JPH11142395A - Method for measuring oxidation power of water - Google Patents

Method for measuring oxidation power of water

Info

Publication number
JPH11142395A
JPH11142395A JP30567297A JP30567297A JPH11142395A JP H11142395 A JPH11142395 A JP H11142395A JP 30567297 A JP30567297 A JP 30567297A JP 30567297 A JP30567297 A JP 30567297A JP H11142395 A JPH11142395 A JP H11142395A
Authority
JP
Japan
Prior art keywords
water
polymer compound
membrane
oxidizing power
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30567297A
Other languages
Japanese (ja)
Inventor
Noriyoshi Shiraishi
紀由 白石
Masaru Noyori
賢 野寄
Yoshinari Fujii
能成 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP30567297A priority Critical patent/JPH11142395A/en
Publication of JPH11142395A publication Critical patent/JPH11142395A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PROBLEM TO BE SOLVED: To comprehensively grasp oxidation power of atoms in terms of a speed by bringing a polymer compound in touch with original water and evaluating oxidation power of atoms from a characteristic change of the polymer compound. SOLUTION: A preferable polymer compound is an organic polymer compound, particularly, polyacrylonitrile-, polysulfone-based compound an extension, the strength of which can be grasped in a tensile test before and after an oxidation reaction with an oxidizing agent, or the characteristic change of which can be grasped in a comparison evaluation based on a molecular weight or by the like manner. A form of the polymer compound is preferably a separation membrane, more particularly, an inverse osmotic membrane, an ultrafilter membrane. Especially an asymmetric inverse osmotic membrane with an ultrathin layer sharply reacts to oxidizing substances and changes permeation performance, and therefore enables quick and sure evaluation. Although it is a general contact process to dip the polymer compound simply in an original water, the original water is actually passed through the polymer compound if the polymer compound is the separation membrane. This is more preferred because an area of contact between the original water and a hollow fiber membrane is increased and the concentration of the oxidizing substance or the like in the vicinity of the membrane surface is constant at all times.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は特に水処理分野にお
いて、酸化反応性物質を含有する水の酸化力の測定に際
し、被処理水に高分子化合物を接触させて、該高分子化
合物の物性変化から原水の酸化力を測定することによ
り、水処理の実際に即した原水の酸化力の把握に有効
で、簡便かつ適用範囲の広い水質評価方法に関するもの
である。
BACKGROUND OF THE INVENTION The present invention relates to the field of water treatment, in particular, in measuring the oxidizing power of water containing an oxidation-reactive substance, by bringing a polymer into contact with the water to be treated and changing the physical properties of the polymer. The present invention relates to a water quality evaluation method which is effective for grasping the oxidizing power of raw water in accordance with actual water treatment by measuring the oxidizing power of raw water from, and is simple and has a wide range of application.

【0002】[0002]

【従来の技術】水処理における化学的処理法の代表的な
プロセスとして酸化処理プロセスがある。この酸化処理
プロセスとしては空気との接触を効率的に行う曝気法、
オゾン酸化法、塩素、次亜塩素酸塩、過酸化水素等の酸
化剤の注入による酸化法などがある。これらの酸化処理
プロセスを用いる場合、酸化処理前後の原水の性状、と
りわけ酸化反応性を把握することは、酸化処理過程自身
の処理条件の設定に必要なだけでなく、酸化処理プロセ
スの後段で用いられる膜ろ過法などの様々な処理プロセ
スへの影響を把握し、適切な処理条件を設定する上でも
重要である。
2. Description of the Related Art An oxidation treatment process is a typical chemical treatment in water treatment. This oxidation treatment process includes an aeration method that efficiently contacts air,
There are an ozone oxidation method, an oxidation method by injection of an oxidizing agent such as chlorine, hypochlorite, hydrogen peroxide, and the like. When using these oxidation treatment processes, understanding the properties of raw water before and after the oxidation treatment, especially the oxidation reactivity, is not only necessary for setting the treatment conditions of the oxidation treatment process itself, but also used at the later stage of the oxidation treatment process. It is also important to understand the effects on various treatment processes such as membrane filtration methods and to set appropriate treatment conditions.

【0003】一般に様々な物質の含まれている水の酸化
力を評価する場合、従来から用いられている指標には、
残留塩素濃度値、DO(溶存酸素)濃度値、ORP(酸
化還元電位)値などが用いられている。これらの方法の
うち、残留塩素濃度値とDO値は酸化反応に直接関与す
る塩素系酸化剤、および溶存酸素の濃度を直接測定でき
るという長所がある。
In general, when evaluating the oxidizing power of water containing various substances, conventionally used indices include:
A residual chlorine concentration value, a DO (dissolved oxygen) concentration value, an ORP (redox potential) value, and the like are used. Among these methods, the residual chlorine concentration value and the DO value have an advantage that the concentration of a chlorine-based oxidizing agent directly involved in the oxidation reaction and the concentration of dissolved oxygen can be directly measured.

【0004】また、ORP値は原水中に含まれる様々な
物質の酸化力を総合的に示す指標であることから、原水
の酸化反応性の指標として広く用いられている指標であ
る。
[0004] Further, the ORP value is an index widely used as an index of the oxidation reactivity of raw water because it is an index comprehensively indicating the oxidizing power of various substances contained in raw water.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、残留塩
素やDOのような酸化剤の濃度を直接測定するという評
価方法では、対象となる酸化剤に適応した個別の測定法
が必要となることから、利便性、汎用性に欠けるという
欠点がある。加えて、原水中に検出できない他の酸化剤
成分や、酸化剤ではないが酸化反応課程で重要な役割を
果たす成分、例えばある種の金属に代表される酸化反応
促進成分や種々の酸化反応阻害成分などが含まれている
場合には、これらの成分の酸化反応への寄与の影響を測
定することができないことから、原水の総合的な酸化力
を把握することが困難であるという問題点があった。
However, the evaluation method of directly measuring the concentration of an oxidizing agent such as residual chlorine or DO requires an individual measuring method suitable for the target oxidizing agent. There is a disadvantage that it lacks convenience and versatility. In addition, other oxidizer components that cannot be detected in raw water, and components that are not oxidants but play an important role in the oxidation reaction process, such as oxidation reaction accelerating components represented by certain metals and various oxidation reaction inhibition When components are included, it is difficult to determine the overall oxidizing power of raw water because the influence of these components on the oxidation reaction cannot be measured. there were.

【0006】一方、原水の総合的な酸化力の指標として
用いられることの多いORP値においても、ORP値は
物質が有する潜在的な酸化力を示す熱力学的な指標であ
り、実際の水処理において大変重要である速度論的な酸
化力を反映しているものではなく、酸化反応課程には事
実上、まったく関与しない物質の寄与も含まれてしまう
という欠点があった。
On the other hand, even in the ORP value often used as an index of the overall oxidizing power of raw water, the ORP value is a thermodynamic index indicating the potential oxidizing power of the substance, However, it does not reflect the kinetic oxidizing power which is very important in the above, and has a drawback that the oxidation reaction course actually includes the contribution of substances which are not involved at all.

