JPH1114183A - Freezer device - Google Patents

Freezer device

Info

Publication number
JPH1114183A
JPH1114183A JP9161618A JP16161897A JPH1114183A JP H1114183 A JPH1114183 A JP H1114183A JP 9161618 A JP9161618 A JP 9161618A JP 16161897 A JP16161897 A JP 16161897A JP H1114183 A JPH1114183 A JP H1114183A
Authority
JP
Japan
Prior art keywords
core
refrigerant
auxiliary
adsorption
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9161618A
Other languages
Japanese (ja)
Other versions
JP3740794B2 (en
Inventor
Seiji Inoue
誠司 井上
Yoshiaki Tanaka
攻明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP16161897A priority Critical patent/JP3740794B2/en
Publication of JPH1114183A publication Critical patent/JPH1114183A/en
Application granted granted Critical
Publication of JP3740794B2 publication Critical patent/JP3740794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a gas liquid separation between an evaporating core and an adsorption core to be carried out in a superior manner for a long period of time. SOLUTION: This freezer device is constructed such that refrigerant vapour evaporated at a main evaporating condenser core 14 contacted with liquid refrigerant L is adsorbed with an adsorption core 12 arranged under non- contacted state, heat exchanging fluid cooled by the main evaporating condenser core 14 is circulated in an indoor heat exchanger 26 to cool an interior side of a room. In this case, an auxiliary evaporating core 13 is arranged between the main evaporating condenser core 14 and the adsorption core 12 under a non-contacted state with the liquid refrigerant L. Accordingly, refrigerant in liquid droplet form adheres to the auxiliary evaporating condenser core 13 and is evaporated at this auxiliary evaporating condenser core 13. In addition, heat exchanging fluid absorbing heat at the indoor heat exchanger 26 is flowed at first to the auxiliary evaporating condenser core 13, thereafter the fluid is flowed at the main evaporating condenser core 14, resulting in that it is possible to perform a superior evaporating of refrigerant at the auxiliary evaporating condenser core 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸着剤あるいは吸
収液により水等の冷媒を吸着あるいは吸収することを利
用した冷凍装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigerating apparatus utilizing the adsorption or absorption of a refrigerant such as water by an adsorbent or an absorbent.

【0002】[0002]

【従来の技術】例えば冷蔵庫や家庭用エアコン、カーエ
アコン等に用いられる冷凍装置として、水などを冷媒と
した吸着式冷凍装置が知られている。これは、シリカゲ
ル、ゼオライト等の吸着剤が、冷却状態にあって気冷媒
(水蒸気)を高能力で吸着し、加熱状態にあっては吸着
した気冷媒を脱着して吸着能力が再生されることを利用
したものである。
2. Description of the Related Art As a refrigerating device used for a refrigerator, a home air conditioner, a car air conditioner, etc., an adsorption refrigerating device using water as a refrigerant is known. This means that adsorbents such as silica gel and zeolite adsorb gas refrigerant (water vapor) with high capacity in the cooling state, and desorb the adsorbed gas refrigerant in the heating state to regenerate the adsorption capacity. It is a thing using.

【0003】そして、この種の冷凍装置として、特開平
9−26224号公報には、図7に示すような吸着式冷
凍装置1が提案されている。この装置1は、1つの密閉
空間を形成する密閉回路11を備え、この密閉回路11
内には、吸着コア12、蒸発コア141、凝縮コア14
2が収容されている。吸着コア12は、周知の熱交換器
形状をなす熱交換部(図示しない)の周囲に多数の吸着
剤Sを保持させたものからなり、上記熱交換部の入口部
12aから出口部12bにかけて熱交換流体(加熱流
体、冷却流体)が流れる。
[0003] As this type of refrigeration apparatus, Japanese Patent Application Laid-Open No. 9-226224 proposes an adsorption refrigeration apparatus 1 as shown in FIG. The device 1 includes a closed circuit 11 forming one closed space.
Inside, the adsorption core 12, the evaporation core 141, the condensation core 14
2 are accommodated. The adsorption core 12 is formed by holding a large number of adsorbents S around a heat exchange section (not shown) having a well-known heat exchanger shape, and heats the heat exchange section from the inlet 12a to the outlet 12b. The exchange fluid (heating fluid, cooling fluid) flows.

【0004】また、蒸発コア141は液冷媒Lと接触し
て設けられ、凝縮コア142は液冷媒Lと非接触な状態
で設けられる。これらの蒸発コア141、凝縮コア14
2は周知の熱交換器形状をなし、入口部141a、14
2aから出口部141b、142bにかけて熱交換流体
が流れる。なお、密閉回路11は、吸着コア12を収容
する吸着コア収容部111と、蒸発コア141を収容す
る蒸発コア収容部112と、凝縮コア142を収容する
凝縮コア収容部113とを有している。そして、密閉回
路11は、吸着コア収容部111と蒸発コア収容部11
2との間、吸着コア収容部111と凝縮コア収容部11
3との間、および、蒸発コア収容部112と凝縮コア収
容部113との間を、冷媒蒸気通路114、115、お
よび、液冷媒通路116にて連通した形態である。
[0004] Further, the evaporation core 141 is provided in contact with the liquid refrigerant L, and the condensing core 142 is provided in a non-contact state with the liquid refrigerant L. These evaporating core 141 and condensing core 14
2 has a well-known heat exchanger shape, and has inlet portions 141a, 14a.
The heat exchange fluid flows from 2a to outlets 141b and 142b. In addition, the closed circuit 11 includes an adsorbing core accommodating section 111 that accommodates the adsorbing core 12, an evaporating core accommodating section 112 that accommodates the evaporating core 141, and a condensing core accommodating section 113 that accommodates the condensing core 142. . The closed circuit 11 includes the suction core housing 111 and the evaporation core housing 11.
2, the adsorption core accommodating section 111 and the condensing core accommodating section 11
3 and between the evaporating core accommodating portion 112 and the condensing core accommodating portion 113 through refrigerant vapor passages 114 and 115 and a liquid refrigerant passage 116.

【0005】また、吸着コア収容部111と冷媒蒸気通
路114、115との連結部である、吸着コア収容部1
11の冷媒出入口111a、111bには、これら冷媒
出入口111a、111bを開閉するドア手段111
c、111dが設けてある。また、液冷媒通路116に
は、凝縮コア収容部113内の液冷媒Lから蒸発コア収
容部112内の液冷媒Lへ液冷媒を送液するポンプ手段
117が設けてある。
The adsorbing core housing 1 is a connecting portion between the adsorbing core housing 111 and the refrigerant vapor passages 114 and 115.
11 are provided with door means 111 for opening and closing the refrigerant ports 111a, 111b.
c and 111d are provided. Further, the liquid refrigerant passage 116 is provided with a pump means 117 for feeding the liquid refrigerant from the liquid refrigerant L in the condensing core housing 113 to the liquid refrigerant L in the evaporating core housing 112.

【0006】そして、ドア手段111cにて冷媒出入口
111aを開口し、ドア手段111dにて冷媒出入口1
11bを閉塞して、吸着コア3の上記熱交換部に冷却流
体を循環させると、吸着剤Sが冷却されて冷媒蒸気を吸
着するとともに、蒸発コア141と接触する液冷媒Lが
蒸発する。これにより、蒸発コア141を循環する熱交
換流体が冷却され、この冷却された熱交換流体を室内熱
交換器に循環させることにより、室内冷房を行なってい
る。
[0006] The refrigerant port 111a is opened by the door means 111c, and the refrigerant port 1a is opened by the door means 111d.
When the cooling fluid is circulated through the heat exchange section of the adsorption core 3 by closing the 11b, the adsorbent S is cooled and adsorbs the refrigerant vapor, and the liquid refrigerant L in contact with the evaporation core 141 evaporates. As a result, the heat exchange fluid circulating in the evaporation core 141 is cooled, and the cooled heat exchange fluid is circulated through the indoor heat exchanger to perform indoor cooling.

