1, wherein the return flow type gas flow path has a groove formed between ribs provided on an electrode substrate. ,
The phosphoric acid type fuel cell, wherein the folded portion is formed by cutting a part of a rib.
JP9308156A 1997-11-11 1997-11-11 Phosphoric acid type fuel cell Pending JPH11144746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9308156A JPH11144746A (en) 1997-11-11 1997-11-11 Phosphoric acid type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9308156A JPH11144746A (en) 1997-11-11 1997-11-11 Phosphoric acid type fuel cell

Publications (1)

Publication Number Publication Date
JPH11144746A true JPH11144746A (en) 1999-05-28

Family

ID=17977580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9308156A Pending JPH11144746A (en) 1997-11-11 1997-11-11 Phosphoric acid type fuel cell

Country Status (1)

Country Link
JP (1) JPH11144746A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294261A (en) * 1999-04-09 2000-10-20 Honda Motor Co Ltd Fuel cell stack
JP2001052723A (en) * 1999-08-13 2001-02-23 Honda Motor Co Ltd Fuel cell stack
KR20040000561A (en) * 2002-06-21 2004-01-07 엘지전자 주식회사 Fuel supply structure for fuel cell stack
KR100477201B1 (en) * 2002-02-25 2005-03-21 한국과학기술연구원 Bipolar Plate for Fuel Cell comprising Zigzag Type Gas Flow Channel
KR100820519B1 (en) 2007-03-23 2008-04-08 지에스칼텍스 주식회사 Fuel cell stack cooling system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294261A (en) * 1999-04-09 2000-10-20 Honda Motor Co Ltd Fuel cell stack
JP4523089B2 (en) * 1999-04-09 2010-08-11 本田技研工業株式会社 Fuel cell stack
JP2001052723A (en) * 1999-08-13 2001-02-23 Honda Motor Co Ltd Fuel cell stack
JP4590047B2 (en) * 1999-08-13 2010-12-01 本田技研工業株式会社 Fuel cell stack
KR100477201B1 (en) * 2002-02-25 2005-03-21 한국과학기술연구원 Bipolar Plate for Fuel Cell comprising Zigzag Type Gas Flow Channel
KR20040000561A (en) * 2002-06-21 2004-01-07 엘지전자 주식회사 Fuel supply structure for fuel cell stack
KR100820519B1 (en) 2007-03-23 2008-04-08 지에스칼텍스 주식회사 Fuel cell stack cooling system

Similar Documents

Publication Publication Date Title
US6858338B2 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
KR100549683B1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
CA2578009C (en) Fuel cell having buffer with inclined surface
US9123946B2 (en) Fuel cell stack
US11831047B2 (en) Membrane humidifier for fuel cell, and fuel cell system comprising same
JP5302263B2 (en) Fuel cell
JPH0238377Y2 (en)
JPH11144746A (en) Phosphoric acid type fuel cell
JPS63119166A (en) Fuel battery
US20050008921A1 (en) Fluid flow plate for fuel cell
US9634340B2 (en) Plate-style water vapor transfer unit with integral headers
KR102140468B1 (en) A fuel cell with improving thermal distribution inside stack
JP2007234405A (en) Fuel cell stack
EP4235880A1 (en) Fuel cell membrane humidifier
JPH10223240A (en) Fuel cell
JPH033958Y2 (en)
JP2659951B2 (en) Fuel cell stack
JPH06105625B2 (en) Molten carbonate fuel cell
JP2024514917A (en) fuel cell membrane humidifier
KR20220168422A (en) Manifolds for fuel cell and fuel cell comprising the same
KR20220035805A (en) Fuel cell membrane humidifier and fuel cell system comprising it
JPH02253563A (en) Molten carbonate fuel cell
JPH02253564A (en) Molten carbonate fuel cell
JPH0646574B2 (en) Fuel cell
JP2004241273A (en) Fuel cell and its operating method