【0007】そこで本発明は、様々な物質の含まれてい
る水の酸化力を評価するにあたり、原水の酸化力を総合
的かつ速度論的に把握することができるとともに、簡便
かつ適用範囲の広い水質評価方法を提供することを目的
とする。
Accordingly, the present invention can comprehensively and kinetically grasp the oxidizing power of raw water in evaluating the oxidizing power of water containing various substances, and is simple and has a wide range of application. The purpose is to provide a water quality evaluation method.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明は以下の構成を有する。
In order to achieve the above object, the present invention has the following arrangement.

【0009】1.「酸水の酸化力の測定に際し、原水に
高分子化合物を接触させて、該高分子化合物の特性変化
から原水の酸化力を評価することを特徴とする水の酸化
力の測定方法。」 2.「該高分子化合物が分離膜であることを特徴とする
前記水の酸化力の測定方法。」 3.「該分離膜が逆浸透膜であることを特徴とする前記
の水の酸化力の測定評価方法。
1. "A method for measuring the oxidizing power of water, comprising contacting a polymer compound with raw water when measuring the oxidizing power of acid water, and evaluating the oxidizing power of the raw water from a change in the properties of the polymer compound." . 2. The method for measuring the oxidizing power of water, wherein the polymer compound is a separation membrane. “The method for measuring and evaluating the oxidizing power of water, wherein the separation membrane is a reverse osmosis membrane.

【0010】4.「該分離膜が限外濾過膜、精密濾過膜
であることを特徴とする前記に記載の水の酸化力の測定
方法。
[0010] 4. "The method for measuring the oxidizing power of water as described above, wherein the separation membrane is an ultrafiltration membrane or a microfiltration membrane.

【0011】5.「評価される特性が特性が阻止率、透
過流束、純水透過係数または溶質透過係数であることを
特徴とする前記いずれかの水の酸化力の測定方法。
5. "A method for measuring the oxidizing power of any one of the above-mentioned waters, wherein the properties to be evaluated are rejection, permeation flux, pure water permeability coefficient, or solute permeability coefficient.

【0012】6.「評価される特性が引っ張り伸度、引
っ張り強度または分子量性であることを特徴とする前記
いずれかの水の酸化力の測定方法。
6. "A method for measuring the oxidizing power of any one of the above-mentioned waters, wherein the property to be evaluated is tensile elongation, tensile strength, or molecular weight.

【0013】7.「該高分子化合物が脂肪族ポリアミド
系化合物、芳香族ポリアミド系化合物、酢酸セルロース
系化合物、ポリエーテル系化合物、ポリアクリロニトリ
ル、ポリスルホン系化合物、ポリオレフィン系化合物の
うち少なくとも一つからなることを特徴とする前記いず
れかの水の酸化力の測定方法。
7. "The high molecular compound is characterized by comprising at least one of an aliphatic polyamide compound, an aromatic polyamide compound, a cellulose acetate compound, a polyether compound, a polyacrylonitrile, a polysulfone compound, and a polyolefin compound. A method for measuring the oxidizing power of any of the above waters.

【0014】[0014]

【発明の実施の形態】以下本発明の詳細について具体的
に説明していく。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be specifically described below.

【0015】本発明によると、高分子化合物を評価対象
となる原水と接触させ、その後の高分子化合物の特性を
経時的に測定することで原水の酸化力を評価することが
できる。本発明において好ましい高分子化合物として
は、酸化剤による酸化反応により、反応の前後の引張試
験による伸度、および/または強度、または分子量によ
る比較評価、あるいはまた膜状の高分子化合物である場
合には膜としての溶質および/または透過性による比較
評価などによって特性の変化を把握できるものである。
好ましくは有機高分子化合物であり、より好ましくはポ
リアクリロニトリル、酢酸セルロース系化合物、ポリオ
レフィン系化合物、ポリアミド系化合物、芳香族ポリア
ミド系化合物、ポリエーテル系化合物、ポリスルホン系
化合物である。そしてまた、予想される水の酸化力にあ
わせて素材を使い分けることも可能である。該高分子化
合物の形態に関してはシート状、管状、繊維状、中空糸
状などがあるがいずれの形態でもよく、本発明の要旨か
ら高分子化合物の形態に左右されるものでないことは明
らかである。しかし測定の迅速性、および結果が明瞭で
あることなどから、分離膜であることが好ましく、さら
により好ましくは逆浸透膜、限外濾過膜、精密濾過膜で
あり、特に超薄層を持つ非対称型逆浸透膜は酸化性物質
に鋭敏に反応して透過性が変化するので、迅速・確実に
評価することができる。 高分子化合物の素材としては
ポリアクリロニトリル、酢酸セルロース系化合物、ポリ
アミド系化合物、芳香族ポリアミド系化合物、ポリエー
テル系化合物などがあり、これら化合物からなる非対称
型逆浸透膜、限外濾過膜、精密濾過膜が好ましく適用さ
れ、さらに好ましくはポリスルホン等の支持膜の上にポ
リアミド系化合物、芳香族ポリアミド系化合物、ポリエ
ーテル系化合物からなる超薄層を持った複合逆浸透膜が
ある。
According to the present invention, the oxidizing power of raw water can be evaluated by bringing a polymer compound into contact with raw water to be evaluated and then measuring the characteristics of the polymer compound over time. Preferred polymer compounds in the present invention are those obtained by the oxidation reaction with an oxidizing agent, elongation by a tensile test before and after the reaction, and / or comparative evaluation by strength or molecular weight, or when a film-like polymer compound is used. Can change in characteristics by comparative evaluation based on solute and / or permeability as a membrane.
Preferred are organic polymer compounds, and more preferred are polyacrylonitrile, cellulose acetate-based compounds, polyolefin-based compounds, polyamide-based compounds, aromatic polyamide-based compounds, polyether-based compounds, and polysulfone-based compounds. In addition, it is also possible to use different materials according to the anticipated oxidizing power of water. The form of the polymer compound includes a sheet form, a tubular form, a fiber form, a hollow fiber form and the like, but any form may be used, and it is obvious that the form is not influenced by the form of the polymer compound from the gist of the present invention. However, it is preferable to use a separation membrane because of the rapidity of measurement and the clarity of the results, and more preferably a reverse osmosis membrane, an ultrafiltration membrane, and a microfiltration membrane, particularly an asymmetric membrane having an ultrathin layer. Since the permeability of the type reverse osmosis membrane changes in response to the oxidizing substance in a sensitive manner, it can be quickly and reliably evaluated. Examples of the polymer compound material include polyacrylonitrile, cellulose acetate compounds, polyamide compounds, aromatic polyamide compounds, and polyether compounds.Asymmetric reverse osmosis membranes, ultrafiltration membranes, and microfiltration made of these compounds A membrane is preferably applied, and more preferably, there is a composite reverse osmosis membrane having an ultrathin layer made of a polyamide-based compound, an aromatic polyamide-based compound, or a polyether-based compound on a support membrane such as polysulfone.