【0007】ところで、冷媒蒸気が吸着されることによ
り吸着コア収容部111から蒸発コア収容部112にか
けての密閉回路11内が低圧(例えば10torr程
度)となり、液冷媒Lが沸騰するような状態となる。し
かも、液冷媒Lの蒸発は、液冷媒Lの表面だけでなく内
部においても活発に行なわれる。このため、液冷媒L内
部に生じた気泡が液冷媒Lの表面において弾けることに
より、例えば100〜200μ程度の粒径の微細な液滴
が飛び出す。このような液滴状の冷媒が吸着コア12の
吸着剤Sや熱交換部に付着すると、吸着剤Sの吸着能力
や熱交換部の熱交換能力が低下する恐れがある。
When the refrigerant vapor is adsorbed, the pressure in the closed circuit 11 from the adsorbing core accommodating section 111 to the evaporating core accommodating section 112 becomes low (for example, about 10 torr), and the liquid refrigerant L is brought into a state of boiling. . Moreover, the evaporation of the liquid refrigerant L is actively performed not only on the surface of the liquid refrigerant L but also inside the liquid refrigerant L. For this reason, bubbles generated inside the liquid refrigerant L pop on the surface of the liquid refrigerant L, so that fine droplets having a particle size of, for example, about 100 to 200 μ fly out. If such a droplet-shaped refrigerant adheres to the adsorbent S and the heat exchange unit of the adsorption core 12, there is a possibility that the adsorption capacity of the adsorbent S and the heat exchange capacity of the heat exchange unit are reduced.

【0008】これに対して上記公報に記載の従来技術で
は、密閉回路11の蒸発コア収容部112内を仕切るよ
うに、液滴通過阻止部材31を設けている。この液滴通
過阻止部材31は、金網(メッシュ)の表面に撥水処理
を施して構成され、この場合、例えば200メッシュの
金網に、4フッ化エチレン樹脂からなる撥水剤を塗布し
て構成されている。これにより、蒸発コア141と接触
する液冷媒Lから蒸発した冷媒蒸気は、液滴通過阻止部
材31の網の目を通って吸着コア12側へ流入すること
が可能となるが、液滴状の冷媒は、液滴通過阻止部材3
1により跳ね返されて通過が阻止される。
On the other hand, in the prior art described in the above-mentioned publication, the droplet passage preventing member 31 is provided so as to partition the inside of the evaporation core accommodating portion 112 of the closed circuit 11. The droplet passage preventing member 31 is formed by applying a water-repellent treatment to the surface of a wire mesh (mesh). In this case, for example, a water-repellent agent made of tetrafluoroethylene resin is applied to a wire mesh of 200 mesh. Have been. This allows the refrigerant vapor evaporated from the liquid refrigerant L in contact with the evaporating core 141 to flow toward the adsorption core 12 through the mesh of the droplet passage preventing member 31, but the droplet-shaped refrigerant The coolant is supplied to the droplet passage preventing member 3.
It is bounced off by 1 to prevent passage.

【0009】[0009]

【発明が解決しようとする課題】ところが、撥水処理は
時間が経過すると効果が劣る恐れがあり、蒸発コア14
1と吸着コア12との間の気液分離を長期にわたって良
好に行なえなくなる恐れがあった。本発明は上記点に鑑
みてなされたもので、蒸発コアと吸着コアとの間の気液
分離を長期にわたって良好に行なうことが可能な冷凍装
置を提供することを目的とする。
However, the effect of the water-repellent treatment may be inferior over time.
There is a possibility that gas-liquid separation between the core 1 and the adsorption core 12 cannot be performed well over a long period of time. The present invention has been made in view of the above, and an object of the present invention is to provide a refrigeration apparatus capable of performing gas-liquid separation between an evaporation core and an adsorption core satisfactorily over a long period of time.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、請求項1および2に記載の発明では、液冷媒(L)
と接触して配される主蒸発コア(14、141)にて蒸
発させた冷媒蒸気を、液冷媒(L)と非接触状態で配さ
れる吸着コア(12)にて吸着し、主蒸発コア(14、
141)にて冷却される熱交換流体を熱交換器(26)
に流すことにより、被冷却部を冷却する冷凍装置におい
て、主蒸発コア(14、141)と吸着コア(12)と
の間に、冷媒を蒸発させる補助蒸発コア(13、13
0)を、液冷媒(L)と非接触状態で設け、熱交換器
(26)において吸熱した熱交換流体を、先に補助蒸発
コア(13、130)に流し、その後、主蒸発コア(1
4、141)に流すことを特徴としている。
In order to achieve the above object, according to the first and second aspects of the present invention, a liquid refrigerant (L) is provided.
The refrigerant vapor evaporated in the main evaporation core (14, 141) arranged in contact with the liquid refrigerant (L) is adsorbed by the adsorption core (12) arranged in a non-contact state with the liquid refrigerant (L), and (14,
The heat exchange fluid cooled in 141) is transferred to a heat exchanger (26).
In the refrigerating apparatus that cools the part to be cooled, the auxiliary evaporation cores (13, 13) that evaporate the refrigerant are provided between the main evaporation cores (14, 141) and the adsorption cores (12).
0) is provided in a non-contact state with the liquid refrigerant (L), the heat exchange fluid absorbed in the heat exchanger (26) is first passed through the auxiliary evaporation cores (13, 130), and then the main evaporation core (1) is discharged.
4, 141).

【0011】従って、主蒸発コア(14、141)と接
触する液冷媒(L)から蒸発した冷媒蒸気は、補助蒸発
コア(13、130)を通過して吸着コア(12)側へ
流入することが可能となるが、液滴状の冷媒は、補助蒸
発コア(13、130)に付着し、この補助蒸発コア
(13、130)において蒸発される。よって、液滴状
の冷媒が吸着コア(12)側へ移動することを抑制で
き、吸着コア(12)の吸着能力を良好に維持できる。
Therefore, the refrigerant vapor evaporated from the liquid refrigerant (L) in contact with the main evaporation cores (14, 141) passes through the auxiliary evaporation cores (13, 130) and flows into the adsorption core (12). However, the droplet-shaped refrigerant adheres to the auxiliary evaporation core (13, 130) and is evaporated in the auxiliary evaporation core (13, 130). Therefore, it is possible to suppress the droplet-shaped refrigerant from moving to the adsorption core (12) side, and it is possible to maintain the adsorption capability of the adsorption core (12) in a good condition.

【0012】しかも、熱交換器(26)において吸熱し
た比較的高温な熱交換流体を、先に補助蒸発コア(1
3、130)に流すので、この補助蒸発コア(13、1
30)における冷媒の蒸発を良好に行なうことができ
る。また、液滴状の冷媒を蒸発させるときの蒸発潜熱に
より、熱交換器(26)に循環させる熱交換流体を冷却
できるので、冷熱のロスを低減できる。
Further, the relatively high-temperature heat exchange fluid that has absorbed heat in the heat exchanger (26) is first supplied to the auxiliary evaporation core (1).
3, 130), so that the auxiliary evaporation cores (13, 1)
The refrigerant can be satisfactorily evaporated in 30). Further, since the heat exchange fluid circulated through the heat exchanger (26) can be cooled by the latent heat of vaporization when the droplet-shaped refrigerant is evaporated, the loss of cold heat can be reduced.

【0013】そして、補助蒸発コア(13、130)
は、上記した撥水処理のような、時間の経過により効果
が劣るようなものではないため、主蒸発コア(14、1
41)と吸着コア(12)との間の気液分離を長期にわ
たって良好に行なうことができる。また、請求項2に記
載の発明では、主蒸発コア(141)と吸着コア(1
2)との間の冷媒蒸気通路(112)の全面を横断する
ように、補助蒸発コア(13、130)を設けているの
で、液滴状の冷媒が吸着コア(12)側へ移動すること
をより確実に抑制できる。
And an auxiliary evaporation core (13, 130).
Is not such that the effect is not inferior with the passage of time as in the water-repellent treatment described above.
Gas-liquid separation between 41) and the adsorption core (12) can be favorably performed over a long period of time. Further, in the invention described in claim 2, the main evaporation core (141) and the adsorption core (1)
Since the auxiliary evaporation cores (13, 130) are provided so as to traverse the entire surface of the refrigerant vapor passage (112) between 2), the droplet-shaped refrigerant moves to the adsorption core (12) side. Can be suppressed more reliably.