【0016】該高分子化合物の物性評価条件としては各
々の高分子化合物について比較可能な範囲であれば限定
するものではない。この分離膜の形態での試験において
は膜特性として阻止率、透過流束で評価する。特に逆浸
透膜の場合には、これらの特性から導かれる純水透過係
数、溶質透過係数などによる評価を行うことができ、酸
化剤を含まない試験水や純水と接触させた後膜特性の評
価を行い、膜特性を照合させることで比較評価する。ま
た、分離膜形態の場合を含め高分子化合物の引張試験で
の伸度および/または強度、または分子量などによる評
価も可能である。
The conditions for evaluating the physical properties of the polymer compound are not limited as long as the polymer compounds can be compared. In the test in the form of the separation membrane, the rejection and the permeation flux are evaluated as membrane characteristics. In particular, in the case of a reverse osmosis membrane, evaluation can be performed based on the pure water permeability coefficient, solute permeability coefficient, etc. derived from these properties, and the membrane properties after contact with test water or pure water containing no oxidizing agent can be evaluated. The evaluation is performed and the film characteristics are compared and evaluated by collation. In addition, it is also possible to evaluate the elongation and / or strength of the polymer compound in a tensile test, including the form of a separation membrane, or the molecular weight.

【0017】例えばかん水淡水化プラントにおいて、運
転前の水質評価に逆浸透膜を使用する際、原水と逆浸透
膜を接触させる前に、塩化ナトリウム1500mg/L
純水溶液を評価水に、圧力0.75MPa、温度25℃
で予め性能評価を行い、原水と逆浸透膜を所定の時間接
触させた後同条件で評価を行って逆浸透性能を比較する
方法がある。また、除濁のために限外濾過処理を行う場
合などは逆浸透膜に限らず、実際に使用する限外濾過膜
の小片を被処理水に接触させ、分画分子量あるいは透過
流束を測定してもよい。分離膜固有の性能が測定できる
条件であればいずれでもよい。なお、阻止率、透過流束
および純水透過係数、溶質透過係数の計算は通常公知の
計算式を用いて行えばよい。
For example, when a reverse osmosis membrane is used for water quality evaluation before operation in a desalination plant, 1500 mg / L of sodium chloride is required before contacting the raw water with the reverse osmosis membrane.
Pure water solution as evaluation water, pressure 0.75MPa, temperature 25 ° C
There is a method in which raw water and a reverse osmosis membrane are brought into contact in advance for a predetermined time, and then evaluated under the same conditions to compare the reverse osmosis performance. In addition, when ultrafiltration treatment is performed for clarification, not only the reverse osmosis membrane but also a small piece of the ultrafiltration membrane actually used is brought into contact with the water to be treated, and the molecular weight cutoff or permeation flux is measured. May be. Any condition may be used as long as the performance unique to the separation membrane can be measured. The rejection, the permeation flux, the pure water permeability coefficient, and the solute permeability coefficient may be calculated using a generally known formula.

【0018】あるいは同様のプラントにおいて運転前の
水質評価にポリアクリロニトリル限外濾過膜を使用する
際、原水と該限外濾過膜を接触させる前に予めポリアク
リロニトリルのシートの伸度および強度を引張試験で測
定しておき、原水とポリアクリロニトリルのシートを所
定の時間接触させた後同条件で評価を行って伸度および
強度を比較する方法がある。引張試験は通常公知の方法
で行えばよい。
Alternatively, when a polyacrylonitrile ultrafiltration membrane is used for water quality evaluation before operation in a similar plant, the elongation and strength of the polyacrylonitrile sheet are preliminarily tested before contacting the raw water with the ultrafiltration membrane. There is a method in which raw water and a sheet of polyacrylonitrile are brought into contact with each other for a predetermined time and then evaluated under the same conditions to compare elongation and strength. The tensile test may be performed by a generally known method.

【0019】また、予め高分子化合物の分子量を測定し
ておき、原水と高分子化合物を所定の時間接触させた後
同条件で評価を行って分子量変化を比較する方法もあ
る。分子量は測定法によって数平均分子量、重量平均分
子量、Z平均分子量のうちいずれかが与えられるが、比
較が可能であればいずれのものでもかまわない。分子量
測定は溶液粘度法、ゲルパーミエーションクロマトグラ
フィー、浸透圧法、光散乱法または超遠心法で行うこと
ができる。迅速性、簡便性の点からより好ましくは溶液
粘度法、ゲルパーミエーションクロマトグラフィーがあ
る。すなわち高分子化合物固有の特性が測定でき、比較
を行える条件であればいずれでもよい。
There is also a method in which the molecular weight of a polymer compound is measured in advance, raw water is brought into contact with the polymer compound for a predetermined time, and evaluation is performed under the same conditions to compare changes in molecular weight. As the molecular weight, any one of a number average molecular weight, a weight average molecular weight, and a Z average molecular weight is given depending on the measuring method, and any one may be used as long as comparison is possible. The molecular weight can be measured by a solution viscosity method, gel permeation chromatography, osmotic pressure method, light scattering method or ultracentrifugation method. From the viewpoint of rapidity and simplicity, more preferred are a solution viscosity method and gel permeation chromatography. That is, any condition can be used as long as the characteristics unique to the polymer compound can be measured and the comparison can be performed.

【0020】原水と高分子化合物との接触方法である
が、原水中に単純に高分子化合物を浸漬させる方法が一
般的である。ただし該高分子化合物が分離膜であった場
合、実際に原水を透過させる方法をとるのが好ましい。
この場合は原水と中空糸膜との接触面積が大きくなり、
また膜表面近傍の酸化性物質などの濃度が常に一定とな
るのでより好ましいのである。
The contacting method between raw water and a polymer compound is generally carried out by simply immersing the polymer compound in the raw water. However, when the polymer compound is a separation membrane, it is preferable to adopt a method of actually allowing raw water to permeate.
In this case, the contact area between the raw water and the hollow fiber membrane increases,
Further, the concentration of the oxidizing substance in the vicinity of the film surface is always constant, which is more preferable.

【0021】原水の酸化力評価にあたっては、上述の高
分子化合物構成成分の経時変化から反応速度論的に直接
評価することもできるが、原水の代わりに比較対象水を
用い、そしてその場合の膜特性、ならびに引張試験での
伸度、および/または強度、または分子量と比較するこ
とで比較評価を行うことが実際的で好ましい。
In the evaluation of the oxidizing power of raw water, it is possible to directly evaluate the kinetics of the above-mentioned components of the high molecular compound by the change over time. However, instead of the raw water, a water to be compared is used. It is practical and preferable to make a comparative evaluation by comparing the properties with the elongation and / or strength in a tensile test, or the molecular weight.