【0014】また、請求項3および4に記載の発明で
は、上記した吸着コア(12)の替わりに吸収コア
(5)にて冷媒蒸気を吸収する冷凍装置に、上記請求項
1および2に記載の補助蒸発コア(13、130)を適
用している。これによれば、液滴状の冷媒が吸収コア
(5)側へ移動することを抑制でき、吸収コア(5)の
吸収能力を良好に維持できる。
According to the third and fourth aspects of the present invention, there is provided a refrigeration apparatus that absorbs refrigerant vapor with an absorption core (5) instead of the adsorption core (12). Of the auxiliary evaporation cores (13, 130). According to this, it is possible to suppress the droplet-like refrigerant from moving to the absorption core (5) side, and it is possible to maintain the absorption capacity of the absorption core (5) satisfactorily.

【0015】また、補助蒸発コア(13、130)は、
上記した撥水処理のような、時間の経過により効果が劣
るようなものではないため、主蒸発コア(14、14
1)と吸収コア(5)との間の気液分離を長期にわたっ
て良好に行なうことができる。また、請求項4に記載の
発明では、主蒸発コア(141)と吸収コア(5)との
間の冷媒蒸気通路(112)の全面を横断するように、
補助蒸発コア(130)を設けているので、液滴状の冷
媒が吸収コア(5)側へ移動することをより確実に抑制
できる。
The auxiliary evaporation cores (13, 130) are
Since the effect is not inferior over time as in the above-described water-repellent treatment, the main evaporation cores (14, 14)
The gas-liquid separation between 1) and the absorbent core (5) can be favorably performed over a long period of time. According to the fourth aspect of the present invention, the refrigerant vapor passage (112) between the main evaporation core (141) and the absorption core (5) is traversed over the entire surface.
Since the auxiliary evaporation core (130) is provided, it is possible to more reliably prevent the droplet-shaped refrigerant from moving toward the absorption core (5).

【0016】[0016]

【発明の実施の形態】以下に、本発明の実施形態につい
て図に基づいて説明する。 (第1の実施形態)まず、本発明の第1の実施形態は、
図1に示すような吸着式冷凍装置1に本発明を適用した
ものである。この吸着式冷凍装置1は、1つの密閉空間
を形成する密閉容器(密閉回路)11の内部に、吸着コ
ア12、補助蒸発凝縮コア(補助蒸発コア)13、およ
び、主蒸発凝縮コア(主蒸発コア)14を、上方から順
に収容してなるユニット10を有している。なお、密閉
容器11は、吸着コア12を収容する吸着コア収容部1
11と、上記両蒸発凝縮コア13、14を収容する蒸発
凝縮コア収容部112と、これら収容部111、112
の間に位置する冷媒蒸気通路110とを有している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. (First Embodiment) First, a first embodiment of the present invention is as follows.
The present invention is applied to an adsorption refrigeration apparatus 1 as shown in FIG. The adsorption-type refrigeration apparatus 1 includes an adsorption core 12, an auxiliary evaporation / condensation core (auxiliary evaporation core) 13, and a main evaporation / condensation core (main evaporation) inside a closed vessel (sealed circuit) 11 forming one closed space. The core 10 has a unit 10 that is housed in order from above. In addition, the closed container 11 includes the suction core housing unit 1 that houses the suction core 12.
11, an evaporating and condensing core accommodating portion 112 for accommodating the evaporating and condensing cores 13 and 14, and accommodating portions 111 and 112.
And a refrigerant vapor passage 110 located therebetween.

【0017】密閉容器11の蒸発凝縮コア収容部112
の内部には、所定量の液冷媒Lが封入されている。そし
て、主蒸発凝縮コア14の全体あるいは一部が液冷媒L
と接触して設けられ、補助蒸発凝縮コア13および吸着
コア12の全体が液冷媒Lと非接触状態で(つまり、液
冷媒Lの表面よりも上方に)設けられている。そして、
冷媒として、例えば水、アルコール、フロン等が用いら
れている。
The evaporating and condensing core accommodating portion 112 of the closed vessel 11
Is filled with a predetermined amount of liquid refrigerant L. The entire or a part of the main evaporative condensing core 14 is a liquid refrigerant L.
The auxiliary evaporation condensing core 13 and the adsorption core 12 are entirely provided in a non-contact state with the liquid refrigerant L (that is, above the surface of the liquid refrigerant L). And
As the refrigerant, for example, water, alcohol, chlorofluorocarbon or the like is used.

【0018】吸着コア12は、周知の熱交換器形状を有
する熱交換器121に、多数の吸着剤Sを保持させたも
のである。熱交換器121は、一対のタンク121a、
121bの間に、複数の流体配管121cと、複数の蛇
行状伝熱フィン121dとを交互に並列配置してなる。
なお、一対のタンク121a、121bの一方121a
側に、熱交換流体が流入する入口部12aを有し、他方
121b側に、熱交換流体が流出する出口部12bを有
している。そして、入口部12aからの熱交換流体は、
タンク121a→複数の流体配管121c→タンク12
1bの順に流れて、出口部12bから流出される。ここ
で、熱交換流体としては、水にエチレングリコール等を
混入させたいわゆる不凍液を用いている。
The adsorbing core 12 has a large number of adsorbents S held in a heat exchanger 121 having a well-known heat exchanger shape. The heat exchanger 121 includes a pair of tanks 121a,
A plurality of fluid pipes 121c and a plurality of meandering heat transfer fins 121d are alternately arranged in parallel between 121b.
One of the pair of tanks 121a and 121b 121a
Side has an inlet 12a through which the heat exchange fluid flows in, and the other 121b side has an outlet 12b through which the heat exchange fluid flows out. And the heat exchange fluid from the inlet 12a
Tank 121a → a plurality of fluid pipes 121c → tank 12
1b, and flows out of the outlet 12b. Here, as the heat exchange fluid, a so-called antifreeze obtained by mixing ethylene glycol or the like in water is used.

【0019】吸着剤Sは、冷却されることにより冷媒蒸
気を吸着し、加熱されることにより吸着していた冷媒蒸
気を脱着するものであり、例えば、シリカゲル、ゼオラ
イト、活性炭、活性アルミナ等からなる。そして、上記
した熱交換器121のうち、タンク121a、121b
や、複数の流体配管121cや、複数の伝熱フィン12
1dの間に充填され、接着固定してある。なお、吸着コ
ア12は上下方向に平行に配置されている。これによ
り、冷媒蒸気通路110からの冷媒蒸気が、吸着コア1
2の両面から吸着剤Sに供給される。
The adsorbent S adsorbs the refrigerant vapor when cooled and desorbs the adsorbed refrigerant vapor when heated, and is made of, for example, silica gel, zeolite, activated carbon, activated alumina and the like. . And among the heat exchangers 121, the tanks 121a and 121b
And a plurality of fluid pipes 121c, a plurality of heat transfer fins 12
It is filled during 1d and is adhesively fixed. Note that the suction cores 12 are arranged in parallel in the vertical direction. As a result, the refrigerant vapor from the refrigerant vapor passage 110 is
2 to the adsorbent S from both sides.

【0020】補助蒸発凝縮コア13は、周知の熱交換器
形状を有しており、図2に示すように、一対のタンク1
31、132の間に、複数の流体配管133と、複数の
蛇行状伝熱フィン134を交互に並列配置してなる。そ
して、この補助蒸発凝縮コア13は、蒸発凝縮コア収容
部112のうち液冷媒Lの上方において、全面を横断す
るように(換言すれば、水平方向に平行に)設けられて
いる。なお、本実施形態では、主蒸発凝縮コア14と所
定距離(例えば10mm)を隔てた位置に、補助蒸発凝
縮コア13を配置している。
The auxiliary evaporation condensing core 13 has a well-known heat exchanger shape, and as shown in FIG.
A plurality of fluid pipes 133 and a plurality of meandering heat transfer fins 134 are alternately arranged in parallel between 31 and 132. The auxiliary evaporation / condensation core 13 is provided above the liquid refrigerant L in the evaporation / condensation core accommodating portion 112 so as to cross the entire surface (in other words, parallel to the horizontal direction). In the present embodiment, the auxiliary evaporative condensing core 13 is disposed at a position separated from the main evaporative condensing core 14 by a predetermined distance (for example, 10 mm).

【0021】ここで、蒸発凝縮コア収容部112のうち
液冷媒Lの上方は、液冷媒Lから蒸発した冷媒蒸気が通
る冷媒蒸気通路(請求項でいう冷媒蒸気通路)を構成し
ている。なお、蒸発凝縮コア収容部112の内壁と補助
蒸発凝縮コア13の外縁部(タンク131、132や、
端部に位置する流体配管133)との間の距離が微少
(例えば3mm)となるように構成されている。
Here, a portion above the liquid refrigerant L in the evaporative condensation core accommodating portion 112 constitutes a refrigerant vapor passage (refrigerant vapor passage) through which the refrigerant vapor evaporated from the liquid refrigerant L passes. Note that the inner wall of the evaporative condensing core housing 112 and the outer edge of the auxiliary evaporating condensing core 13 (tanks 131 and 132,
The distance to the fluid pipe 133) located at the end is configured to be very small (for example, 3 mm).

【0022】なお、一対のタンク131、132の一方
131は、仕切り板130にて2つのタンク131a、
131bに仕切られている。そして、2つのタンク13
1a、131bの一方131a側に、熱交換流体が流入
する入口部13aを有し、他方131b側に、熱交換流
体が流出する出口部13bを有している。そして、入口
部13aからの熱交換流体は、タンク131a→複数の
流体配管133のうちタンク131aに対応する配管→
タンク132→複数の流体配管133のうちタンク13
1bに対応する配管→タンク131bの順に流れて、出
口部13bから流出される。
One of the pair of tanks 131, 132 is connected to two tanks 131a,
131b. And two tanks 13
On one 131a side of 1a and 131b, there is an inlet 13a into which the heat exchange fluid flows, and on the other 131b side, there is an outlet 13b from which the heat exchange fluid flows out. Then, the heat exchange fluid from the inlet 13a is supplied to the tank 131a → the pipe corresponding to the tank 131a among the plurality of fluid pipes 133 →
Tank 132 → tank 13 of the plurality of fluid pipes 133
It flows in the order of the pipe corresponding to 1b → the tank 131b, and flows out of the outlet 13b.

【0023】主蒸発凝縮コア14は、具体的な構造の図
示は省略するが、補助蒸発凝縮コア13と同じ形状であ
る。そして、主蒸発凝縮コア14は、蒸発凝縮コア収容
部112のうち液冷媒Lと接触するように、かつ、水平
方向に平行に設けられている。なお、主蒸発凝縮コア1
4の方が補助蒸発凝縮コア13よりも熱交換面積が大き
くなるように(つまり、能力が大きくなるように)、主
蒸発凝縮コア14の方が補助蒸発凝縮コア13よりも厚
みが大きく構成されている。
Although the specific structure of the main evaporative condensing core 14 is not shown, it has the same shape as the auxiliary evaporative condensing core 13. The main evaporative condensing core 14 is provided in contact with the liquid refrigerant L in the evaporating condensing core accommodating portion 112 and in parallel with the horizontal direction. The main evaporative condensing core 1
The main evaporative condensing core 14 is configured to be thicker than the auxiliary evaporative condensing core 13 so that the heat exchanging area of the main evaporating condensing core 13 is larger than that of the auxiliary evaporating condensing core 13. ing.

【0024】そして、吸着コア12の熱交換器121の
入口部12aと三方切替弁21の出口ポート21cとが
流体配管にて接続され、吸着コア12の熱交換器121
の出口部12bと三方切替弁23の入口ポート23aと
が流体配管にて接続されている。また、三方切替弁21
の第1入口ポート21aと室外熱交換器(放熱コア)2
4の出口部24bとが流体配管にて接続され、三方切替
弁21の第2入口ポート21bとエンジン22の出口部
22bとが流体配管にて接続されている。また、三方切
替弁23の第1出口ポート23bと室外熱交換器24の
入口部24aとが流体配管にて接続され、三方切替弁2
3の第2出口ポート23cとエンジン22の入口部22
aとが流体配管にて接続されている。
The inlet 12a of the heat exchanger 121 of the adsorption core 12 and the outlet port 21c of the three-way switching valve 21 are connected by a fluid pipe.
The outlet 12b is connected to the inlet port 23a of the three-way switching valve 23 by a fluid pipe. Also, the three-way switching valve 21
First inlet port 21a and outdoor heat exchanger (radiation core) 2
The fourth outlet 24b is connected by a fluid pipe, and the second inlet port 21b of the three-way switching valve 21 and the outlet 22b of the engine 22 are connected by a fluid pipe. Further, the first outlet port 23b of the three-way switching valve 23 and the inlet 24a of the outdoor heat exchanger 24 are connected by a fluid pipe, and the three-way switching valve 2
3 and the inlet 22 of the engine 22
a is connected by a fluid pipe.

【0025】なお、三方切替弁21の出口ポート21c
と吸着コア12の入口部12aとの間に設けた電動ポン
プ25により、吸着コア12の熱交換器121→三方切
替弁23→エンジン22または室外熱交換器24→三方
切替弁21の順に熱交換流体が循環される。ここで、吸
着コア12の熱交換器121→三方切替弁23→エンジ
ン22→三方切替弁21からなる流体循環路を第1流体
循環路Aとし、吸着コア12の熱交換器121→三方切
替弁23→室外熱交換器24→三方切替弁21からなる
流体循環路を第2流体循環路Bとする。
The outlet port 21c of the three-way switching valve 21
Heat is exchanged in the order of the heat exchanger 121 of the adsorption core 12, the three-way switching valve 23, the engine 22 or the outdoor heat exchanger 24, and the three-way switching valve 21 by the electric pump 25 provided between the suction core 12 and the inlet 12a of the adsorption core 12. Fluid is circulated. Here, the fluid circulation path including the heat exchanger 121 of the adsorption core 12 → the three-way switching valve 23 → the engine 22 → the three-way switching valve 21 is defined as a first fluid circulation path A, and the heat exchanger 121 of the adsorption core 12 → the three-way switching valve. A fluid circulation path composed of 23 → the outdoor heat exchanger 24 → the three-way switching valve 21 is referred to as a second fluid circulation path B.

【0026】また、補助蒸発凝縮コア13の入口部13
aと三方切替弁27の出口ポート27cとが流体配管に
て接続され、補助蒸発凝縮コア13の出口部13bと蒸
発凝縮コア14の入口部14aとが流体配管にて接続さ
れ、蒸発凝縮コア14の出口部14bと三方切替弁28
の入口ポート28aとが流体配管にて接続されている。
また、三方切替弁27の第1入口ポート27aと室外熱
交換器29の出口部29bとが流体配管にて接続され、
三方切替弁27の第2入口ポート27bと室内熱交換器
26の出口部26bとが流体配管にて接続されている。
また、三方切替弁28の第1出口ポート28bと室内熱
交換器26の入口部26aとが流体配管にて接続され、
三方切替弁28の第2出口ポート28cと室外熱交換器
29の入口部29aとが流体配管にて接続されている。
The inlet 13 of the auxiliary evaporative condensation core 13
a and an outlet port 27c of the three-way switching valve 27 are connected by a fluid pipe, an outlet 13b of the auxiliary evaporative condensing core 13 and an inlet 14a of the evaporative condensing core 14 are connected by a fluid pipe, and the evaporative condensing core 14 is connected. Outlet 14b and three-way switching valve 28
And an inlet port 28a is connected by a fluid pipe.
Further, the first inlet port 27a of the three-way switching valve 27 and the outlet 29b of the outdoor heat exchanger 29 are connected by a fluid pipe,
The second inlet port 27b of the three-way switching valve 27 and the outlet 26b of the indoor heat exchanger 26 are connected by a fluid pipe.
Further, a first outlet port 28b of the three-way switching valve 28 and an inlet 26a of the indoor heat exchanger 26 are connected by a fluid pipe,
A second outlet port 28c of the three-way switching valve 28 and an inlet 29a of the outdoor heat exchanger 29 are connected by a fluid pipe.