【0022】この場合の比較対象水とは、例えば純水な
どが挙げられるが、特に一連の水処理プロセスにおける
特定の水処理操作の後の処理水の酸化力を評価する場合
には、その特定水処理操作を行う前の原水を比較対象水
として用いることで、有益な情報を得ることができる。
The water to be compared in this case includes, for example, pure water. In particular, when evaluating the oxidizing power of treated water after a specific water treatment operation in a series of water treatment processes, the specific water is specified. By using the raw water before the water treatment operation as the water to be compared, useful information can be obtained.

【0023】比較対象水を用いた評価の場合、高分子化
合物と接触させ、一定時間経過後の引張試験での伸度、
強度および分子量について比較評価しても良いし、反応
速度式を求め、そこから得られる速度定数から比較して
も良い。さらには引張試験での伸度、強度および分子量
と経過時間をプロットして得られるグラフから定性的な
比較評価を行っても良い。また分離膜を用いた場合で
も、上記比較の他に阻止率、透過流束およびこれらから
導かれる純水透過係数、溶質透過係数などを評価し、上
記に準じた比較を行ってもよい。
In the case of evaluation using water for comparison, the elongation in a tensile test after a certain period of time was brought into contact with a polymer compound,
The strength and the molecular weight may be compared and evaluated, or a reaction rate equation may be obtained and compared with a rate constant obtained therefrom. Further, a qualitative comparative evaluation may be performed from a graph obtained by plotting elongation, strength, molecular weight and elapsed time in a tensile test. In addition, even when a separation membrane is used, in addition to the above comparison, the rejection rate, the permeation flux, the pure water permeability coefficient, the solute permeability coefficient, etc. derived therefrom may be evaluated, and the comparison according to the above may be performed.

【0024】[0024]

【実施例】本特許に関する実施例を以下より示す。本実
施例での測定について、pHおよび温度はKCl供給型
複合電極を用いたpH計で測定し、残留塩素濃度はo−
トリジン法による比色定量を行って確認した。
Examples of the present invention will be described below. In the measurement in this example, the pH and the temperature were measured by a pH meter using a KCl supply type composite electrode, and the residual chlorine concentration was o-
It was confirmed by colorimetric determination by the trizine method.

【0025】<実施例1> 評価検水の調製 千葉県北西部で取水した井戸水を原水とした限外濾過装
置において、次亜塩素酸ナトリウムによる酸化処理を行
い、続いて還元剤である重亜硫酸ナトリウムによる酸化
剤の消去を行って限外濾過を行う水処理プロセスを前提
に、各工程から得られる水の酸化力について評価を行っ
た。まず原水である井戸水を連続で次亜塩素酸ナトリウ
ムによる酸化処理槽に供給し、有効塩素濃度が1mg/
lとなるようにダイヤフラム式定量ポンプを用いて次亜
塩素酸ナトリウムを加えた(検水A)。次に酸化処理水
を酸化剤消去処理槽に送り、ここでは重亜硫酸ナトリウ
ム(還元剤)20wt%水溶液を有効量で10mg/l
となるようにダイヤフラム式定量ポンプを用いて加えた
(検水B)。
<Example 1> Preparation of evaluation test water In an ultrafiltration device using well water taken in the northwestern part of Chiba Prefecture as raw water, oxidation treatment with sodium hypochlorite was performed, followed by bisulfite as a reducing agent. The oxidizing power of water obtained from each step was evaluated on the premise of a water treatment process in which ultrafiltration was performed by eliminating the oxidizing agent with sodium. First, raw water, which is well water, is continuously supplied to the oxidation treatment tank using sodium hypochlorite, and the effective chlorine concentration is 1 mg / well.
Sodium hypochlorite was added using a diaphragm type metering pump so as to obtain 1 (sample A). Next, the oxidized water is sent to an oxidizing agent elimination tank, where an aqueous solution of 20 wt% sodium bisulfite (reducing agent) is used in an effective amount of 10 mg / l.
Was added using a diaphragm-type metering pump (water sample B).

【0026】比較対象原水として上記装置とは別系列の
水槽を設け、水槽に純水を連続供給し、有効塩素濃度が
1mg/lとなるようにダイヤフラム式定量ポンプを用
いて次亜塩素酸ナトリウムを加え、検水Zを得た。
A water tank of a different series from the above apparatus was provided as raw water for comparison, pure water was continuously supplied to the water tank, and sodium hypochlorite was pumped using a diaphragm metering pump so that the effective chlorine concentration was 1 mg / l. Was added to obtain a sample Z.

【0027】得られた各検水のpH、温度、残留塩素濃
度を表1に示す。
Table 1 shows the pH, temperature, and residual chlorine concentration of each sample water obtained.

【0028】[0028]

【表1】 [Table 1]

【0029】<各検水の酸化力評価>評価対象となる上
記3種の検水各々の槽から一定量の検水をポリアクリロ
ニトリルからなる中空糸膜を装填したセルに連続供給
し、浸漬法で各検水と該中空糸膜とを接触させ、24、
120、240時間経過後取り出してテンシロン引張試
験機を用い、伸度および強度を測定した。
<Evaluation of Oxidizing Power of Each Test Water> A constant amount of test water was continuously supplied from each of the three test water tanks to be evaluated to a cell loaded with a hollow fiber membrane made of polyacrylonitrile, and the immersion method was performed. Contact each sample with the hollow fiber membrane in
After elapse of 120 and 240 hours, the sample was taken out, and its elongation and strength were measured using a Tensilon tensile tester.

【0030】得られたポリアクリロニトリル中空糸膜の
経時変化は、各検水浸漬前の伸度(E0)および強度
(F0)を時間0における性能とし、所定時間経過後の
伸度(E)および強度(F)との比をとって相対伸度と
して比較を行った。経時変化を図1に示す。 図1から
明らかなように、伸度および強度減少の度合いが最も大
きい検水Aが最も酸化力が強いことがわかる。さらに検
水Aを還元剤で処理した検水Bでは性能変化が認められ
ないことから、酸化力は消失していることがわかった。
The elongation (E0) and strength (F 0 ) of each of the obtained polyacrylonitrile hollow fiber membranes before and after immersion in the test water were evaluated as the performance at time 0, and the elongation (E) after a predetermined time elapsed. The ratio was compared with the strength (F) to obtain a relative elongation. The change over time is shown in FIG. As is clear from FIG. 1, it can be seen that sample A having the largest degree of elongation and strength reduction has the strongest oxidizing power. Further, in the test water B obtained by treating the test water A with a reducing agent, no change in performance was observed, indicating that the oxidizing power had disappeared.