【0027】なお、主蒸発凝縮コア14の出口部14b
と三方切替弁28の入口ポート28aとの間に設けた電
動ポンプ30により、室内熱交換器26または室外熱交
換器29→三方切替弁27→補助蒸発凝縮コア13→主
蒸発凝縮コア14→三方切替弁28の順に熱交換流体が
循環される。ここで、室内熱交換器26→三方切替弁2
7→補助蒸発凝縮コア13→主蒸発凝縮コア14→三方
切替弁28からなる流体循環路を第3流体循環路Cと
し、室外熱交換器29→三方切替弁27→補助蒸発凝縮
コア13→主蒸発凝縮コア14→三方切替弁28からな
る流体循環路を第4流体循環路Dとする。
The outlet 14b of the main evaporative condensing core 14
The indoor heat exchanger 26 or the outdoor heat exchanger 29 → the three-way switching valve 27 → the auxiliary evaporative condensation core 13 → the main evaporative condensation core 14 → the three-way The heat exchange fluid is circulated in the order of the switching valve 28. Here, the indoor heat exchanger 26 → the three-way switching valve 2
7 → Auxiliary evaporative condensing core 13 → Main evaporative condensing core 14 → The fluid circulation path including the three-way switching valve 28 is the third fluid circulation path C, and the outdoor heat exchanger 29 → Three-way switching valve 27 → Auxiliary evaporating / condensing core 13 → Main The fluid circulation path composed of the evaporative condensation core 14 and the three-way switching valve 28 is referred to as a fourth fluid circulation path D.

【0028】次に、上記構成による作動を説明する。ま
ず、本実施形態の吸着式冷凍装置1を作動させるとき
は、電動ポンプ25、30を駆動させる。そして、吸着
コア12の吸着剤Sに冷媒蒸気を吸着させる吸着モード
を実行するときは、三方切替弁21、23、27、28
を図1中実線位置とする。これにより、第2流体循環路
Bおよび第3流体循環路Cに熱交換流体が循環して、吸
着剤Sが冷媒蒸気を吸着するとともに、液冷媒Lが蒸発
する。なお、この液冷媒が蒸発して形成される冷媒蒸気
は、補助蒸発凝縮コア13の複数の流体配管133や伝
熱フィン134の間を通過して、吸着コア12の吸着剤
Sへ吸着される。
Next, the operation of the above configuration will be described. First, when operating the adsorption refrigeration apparatus 1 of the present embodiment, the electric pumps 25 and 30 are driven. Then, when executing the adsorption mode in which the refrigerant vapor is adsorbed by the adsorbent S of the adsorption core 12, the three-way switching valves 21, 23, 27, 28
Is a solid line position in FIG. Thereby, the heat exchange fluid circulates through the second fluid circulation path B and the third fluid circulation path C, and the adsorbent S adsorbs the refrigerant vapor and the liquid refrigerant L evaporates. The refrigerant vapor formed by evaporating the liquid refrigerant passes between the plurality of fluid pipes 133 and the heat transfer fins 134 of the auxiliary evaporation condensing core 13 and is adsorbed on the adsorbent S of the adsorption core 12. .

【0029】そして、液冷媒が蒸発するときに発生する
蒸発潜熱により、主蒸発凝縮コア14を循環する熱交換
流体が冷却され、この冷却された熱交換流体を、第3流
体循環路Cを経て室内熱交換器26に循環させることに
より室内(被冷却部)を冷房(冷却)する。また、吸着
熱により吸着コア12の熱交換器121を循環する熱交
換流体が加熱され、この加熱された熱交換流体を、第2
流体循環路Bを経て室内熱交換器24に循環させること
により室外へ放熱(冷却)する。
Then, the heat exchange fluid circulating in the main evaporative condensing core 14 is cooled by the latent heat of vaporization generated when the liquid refrigerant evaporates, and the cooled heat exchange fluid is passed through the third fluid circulation path C. By circulating through the indoor heat exchanger 26, the room (the part to be cooled) is cooled (cooled). Further, the heat exchange fluid circulating through the heat exchanger 121 of the adsorption core 12 is heated by the heat of adsorption, and the heated heat exchange fluid is supplied to the second heat exchange fluid.
Heat is radiated (cooled) to the outside by circulating through the fluid circulation path B to the indoor heat exchanger 24.

【0030】ここで、冷媒蒸気が吸着されることにより
密閉容器11内は低圧(例えば10torr程度)とな
るため液冷媒Lが沸騰するような状態となり、しかも、
液冷媒の蒸発は、液冷媒Lの表面だけでなく内部におい
ても活発に行なわれる。このため、液冷媒L内部に生じ
た気泡が液冷媒Lの表面において弾けることにより、例
えば100〜200μ程度の粒径の微細な液滴が飛び出
す。
Here, the inside of the closed vessel 11 is set to a low pressure (for example, about 10 torr) due to the adsorption of the refrigerant vapor, so that the liquid refrigerant L is brought into a state of boiling.
Evaporation of the liquid refrigerant is actively performed not only on the surface of the liquid refrigerant L but also inside. For this reason, bubbles generated inside the liquid refrigerant L pop on the surface of the liquid refrigerant L, so that fine droplets having a particle size of, for example, about 100 to 200 μ fly out.

【0031】これに対して本実施形態では、液冷媒Lの
表面よりも上方に設けた補助蒸発凝縮コア13(具体的
には、複数の流体配管133や伝熱フィン134の壁
面)に液滴状の冷媒が付着し、この補助蒸発凝縮コア1
3において蒸発するので、補助蒸発凝縮コア13よりも
上方に設けた吸着コア12側に液滴状の冷媒が移動する
ことを抑制でき、吸着剤Sや熱交換器121に液滴状の
冷媒が付着することを抑制できる。よって、吸着剤Sの
吸着、脱着能力や、熱交換器121の熱交換能力を良好
に維持できるため、吸着コア12の吸着能力を良好に維
持できる。
On the other hand, in the present embodiment, droplets are deposited on the auxiliary evaporation / condensation core 13 (specifically, the wall surfaces of the plurality of fluid pipes 133 and the heat transfer fins 134) provided above the surface of the liquid refrigerant L. Refrigerant is attached to the auxiliary evaporative condensing core 1
3, the droplet-shaped refrigerant can be prevented from moving to the side of the adsorption core 12 provided above the auxiliary evaporation condensation core 13, and the droplet-shaped refrigerant is transferred to the adsorbent S and the heat exchanger 121. Adhesion can be suppressed. Therefore, the ability to adsorb and desorb the adsorbent S and the ability to exchange heat of the heat exchanger 121 can be favorably maintained, so that the ability to adsorb the adsorption core 12 can be favorably maintained.

【0032】しかも、室内熱交換器26において吸熱し
た比較的高温な(例えば20℃の)熱交換流体を、先に
補助蒸発凝縮コア13に流すので、この補助蒸発凝縮コ
ア13における冷媒の蒸発を良好に行なうことができ
る。また、液滴状の冷媒を蒸発させるときの蒸発潜熱に
より、室内熱交換器26を含む第3流体循環路Cに循環
させる熱交換流体を冷却できるので、冷熱のロスを低減
できる。
Moreover, since the relatively high-temperature (eg, 20 ° C.) heat exchange fluid that has absorbed heat in the indoor heat exchanger 26 flows first to the auxiliary evaporation and condensation core 13, the refrigerant in the auxiliary evaporation and condensation core 13 is evaporated. It can be performed well. Further, since the heat exchange fluid circulated through the third fluid circulation path C including the indoor heat exchanger 26 can be cooled by the latent heat of vaporization when the droplet-shaped refrigerant is evaporated, the loss of cold heat can be reduced.

【0033】そして、このような吸着モードを所定時間
行なうと、吸着剤Sの吸着能力が低下するため、吸着剤
Sから冷媒蒸気を脱着させる脱着モードを実行する。こ
のときは、三方切替弁21、23、27、28を図1中
一点鎖線位置とする。これにより、第1流体循環路Aお
よび第4流体循環路Dに熱交換流体が循環して、吸着コ
ア12の熱交換器121に、エンジン22のエンジン冷
却水(熱交換流体)が循環されるので、吸着剤Sが加熱
されて、吸着剤Sが吸着していた冷媒を脱着する。
If such an adsorption mode is performed for a predetermined time, the adsorption capacity of the adsorbent S is reduced, so that a desorption mode for desorbing refrigerant vapor from the adsorbent S is executed. At this time, the three-way switching valves 21, 23, 27, and 28 are set to the position indicated by the one-dot chain line in FIG. Thereby, the heat exchange fluid circulates through the first fluid circulation path A and the fourth fluid circulation path D, and the engine coolant (heat exchange fluid) of the engine 22 circulates through the heat exchanger 121 of the adsorption core 12. Therefore, the adsorbent S is heated, and the refrigerant on which the adsorbent S is adsorbed is desorbed.

【0034】この脱着された冷媒蒸気は、補助蒸発凝縮
コア13および主蒸発凝縮コア14近傍において凝縮さ
れる。このときの凝縮熱により、補助蒸発凝縮コア13
および主蒸発凝縮コア14を流れる熱交換流体が加熱さ
れ、この加熱された熱交換流体を、第4流体循環路Dを
経て室内熱交換器29に循環させることにより室外へ放
熱(冷却)される。
The desorbed refrigerant vapor is condensed in the vicinity of the auxiliary evaporative condensing core 13 and the main evaporative condensing core 14. Due to the heat of condensation at this time, the auxiliary evaporation condensing core 13
The heat exchange fluid flowing through the main evaporative condensing core 14 is heated, and the heated heat exchange fluid is circulated to the indoor heat exchanger 29 via the fourth fluid circulation path D to be radiated (cooled) to the outside of the room. .

【0035】そして、このような脱着モードを所定時間
行なうと、吸着剤Sの吸着能力が再生されるため、再び
上記吸着モードを実行させる。以降、吸着モードと脱着
モードとを、所定時間毎に交互に実行させることによ
り、室内の冷房を連続的に行なう。 (第2の実施形態)本実施形態では、補助蒸発凝縮コア
13として、図3に示すようなものを採用している。す
なわち、補助蒸発凝縮コア13は、入口部13aから出
口部13bにかけて、細長な流体配管を蛇行状に曲げ加
工してなる蛇行チューブ135を備えている。ここで、
蛇行チューブ135は、複数の直線的な流体配管部13
5aを、所定距離を隔てて並列的に配置したような構造
をなしており、これら流体配管135aの間のそれぞれ
に、蛇行状の伝熱フィン134を配している。このよう
な補助蒸発凝縮コア13を採用しても、上記第1の実施
形態と同様の効果が得られる。
When the desorption mode is performed for a predetermined time, the adsorption capacity of the adsorbent S is regenerated, so that the adsorption mode is executed again. Thereafter, the indoor mode is continuously cooled by alternately executing the adsorption mode and the desorption mode at predetermined time intervals. (Second Embodiment) In this embodiment, the auxiliary evaporation condensing core 13 as shown in FIG. 3 is employed. That is, the auxiliary evaporation condensing core 13 includes a meandering tube 135 formed by bending an elongated fluid pipe in a meandering shape from the inlet 13a to the outlet 13b. here,
The serpentine tube 135 includes a plurality of linear fluid pipes 13.
5a are arranged in parallel at a predetermined distance from each other, and meandering heat transfer fins 134 are arranged between the fluid pipes 135a. Even if such an auxiliary evaporation condensing core 13 is employed, the same effect as in the first embodiment can be obtained.

【0036】(第3の実施形態)本実施形態では、図4
に示すように、補助蒸発凝縮コア13の上方および下方
に、従来技術と同様の液滴通過阻止部材31を設けてい
る。この液滴通過阻止部材311は、金網(メッシュ)
の表面に撥水処理を施して構成され、この場合、例えば
200メッシュの金網に、4フッ化エチレン樹脂からな
る撥水剤を塗布して構成されている。
(Third Embodiment) In the present embodiment, FIG.
As shown in (1), above the auxiliary evaporation / condensation core 13, a droplet passage preventing member 31 similar to the prior art is provided. The droplet passage preventing member 311 is made of a wire mesh (mesh).
In this case, for example, a 200-mesh wire net is coated with a water-repellent agent made of tetrafluoroethylene resin.

【0037】これにより、蒸発凝縮14近傍にて蒸発し
た冷媒蒸気は、液滴通過阻止部材31の網の目を通って
吸着コア12に流入するが、上記微細な液滴は、液滴通
過阻止部材31により跳ね返されて通過が阻止される。
このため、上記第1、第2の実施形態よりも確実に、液
滴が吸着コア12側へ移動することを抑制でき、吸着剤
Sに液滴が付着することを抑制できる。
As a result, the refrigerant vapor evaporated near the evaporative condensate 14 flows into the adsorption core 12 through the mesh of the droplet passage preventing member 31, but the fine droplets are prevented from passing through the droplet. It is bounced back by the member 31 and passage is prevented.
For this reason, it is possible to more reliably suppress the droplet from moving to the adsorption core 12 side than in the first and second embodiments, and it is possible to suppress the droplet from adhering to the adsorbent S.

【0038】なお、液滴通過阻止部材31の網の目の大
きさは、細かいほど液滴通過阻止の効果は高いが、その
反面通気抵抗ともなる事情があり、30メッシュから2
00メッシュの間が好適する。また、撥水処理として
も、例えば撥水剤の塗布や含浸、撥水性シートの貼付け
等を用いることができ、このときの撥水剤としては、4
フッ化エチレン樹脂以外にも、4フッ化エチレンと6フ
ッ化プロピレンとの共重合樹脂、シリコン樹脂、パラフ
ィンやワセリン等の鉱油、これら鉱油にステアリン酸、
ラウリン酸等の脂肪酸を加えた溶液等を用いることがで
きる。
The smaller the mesh size of the droplet passage preventing member 31 is, the higher the effect of preventing the passage of the droplet is. However, on the other hand, the mesh also has a resistance to air flow.
Between 00 mesh is preferred. Also, as the water repellent treatment, for example, application or impregnation of a water repellent, application of a water repellent sheet, or the like can be used.
In addition to fluorinated ethylene resins, copolymer resins of tetrafluoroethylene and propylene hexafluoride, silicone resins, mineral oils such as paraffin and petrolatum, stearic acid,
A solution to which a fatty acid such as lauric acid is added can be used.