【0031】<実施例2> 評価検水の調製 千葉県北西部の井戸のうち、2カ所の井戸(井戸1、井
戸2)から取水した井戸水を混合したものを原水とした
限外濾過装置において、混合原水を次亜塩素酸ナトリウ
ムを用いて酸化処理し、続いて還元剤である重亜硫酸ナ
トリウムによる酸化剤の消去を行って限外濾過を行う水
処理プロセスを前提に、各工程から得られる水の酸化力
について評価を行った。まず井戸1から水を連続で次亜
塩素酸ナトリウムによる酸化処理槽に供給し、有効塩素
濃度が1mg/lとなるようにダイヤフラム式定量ポン
プを用いて次亜塩素酸ナトリウムを加え(検水C)、井
戸2から水を連続で次亜塩素酸ナトリウムによる酸化処
理槽に供給して有効塩素濃度が1mg/lとなるように
ダイヤフラム式定量ポンプを用いて次亜塩素酸ナトリウ
ムを加えた(検水D)。さらに井戸1と井戸2の混合水
(混合比井戸1:井戸2=40:60)を連続で次亜塩
素酸ナトリウムによる酸化処理槽に供給し、有効塩素濃
度が1mg/lとなるようにダイヤフラム式定量ポンプ
を用いて次亜塩素酸ナトリウムを加えた(検水E)。次
にこの原水Eを酸化剤消去処理槽に送り、ここでは重亜
硫酸ナトリウム(還元剤)20wt%水溶液を有効量で
10mg/lとなるようにダイヤフラム式定量ポンプを
用いて加えた(検水F)。
<Example 2> Preparation of evaluation water sample An ultrafiltration apparatus using raw water obtained by mixing well water taken from two wells (well 1 and well 2) among the wells in the northwestern part of Chiba Prefecture. Assuming a water treatment process in which the mixed raw water is oxidized using sodium hypochlorite, followed by elimination of the oxidizing agent with sodium bisulfite as a reducing agent and ultrafiltration, the water treatment process is obtained from each step. The oxidizing power of water was evaluated. First, water is continuously supplied from well 1 to an oxidation treatment tank using sodium hypochlorite, and sodium hypochlorite is added using a diaphragm type metering pump so that the effective chlorine concentration becomes 1 mg / l (sample C ), Water was continuously supplied from well 2 to an oxidation treatment tank using sodium hypochlorite, and sodium hypochlorite was added using a diaphragm type metering pump so that the effective chlorine concentration became 1 mg / l (detection). Water D). Further, the mixed water of the wells 1 and 2 (mixing ratio well 1: well 2 = 40: 60) is continuously supplied to the oxidation treatment tank using sodium hypochlorite, and the diaphragm is adjusted so that the effective chlorine concentration becomes 1 mg / l. Sodium hypochlorite was added using a formula metering pump (sample E). Next, the raw water E was sent to an oxidizing agent elimination treatment tank, and a 20 wt% aqueous solution of sodium bisulfite (reducing agent) was added thereto using a diaphragm-type metering pump so that the effective amount became 10 mg / l (Test Water F). ).

【0032】比較対象原水として上記装置とは別系列の
水槽を設け、水槽に純水を連続供給し、有効塩素濃度が
1mg/lとなるようにダイヤフラム式定量ポンプを用
いて次亜塩素酸ナトリウムを加え、検水Zを得た。
A water tank of a different series from the above apparatus was provided as raw water for comparison, pure water was continuously supplied to the water tank, and sodium hypochlorite was pumped using a diaphragm type metering pump so that the effective chlorine concentration was 1 mg / l. Was added to obtain a sample Z.

【0033】得られた各検水のpH、温度、残留塩素濃
度を表2に示す。
Table 2 shows the pH, temperature, and residual chlorine concentration of each sample water obtained.

【0034】[0034]

【表2】 <各検水の酸化力評価>評価対象となる上記5種の検水
各々の槽から一定量の検水をポリアクリロニトリル中空
糸膜モジュールに連続供給し、各検水と該中空糸膜とを
接触させ、24、120、240時間経過後該中空糸膜
を取り出して重量平均分子量を測定した。重量平均分子
量(Mw)の測定は、ウベローデ型粘度計を用いて、希
釈法で極限粘度数([η])を測定し、下記(1)式で
重量平均分子量を算出した。極限粘度数はポリアクリロ
ニトリル中空糸膜を2重量%のクエン酸水溶液で洗浄
後、純水で洗浄し、絶乾した後ジメチルホルムアミドを
溶媒として35℃で常法に従い測定した。
[Table 2] <Evaluation of oxidizing power of each sample> A fixed amount of sample is continuously supplied to the polyacrylonitrile hollow fiber membrane module from each tank of the above five types of sample to be evaluated, and each sample and the hollow fiber membrane are separated. The hollow fiber membrane was taken out after 24, 120, and 240 hours of contact, and the weight average molecular weight was measured. For the measurement of the weight average molecular weight (Mw), the intrinsic viscosity ([η]) was measured by a dilution method using an Ubbelohde viscometer, and the weight average molecular weight was calculated by the following formula (1). The limiting viscosity number was determined by washing the polyacrylonitrile hollow fiber membrane with a 2% by weight aqueous solution of citric acid, washing with pure water, and drying it completely, and then using dimethylformamide as a solvent at 35 ° C. according to a conventional method.

【数1】 (Equation 1)

【0035】ポリアクリロニトリル限外濾過膜透膜の分
子量の経時変化を図2に示す。なお各検水浸漬前の重量
平均分子量を時間0における値(Mw0)とし、所定時
間経過した時点での重量平均分子量(Mw)との比をと
って相対分子量として表した。
FIG. 2 shows the change over time of the molecular weight of the polyacrylonitrile ultrafiltration membrane. The weight-average molecular weight before immersion in each sample was defined as the value at time 0 (Mw 0 ), and the ratio to the weight-average molecular weight (Mw) at the time when a predetermined time had elapsed was expressed as a relative molecular weight.

【0036】図2から明らかなように、重量平均分子量
の低下の度合いが最も大きい検水Eが最も酸化力が強い
ことを示している。また、この井戸1と井戸2の水を混
合し酸化処理を行うと、各々単独の井戸水を酸化処理し
たものよりも酸化力が大きくなることがわかる。さらに
検水Eを還元剤で処理した検水Fでは性能変化が認めら
れないことから、酸化力は消失していることがわかっ
た。
As is clear from FIG. 2, the water sample E having the greatest degree of reduction in the weight average molecular weight has the strongest oxidizing power. In addition, it can be seen that when the water in the wells 1 and 2 is mixed and oxidized, the oxidizing power becomes larger than that obtained by oxidizing the well water alone. Further, in the test water F obtained by treating the test water E with the reducing agent, no change in performance was observed, indicating that the oxidizing power had disappeared.