【0039】(第4の実施形態)図5に示す本実施形態
は、上記した従来技術(図7参照)と同様の吸着式冷凍
装置1に本発明を適用したものである。このため、上記
した従来技術において、変更部分についての説明を補足
する。すなわち、上記第1、第2の実施形態における補
助蒸発凝縮コア13と同様の構造をした補助蒸発コア1
30を、蒸発凝縮コア収容部112のうち液冷媒Lの上
方(請求項でいう冷媒蒸気通路)において、全面を横断
するように(換言すれば、水平方向に平行に)設けてい
る。そして、補助蒸発コア130の出口部130bと、
蒸発コア141(以下、主蒸発コアという)の入口部1
41aとを流体配管にて接続しており、補助蒸発コア1
30の入口部130aと図示しない室内熱交換器の出口
部、蒸発コア141の出口部141bと図示しない室内
熱交換器の入口部とを、流体配管にて接続している。ま
た、凝縮コア142の入口部142aと図示しない室外
熱交換器の出口部、凝縮コア141の出口部142bと
図示しない室外熱交換器の入口部とを、流体配管にて接
続している。
(Fourth Embodiment) In the present embodiment shown in FIG. 5, the present invention is applied to the adsorption refrigeration system 1 similar to the above-described prior art (see FIG. 7). Therefore, in the above-described related art, a description of a changed portion will be supplemented. That is, the auxiliary evaporation core 1 having the same structure as the auxiliary evaporation and condensation core 13 in the first and second embodiments.
30 is provided above the liquid refrigerant L (the refrigerant vapor passage in the claims) in the evaporative condensation core accommodating portion 112 so as to cross the entire surface (in other words, parallel to the horizontal direction). And an outlet 130b of the auxiliary evaporation core 130;
Inlet 1 of evaporation core 141 (hereinafter referred to as main evaporation core)
41a is connected to the auxiliary evaporation core 1 by a fluid pipe.
The inlet portion 130a of 30 and the outlet portion of the indoor heat exchanger (not shown), the outlet portion 141b of the evaporation core 141 and the inlet portion of the indoor heat exchanger (not shown) are connected by fluid piping. In addition, an inlet 142a of the condensing core 142 and an outlet of an unillustrated outdoor heat exchanger, and an outlet 142b of the condensing core 141 and an inlet of an unillustrated outdoor heat exchanger are connected by a fluid pipe.

【0040】そして、ドア手段111cにて冷媒出入口
111aを開口し、ドア手段111dにて冷媒出入口1
11bを閉塞して、吸着コア3の熱交換器に冷却流体を
循環させると、吸着剤Sが冷却されて冷媒蒸気を吸着す
るとともに、蒸発コア141と接触する液冷媒Lが蒸発
する。これにより、蒸発コア141を循環する熱交換流
体が冷却され、この冷却された熱交換流体を室内熱交換
器に循環させることにより、室内冷房を行なっている。
The refrigerant port 111a is opened by the door means 111c, and the refrigerant port 1 is opened by the door means 111d.
When the cooling fluid is circulated through the heat exchanger of the adsorption core 3 by closing the 11b, the adsorbent S is cooled to adsorb the refrigerant vapor, and the liquid refrigerant L in contact with the evaporation core 141 evaporates. As a result, the heat exchange fluid circulating in the evaporation core 141 is cooled, and the cooled heat exchange fluid is circulated through the indoor heat exchanger to perform indoor cooling.

【0041】このとき、液冷媒Lの表面よりも上方に設
けた補助蒸発コア130に、上記液滴状の冷媒が付着
し、この補助蒸発コア130において蒸発するので、補
助蒸発コア130よりも上方に設けた吸着コア12側へ
液滴状の冷媒が移動することを抑制でき、吸着剤Sや熱
交換器に液滴状の冷媒が付着することを抑制できる。よ
って、吸着剤Sの吸着、脱着能力や、熱交換器の熱交換
能力を良好に維持できるため、吸着コア12の吸着能力
を良好に維持できる。
At this time, the droplet-shaped refrigerant adheres to the auxiliary evaporation core 130 provided above the surface of the liquid refrigerant L and evaporates in the auxiliary evaporation core 130. It is possible to suppress the movement of the droplet-shaped refrigerant to the side of the adsorption core 12 provided in the above, and it is possible to suppress the droplet-shaped refrigerant from adhering to the adsorbent S and the heat exchanger. Therefore, the ability to adsorb and desorb the adsorbent S and the ability to exchange heat of the heat exchanger can be favorably maintained, so that the ability to adsorb the adsorption core 12 can be favorably maintained.

【0042】しかも、室内熱交換器26において吸熱し
た比較的高温な熱交換流体を、先に補助蒸発コア130
に流すので、この補助蒸発コア130における冷媒の蒸
発を良好に行なうことができる。そして、ドア手段11
1cにて冷媒出入口111aを閉塞し、ドア手段111
dにて冷媒出入口111bを開口して、吸着コア3の熱
交換器に加熱流体を循環させると、吸着剤Sが加熱され
て冷媒蒸気を脱着するとともに、凝縮コア142におい
て冷媒蒸気を凝縮させる。これにより、吸着剤Sが再生
される。
Further, the relatively high-temperature heat exchange fluid that has absorbed heat in the indoor heat exchanger 26 is
, The refrigerant in the auxiliary evaporation core 130 can be favorably evaporated. And the door means 11
1c, the refrigerant port 111a is closed, and the door means 111 is closed.
When the refrigerant inlet / outlet 111b is opened at d and the heating fluid is circulated through the heat exchanger of the adsorption core 3, the adsorbent S is heated to desorb the refrigerant vapor and condense the refrigerant vapor in the condensing core 142. Thereby, the adsorbent S is regenerated.

【0043】(第5の実施形態)本実施形態は、図6に
示すような吸収式冷凍装置1に本発明を適用したもので
ある。すなわち、密閉回路11内には、吸収コア5、再
生コア6、主蒸発コア141、補助蒸発コア130、お
よび、凝縮コア142が収容されている。吸収コア5お
よび再生コア6は、吸収液Mと、この吸収液Mと接触し
て設けられる周知の熱交換器形状をなす熱交換器51、
61とを有している。吸収液Mは、冷却されることによ
り冷媒蒸気を吸収し、加熱されることにより吸収してい
た冷媒蒸気を分離するものであり、例えば、LiBr水
溶液からなる。
(Fifth Embodiment) In this embodiment, the present invention is applied to an absorption refrigeration apparatus 1 as shown in FIG. That is, in the closed circuit 11, the absorption core 5, the regeneration core 6, the main evaporation core 141, the auxiliary evaporation core 130, and the condensing core 142 are accommodated. The absorption core 5 and the regeneration core 6 are provided with an absorption liquid M and a heat exchanger 51 having a well-known heat exchanger shape provided in contact with the absorption liquid M,
61. The absorbing liquid M absorbs the refrigerant vapor when cooled, and separates the absorbed refrigerant vapor when heated, and is made of, for example, an aqueous LiBr solution.

【0044】そして、吸収コア5の熱交換器51の入口
部5aから出口部5bにかけて熱交換流体(冷却流体)
が流れ、さらに、熱交換器51の出口部5bからの熱交
換流体が、凝縮コア142の入口部142aから出口部
142bにかけて流れる。また、再生コア6の熱交換器
61の入口部6aから出口部6bにかけて熱交換流体
(加熱流体)が流れる。本実施形態では、上記冷却流体
として、図示しない室外熱交換器にて放熱した熱交換流
体を用い、上記加熱流体として、図示しないエンジンの
エンジン冷却水を用いている。
The heat exchange fluid (cooling fluid) flows from the inlet 5a to the outlet 5b of the heat exchanger 51 of the absorption core 5.
Then, the heat exchange fluid from the outlet 5b of the heat exchanger 51 flows from the inlet 142a to the outlet 142b of the condensing core 142. A heat exchange fluid (heating fluid) flows from the inlet 6a to the outlet 6b of the heat exchanger 61 of the regenerating core 6. In the present embodiment, a heat exchange fluid radiated by an outdoor heat exchanger (not shown) is used as the cooling fluid, and engine cooling water of an engine (not shown) is used as the heating fluid.

【0045】なお、密閉回路11には、上記した蒸発コ
ア収容部112および凝縮コア収容部113の他に、吸
収コア5を収容する吸収コア収容部118と、再生コア
6を収容する再生コア収容部119とを有している。そ
して、密閉容器11は、吸収コア収容部118内の吸収
液Mと再生コア収容部119内の吸収液Mとの間を、吸
収液供給通路120、吸収液排出通路121にて連通し
た形態であり、さらに、吸収コア収容部118と蒸発コ
ア収容部112との間、および、再生コア収容部119
と凝縮コア収容部113との間を、冷媒蒸気通路12
2、123にて連通した形態である。
The closed circuit 11 includes, in addition to the evaporating core housing 112 and the condensing core housing 113 described above, an absorbing core housing 118 for housing the absorbing core 5 and a recycled core housing for housing the reproducing core 6. A part 119 is provided. The closed container 11 is configured so that the absorbing liquid M in the absorbing core housing section 118 and the absorbing liquid M in the regenerating core housing section 119 communicate with each other through an absorbing liquid supply passage 120 and an absorbing liquid discharge passage 121. Yes, further, between the absorbing core housing section 118 and the evaporating core housing section 112, and the regenerating core housing section 119.
Between the refrigerant vapor passage 12 and
This is a form in which communication is made at 2, 123.