【0037】<実施例3>水質評価に逆浸透膜を使用し
た例を以下より示す。逆浸透膜は架橋芳香族ポリアミド
から成る分離機能層を持つ複合逆浸透膜を使用した。阻
止率は該逆浸透膜の評価原水であるNaCl水溶液と透
過液の電気伝導度から濃度を求めて見かけの阻止率とし
て算出し、透過流束は時間当たりの透過水重量から算出
した。
Example 3 An example in which a reverse osmosis membrane was used for water quality evaluation is described below. As the reverse osmosis membrane, a composite reverse osmosis membrane having a separation functional layer made of a cross-linked aromatic polyamide was used. The rejection was calculated as the apparent rejection by calculating the concentration from the electrical conductivity of the NaCl aqueous solution and the permeate as the evaluation raw water of the reverse osmosis membrane, and the permeation flux was calculated from the weight of permeate per hour.

【0038】[0038]

【数2】 (Equation 2)

【0039】また、阻止率、透過流束より純水透過係
数、溶質透過係数を求める際には、それぞれ以下の式に
より計算した。
When the pure water permeability coefficient and the solute permeability coefficient were determined from the rejection and the permeation flux, they were calculated by the following equations, respectively.

【0040】[0040]

【数3】 (Equation 3)

【0041】液浸透圧は電気伝導度測定から求めた濃度
より以下の式を用いて算出した。
The liquid osmotic pressure was calculated from the concentration obtained from the electric conductivity measurement using the following equation.

【0042】[0042]

【数4】 (Equation 4)

【0043】<評価検水の調製>千葉県北西部で取水し
た井戸水を原水とした限外濾過装置において、次亜塩素
酸ナトリウムによる酸化処理を行い、続いて還元剤であ
る重亜硫酸ナトリウムによる酸化剤の消去を行って限外
濾過を行う水処理プロセスを前提に、各工程から得られ
る水の酸化力について評価を行った。まず原水である井
戸水を連続で次亜塩素酸ナトリウムによる酸化処理槽に
供給し、有効塩素濃度が1mg/lとなるようにダイヤ
フラム式定量ポンプを用いて次亜塩素酸ナトリウムを加
えた(検水A)。次に酸化処理水を酸化剤消去処理槽に
送り、ここでは重亜硫酸ナトリウム(還元剤)20wt
%水溶液を有効量で10mg/lとなるようにダイヤフ
ラム式定量ポンプを用いて加えた(検水B)。
<Preparation of Evaluation Test Water> In an ultrafiltration apparatus using well water taken in the northwestern part of Chiba Prefecture as raw water, oxidation treatment with sodium hypochlorite was performed, followed by oxidation with sodium bisulfite as a reducing agent. The oxidizing power of water obtained from each step was evaluated on the premise of a water treatment process in which ultrafiltration was performed by eliminating the agent. First, well water as raw water was continuously supplied to an oxidation treatment tank using sodium hypochlorite, and sodium hypochlorite was added using a diaphragm type metering pump so that the effective chlorine concentration became 1 mg / l (water test A). Next, the oxidized water is sent to the oxidizing agent elimination tank, where sodium bisulfite (reducing agent) 20 wt.
% Aqueous solution was added using a diaphragm type metering pump so as to be an effective amount of 10 mg / l (sample B).

【0044】比較対象原水として上記装置とは別系列の
水槽を設け、水槽に純水を連続供給し、有効塩素濃度が
1mg/lとなるようにダイヤフラム式定量ポンプを用
いて次亜塩素酸ナトリウムを加え、検水Zを得た。
A water tank of a different system from the above apparatus was provided as raw water for comparison, pure water was continuously supplied to the water tank, and sodium hypochlorite was pumped using a diaphragm type metering pump so that the effective chlorine concentration became 1 mg / l. Was added to obtain a sample Z.

【0045】得られた各検水のpH、温度、残留塩素濃
度を表3に示す。
Table 3 shows the pH, temperature, and residual chlorine concentration of each sample water obtained.

【0046】[0046]

【表3】 [Table 3]

【0047】<水の酸力評価>評価対象となる上記3種
の検水各々の槽から一定量の検水を架橋芳香族ポリアミ
ドを機能層にもつ複合逆浸透膜を装填したセルに連続供
給し、各検水と該逆浸透膜とを接触させ、24、72、
192時間経過後取り出して0.75MPa、塩化ナト
リウム1500mg/l純水溶液を評価水に用い、25
℃で逆浸透性能を測定した。
<Evaluation of Acidity of Water> A predetermined amount of water was continuously supplied from each of the three types of water samples to be evaluated to a cell loaded with a composite reverse osmosis membrane having a crosslinked aromatic polyamide as a functional layer. And bringing each sample into contact with the reverse osmosis membrane;
After elapse of 192 hours, a pure aqueous solution of 0.75 MPa and 1500 mg / l sodium chloride was used as the evaluation water,
Reverse osmosis performance was measured at ° C.

【0048】得られた逆浸透膜の阻止率(R)および透
過流束(Jv)と、各々の検水浸漬前の阻止率(R0)お
よび検水浸漬前の溶質透過係数(Jv0)との比をとって
経時変化を調べた。得られた逆浸透膜の経時変化を図3
に示す。
The rejection (R) and permeation flux (J v ) of the obtained reverse osmosis membrane, the rejection (R 0 ) and the solute permeability coefficient (J v0 ) before each immersion in the test water, respectively. ) And the change with time was examined. FIG. 3 shows the change with time of the obtained reverse osmosis membrane.
Shown in

【0049】図3から明らかなように、阻止率減少およ
び透過流束増加の度合いが最も大きい検水Aが最も酸化
力が強いことがわかる。さらに検水Aを還元剤で処理し
た検水Bでは性能変化が認められないことから、酸化力
は消失していることがわかった。
As is apparent from FIG. 3, it can be seen that the test sample A having the largest degree of decrease in rejection and increase in permeation flux has the strongest oxidizing power. Further, in the test water B obtained by treating the test water A with a reducing agent, no change in performance was observed, indicating that the oxidizing power had disappeared.

【0050】<評価検水の調製>千葉県北西部にある井
戸のうち、2カ所の井戸(井戸1、井戸2)から取水し
た井戸水を混合したものを原水とした限外濾過装置にお
いて、混合原水を次亜塩素酸ナトリウムを用いて酸化処
理し、続いて還元剤である重亜硫酸ナトリウムによる酸
化剤の消去を行って限外濾過を行う水処理プロセスを前
提に、各工程から得られる水の酸化力について評価を行
った。まず井戸1から水を連続で次亜塩素酸ナトリウム
による酸化処理槽に供給し、有効塩素濃度が1mg/l
となるようにダイヤフラム式定量ポンプを用いて次亜塩
素酸ナトリウムを加え(検水C)、井戸2から水を連続
で次亜塩素酸ナトリウムによる酸化処理槽に供給して有
効塩素濃度が1mg/lとなるようにダイヤフラム式定
量ポンプを用いて次亜塩素酸ナトリウムを加えた(検水
D)。さらに井戸1と井戸2の混合水(混合比井戸1:
井戸2=40:60)を連続で次亜塩素酸ナトリウムに
よる酸化処理槽に供給し、有効塩素濃度が1mg/lと
なるようにダイヤフラム式定量ポンプを用いて次亜塩素
酸ナトリウムを加えた(検水E)。次にこの原水Eを酸
化剤消去処理槽に送り、ここでは重亜硫酸ナトリウム
(還元剤)20wt%水溶液を有効量で10mg/lと
なるようにダイヤフラム式定量ポンプを用いて加えた
(検水F)。
<Preparation of Evaluation Water Sample> Of the wells located in the northwestern part of Chiba Prefecture, a mixture of well water taken from two wells (well 1 and well 2) was mixed in an ultrafiltration apparatus using as raw water. Raw water is oxidized using sodium hypochlorite, followed by elimination of the oxidizing agent by sodium bisulfite as a reducing agent and ultrafiltration, assuming a water treatment process that performs water treatment from each step. The oxidizing power was evaluated. First, water is continuously supplied from well 1 to an oxidation treatment tank using sodium hypochlorite, and the effective chlorine concentration is 1 mg / l.
Sodium hypochlorite was added using a diaphragm type metering pump (sample C), and water was continuously supplied from the well 2 to an oxidation treatment tank using sodium hypochlorite to obtain an effective chlorine concentration of 1 mg / Sodium hypochlorite was added by using a diaphragm type metering pump so as to obtain 1 (sample D). Further, the mixed water of well 1 and well 2 (mixing ratio well 1:
(Well 2 = 40: 60) was continuously supplied to the oxidation treatment tank using sodium hypochlorite, and sodium hypochlorite was added using a diaphragm type metering pump so that the effective chlorine concentration became 1 mg / l ( Sample E). Next, this raw water E was sent to an oxidizing agent elimination treatment tank, and a 20 wt% aqueous solution of sodium bisulfite (reducing agent) was added thereto using a diaphragm-type metering pump so that the effective amount became 10 mg / l (Test Water F). ).

【0051】比較対象原水として上記装置とは別系列の
水槽を設け、水槽に純水を連続供給し、有効塩素濃度が
1mg/lとなるようにダイヤフラム式定量ポンプを用
いて次亜塩素酸ナトリウムを加え、検水Zを得た。
A water tank of a different series from the above apparatus was provided as raw water for comparison, pure water was continuously supplied to the water tank, and sodium hypochlorite was pumped using a diaphragm type metering pump so that the effective chlorine concentration became 1 mg / l. Was added to obtain a sample Z.

【0052】得られた各検水のpH、温度、残留塩素濃
度を表4に示す。
Table 4 shows the pH, temperature, and residual chlorine concentration of each sample water obtained.

【0053】[0053]

【表4】 [Table 4]

【0054】<各検水の酸化力評価>評価対象となる上
記5種の検水各々の槽から一定量の検水を架橋芳香族ポ
リアミドからなる逆浸透膜を装填したセルに連続供給
し、各検水と該逆浸透膜とを接触させ、24、72、1
92時間経過後取り出して0.75MPa、塩化ナトリ
ウム1500mg/l純水溶液を評価水に用い、25℃
で逆浸透性能を測定した。
<Evaluation of Oxidizing Power of Each Test Water> A predetermined amount of test water was continuously supplied from each of the above five test water tanks to be evaluated to a cell loaded with a reverse osmosis membrane made of a crosslinked aromatic polyamide. Each sample is brought into contact with the reverse osmosis membrane, and 24, 72, 1
It was taken out after 92 hours, and a pure aqueous solution of 0.75 MPa and sodium chloride at 1500 mg / l was used as the evaluation water.
The reverse osmosis performance was measured.

【0055】得られた逆浸透膜の透過流束および阻止率
から純水透過係数(A値)、溶質透過係数(B値)を算
出し(A、B)、各々の検水浸漬前の純水透過係数(A
0)および検水浸漬前の溶質透過係数(B0)との比をと
って経時変化を調べた。その経時変化を図4に示す。
From the permeation flux and rejection of the obtained reverse osmosis membrane, a pure water permeability coefficient (A value) and a solute permeability coefficient (B value) were calculated (A, B), and the pure water permeability before each test water immersion was calculated. Water permeability coefficient (A
0 ) and the solute permeability coefficient (B 0 ) before immersion in the test sample to determine the change with time. The change over time is shown in FIG.

【0056】図4から明らかなように、純水透過係数お
よび溶質透過係数増加の度合いが最も大きい検水Eが最
も酸化力が強いことがわかる。また、この井戸1と井戸
2の水を混合し酸化処理を行うと、各々単独の井戸水を
酸化処理したものよりも酸化力が大きくなることがわか
る。さらに検水Eを還元剤で処理した検水Fでは性能変
化が認められないことから、酸化力は消失していること
がわかった。
As is apparent from FIG. 4, it can be seen that the sample E having the largest increase in the pure water permeability coefficient and the solute permeability coefficient has the strongest oxidizing power. In addition, it can be seen that when the water in the wells 1 and 2 is mixed and oxidized, the oxidizing power becomes larger than that obtained by oxidizing the well water alone. Further, in the test water F obtained by treating the test water E with the reducing agent, no change in performance was observed, indicating that the oxidizing power had disappeared.

【0057】[0057]

【発明の効果】本発明は、様々な物質の含まれている水
の酸化力を評価するにあたり、原水と高分子化合物を接
触させ、該高分子化合物の物性変化から原水の酸化力を
評価することにより、原水の酸化力を総合的かつ速度論
的に把握することができるとともに、簡便かつ適用範囲
の広い水質の評価方法を提供することができる。
According to the present invention, in evaluating the oxidizing power of water containing various substances, raw water is brought into contact with a high molecular compound, and the oxidizing power of the raw water is evaluated from the change in physical properties of the high molecular compound. This makes it possible to comprehensively and kinetically grasp the oxidizing power of raw water, and to provide a simple and wide-ranging water quality evaluation method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例での測定結果を示す図である。FIG. 1 is a diagram showing measurement results in an example.

【図2】実施例での測定結果を示す図である。FIG. 2 is a diagram showing a measurement result in an example.

【図3】実施例での測定結果を示す図である。FIG. 3 is a diagram showing a measurement result in an example.

【図4】実施例での測定結果を示す図である。FIG. 4 is a diagram showing a measurement result in an example.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B01D 71/42 B01D 71/42 71/52 71/52 71/56 71/56 71/68 71/68 C02F 1/00 C02F 1/00 V 1/44 1/44 D 1/72 1/72 Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI B01D 71/42 B01D 71/42 71/52 71/52 71/56 71/56 71/68 71/68 C02F 1/00 C02F 1 / 00 V 1/44 1/44 D 1/72 1/72 Z

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 酸水の酸化力の測定に際し、原水に高分
子化合物を接触させて、該高分子化合物の特性変化から
原水の酸化力を評価することを特徴とする水の酸化力の
測定方法。
1. A method for measuring the oxidizing power of water, comprising the steps of: contacting a polymer with raw water when measuring the oxidizing power of acid water; and evaluating the oxidizing power of the raw water from a change in the properties of the polymer compound. Method.
【請求項2】 該高分子化合物が分離膜であることを特
徴とする請求項1に記載の水の酸化力の測定方法。
2. The method for measuring the oxidizing power of water according to claim 1, wherein the polymer compound is a separation membrane.
【請求項3】 該分離膜が逆浸透膜であることを特徴と
する請求項2に記載の水の酸化力の測定方法。
3. The method for measuring the oxidizing power of water according to claim 2, wherein the separation membrane is a reverse osmosis membrane.
【請求項4】 該分離膜が限外濾過膜、精密濾過膜であ
ることを特徴とする請求項2に記載の水の酸化力の測定
方法。
4. The method for measuring the oxidizing power of water according to claim 2, wherein the separation membrane is an ultrafiltration membrane or a microfiltration membrane.
【請求項5】 評価される特性が特性が阻止率、透過流
束、純水透過係数または溶質透過係数であることを特徴
とする請求項2〜4いずれかに記載の水の酸化力の測定
方法。
5. The measurement of the oxidizing power of water according to claim 2, wherein the properties to be evaluated are rejection, permeation flux, pure water permeability coefficient or solute permeability coefficient. Method.
【請求項6】 評価される特性が引っ張り伸度、引っ張
り強度または分子量性であることを特徴とする請求項1
〜4いずれかに記載の水の酸化力の測定方法。
6. The method according to claim 1, wherein the property to be evaluated is tensile elongation, tensile strength or molecular weight.
5. The method for measuring the oxidizing power of water according to any one of items 1 to 4.
【請求項7】 該高分子化合物が脂肪族ポリアミド系化
合物、芳香族ポリアミド系化合物、酢酸セルロース系化
合物、ポリエーテル系化合物、ポリアクリロニトリル、
ポリスルホン系化合物、ポリオレフィン系化合物のうち
少なくとも一つからなることを特徴とする請求項1〜6
いずれかにに記載の水の酸化力の測定方法。
7. The polymer compound is an aliphatic polyamide compound, an aromatic polyamide compound, a cellulose acetate compound, a polyether compound, polyacrylonitrile,
7. A composition comprising at least one of a polysulfone compound and a polyolefin compound.
The method for measuring the oxidizing power of water according to any one of the above.
JP30567297A 1997-11-07 1997-11-07 Method for measuring oxidation power of water Pending JPH11142395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30567297A JPH11142395A (en) 1997-11-07 1997-11-07 Method for measuring oxidation power of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30567297A JPH11142395A (en) 1997-11-07 1997-11-07 Method for measuring oxidation power of water

Publications (1)

Publication Number Publication Date
JPH11142395A true JPH11142395A (en) 1999-05-28

Family

ID=17947971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30567297A Pending JPH11142395A (en) 1997-11-07 1997-11-07 Method for measuring oxidation power of water

Country Status (1)

Country Link
JP (1) JPH11142395A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790677B2 (en) 2002-03-01 2004-09-14 Fujitsu Limited Method of forming a ferroelectric film and fabrication process of a semiconductor device having a ferroelectric film
JP2005103431A (en) * 2003-09-30 2005-04-21 Kurita Water Ind Ltd Method and apparatus for evaluating reverse osmosis membrane feed water, and operation control method for water treatment equipment
CN103768962A (en) * 2014-02-11 2014-05-07 沈阳工业大学 Pre-oxidation method for adjusting and controlling rejection rate of polyacrylonitrile nanofiltration membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6790677B2 (en) 2002-03-01 2004-09-14 Fujitsu Limited Method of forming a ferroelectric film and fabrication process of a semiconductor device having a ferroelectric film
US6852551B2 (en) 2002-03-01 2005-02-08 Fujitsu Limited Method of forming a ferroelectric film and fabrication process of a semiconductor device having a ferroelectric film
JP2005103431A (en) * 2003-09-30 2005-04-21 Kurita Water Ind Ltd Method and apparatus for evaluating reverse osmosis membrane feed water, and operation control method for water treatment equipment
JP4517615B2 (en) * 2003-09-30 2010-08-04 栗田工業株式会社 Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
CN103768962A (en) * 2014-02-11 2014-05-07 沈阳工业大学 Pre-oxidation method for adjusting and controlling rejection rate of polyacrylonitrile nanofiltration membrane

Similar Documents

Publication Publication Date Title
Yu et al. Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes
Hu et al. Enhancing the performance of aromatic polyamide reverse osmosis membrane by surface modification via covalent attachment of polyvinyl alcohol (PVA)
Jafarinejad et al. Concentrating ammonium in wastewater by forward osmosis using a surface modified nanofiltration membrane
Wang et al. Effect of hypochlorite cleaning on the physiochemical characteristics of polyvinylidene fluoride membranes
EP1819428B1 (en) Composite semipermeable membrane, production process thereof, and element, fluid separation equipment and method for water treatment using the same
CN103492054B (en) Method for cleaning membrane module
Hanafi et al. Electrokinetic analysis of PES/PVP membranes aged by sodium hypochlorite solutions at different pH
Raval et al. Rejuvenation of discarded RO membrane for new applications
Tyszler et al. Reduced fouling tendencies of ultrafiltration membranes in wastewater treatment by plasma modification
CN104190272A (en) Anti-pollution composite reverse osmosis membrane and preparation method thereof
Kim et al. Preparation and characterization of thermally crosslinked chlorine resistant thin film composite polyamide membranes for reverse osmosis
AU2015230864B2 (en) Method for measuring concentration of dissolved organic nitrogen of secondary effluent
CN113797763B (en) Cellulose gel layer modified loose nanofiltration membrane for high-flux dye separation and preparation method and application thereof
Jiang et al. Poly (vinyl chloride) and poly (ether sulfone)‐g‐poly (ether glycol) methyl ether methacrylate blend membranes with improved ultrafiltration performance and fouling resistance
CN114053886A (en) Polyamide composite reverse osmosis membrane and preparation method thereof
Arkhangelsky et al. Retention of organic matter by cellulose acetate membranes cleaned with hypochlorite
EP0528582A1 (en) Durable filtration membrane having optimized molecular weight
Bes-Piá et al. Comparison of three NF membranes for the reuse of secondary textile effluents
JP2005186059A (en) Processing method for semi-permeable membrane, modified semi-permeable membrane and production method for the same
Alhweij et al. Self‐doped sulfonated polyaniline ultrafiltration membranes with enhanced chlorine resistance and antifouling properties
JPH11142395A (en) Method for measuring oxidation power of water
JP2021006335A (en) Oxidation risk evaluation method of separation membrane in separation membrane plant and fresh water generator
WO2016111370A1 (en) Water treatment method
CN108043233B (en) Oxidation-resistant polyamide reverse osmosis membrane and preparation method and application thereof
JP3641854B2 (en) Reverse osmosis membrane separation method and reverse osmosis membrane separation device