【0046】そして、吸収液供給通路120と吸収液排
出通路121とは、途中の熱交換部124において熱交
換がなされるようになっている。また、再生コア6の熱
交換器61と接触する吸収液Mから分離された冷媒蒸気
は、冷媒蒸気通路123を通って凝縮コア142側へ供
給され、蒸発コア141において蒸発された冷媒蒸気
は、冷媒蒸気通路123を通って吸収コア5の吸収液M
に吸収されるようになっている。
Then, heat is exchanged between the absorption liquid supply passage 120 and the absorption liquid discharge passage 121 in the heat exchange section 124 on the way. The refrigerant vapor separated from the absorbing liquid M that comes into contact with the heat exchanger 61 of the regeneration core 6 is supplied to the condensing core 142 through the refrigerant vapor passage 123, and the refrigerant vapor evaporated in the evaporation core 141 is Through the refrigerant vapor passage 123, the absorption liquid M of the absorption core 5
Is to be absorbed.

【0047】なお、吸収コア5の熱交換器51と接触す
る吸収液Mが、この熱交換器51を流れる冷却流体によ
って冷却されることにより、冷媒蒸気を吸収し、再生コ
ア6の熱交換器61と接触する吸収液Mが、この熱交換
器61を流れる加熱流体によって加熱されることによ
り、冷媒蒸気を分離する。また、吸収コア5の熱交換器
51から流出された冷却流体は、さらに凝縮コア142
を流れて凝縮熱を吸熱する。
The absorption liquid M coming into contact with the heat exchanger 51 of the absorption core 5 is cooled by the cooling fluid flowing through the heat exchanger 51 to absorb the refrigerant vapor, and the heat exchanger 51 of the regeneration core 6 The absorbing liquid M in contact with 61 is heated by the heating fluid flowing through the heat exchanger 61 to separate the refrigerant vapor. Further, the cooling fluid flowing out of the heat exchanger 51 of the absorption core 5 further condenses the condensing core 142
To absorb heat of condensation.

【0048】そして、本実施形態においても、液冷媒L
の表面よりも上方に設けた補助蒸発コア130に、上記
液滴状の冷媒が付着し、この補助蒸発コア130におい
て蒸発するので、冷媒通路122を経て吸収コア5側へ
液滴状の冷媒が移動することを抑制できる。よって、吸
収コア5と接触する吸収液Mに液滴状の冷媒が吸収され
ることを抑制できる。なお、吸収液Mに液滴が吸収され
ると、蒸発潜熱が発生しないため、吸収能力が活用され
ない、といった問題がある。
In this embodiment, the liquid refrigerant L
The droplet-shaped refrigerant adheres to the auxiliary evaporation core 130 provided above the surface of the core and evaporates in the auxiliary evaporation core 130, so that the droplet-shaped refrigerant flows to the absorption core 5 side through the refrigerant passage 122. Movement can be suppressed. Therefore, it is possible to prevent the droplet-shaped refrigerant from being absorbed by the absorbing liquid M that comes into contact with the absorbing core 5. When the liquid droplets are absorbed by the absorbing liquid M, there is a problem that the latent heat of vaporization is not generated, so that the absorbing ability is not utilized.

【0049】また、本実施形態では、冷媒蒸気通路12
2の全面を横断するように、液滴通過阻止部材31を配
している。これにより、吸収コア5の吸収液Mに液滴状
の冷媒が吸収されることをより効果的に抑制できる。 (他の実施形態)まず、上記第1、第2の実施形態にお
いて、補助蒸発凝縮コア13と主蒸発凝縮コア14とを
一体に設けてもよいし、上記第3ないし第5の実施形態
において、補助蒸発コア130と主蒸発コア141とを
一体に設けてもよい。ただし、一体の蒸発凝縮コア(蒸
発コア)のうち、液冷媒Lに接触していない部位に、室
内熱交換器26にて吸熱した比較的高温な熱交換流体を
先に流すようにする。これにより、上記液冷媒Lに接触
していない部位に液滴状の冷媒が付着して蒸発するの
で、上記実施形態と同様の効果が得られる。
In this embodiment, the refrigerant vapor passage 12
The liquid drop passage preventing member 31 is arranged so as to cross the entire surface of the liquid crystal 2. Thereby, it is possible to more effectively suppress the droplet-like refrigerant from being absorbed by the absorbing liquid M of the absorbing core 5. (Other Embodiments) First, in the first and second embodiments, the auxiliary evaporative condensing core 13 and the main evaporative condensing core 14 may be provided integrally, or in the third to fifth embodiments. The auxiliary evaporation core 130 and the main evaporation core 141 may be provided integrally. However, a relatively high-temperature heat exchange fluid that has absorbed heat in the indoor heat exchanger 26 flows first to a portion of the integral evaporative condensation core (evaporation core) that is not in contact with the liquid refrigerant L. Thereby, the droplet-shaped refrigerant adheres to the portion not in contact with the liquid refrigerant L and evaporates, so that the same effect as in the above embodiment can be obtained.

【0050】また、上記第1の実施形態において、上記
したユニット10を2つ設けてもよい。これによれば、
一方のユニットにおいて、吸着コアが冷媒を吸着し、補
助蒸発凝縮コアおよび主蒸発凝縮コアが冷媒を蒸発させ
るとともに、他方のユニットにおいて、吸着コアが冷媒
を脱着し、補助蒸発凝縮コアおよび主蒸発凝縮コアが冷
媒を凝縮させる行程を、交互に行なわせることにより、
連続的に室内冷房を行なうことができる。
In the first embodiment, two units 10 may be provided. According to this,
In one unit, the adsorption core adsorbs the refrigerant, the auxiliary evaporative condensing core and the main evaporative condensing core evaporate the refrigerant, and in the other unit, the adsorbing core desorbs the refrigerant, and the auxiliary evaporative condensing core and the main evaporative condensing core. By alternately performing the process in which the core condenses the refrigerant,
Indoor cooling can be performed continuously.

【0051】また、上記第5の実施形態において、吸収
液としては、NH3 、LiCl、グリコール系溶液等を
用いることができる。その他、本発明は上記した各実施
形態に限定されるものではなく、例えば蒸発コアを収容
する蒸発コア収容部112において直接的に外部(外
気)と熱交換するような構成であっても良い等、要旨を
逸脱しない範囲内で適宜変更して実施し得るものであ
る。
In the fifth embodiment, NH 3, LiCl, a glycol-based solution or the like can be used as the absorbing solution. In addition, the present invention is not limited to each of the above-described embodiments. For example, a configuration may be employed in which the heat exchange with the outside (outside air) is directly performed in the evaporating core accommodating portion 112 accommodating the evaporating core. However, the present invention can be implemented with appropriate changes without departing from the scope of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係わる吸着式冷凍装
置の概略構成図である。
FIG. 1 is a schematic configuration diagram of an adsorption-type refrigeration apparatus according to a first embodiment of the present invention.

【図2】本発明の第1の実施形態に係わる補助蒸発凝縮
コアの上面取付図である。
FIG. 2 is a top view of the auxiliary evaporative condensing core according to the first embodiment of the present invention.

【図3】本発明の第2の実施形態に係わる補助蒸発凝縮
コアの上面取付図である。
FIG. 3 is a top view of an auxiliary evaporative condensation core according to a second embodiment of the present invention.

【図4】本発明の第3の実施形態に係わる吸着式冷凍装
置の概略構成図である。
FIG. 4 is a schematic configuration diagram of an adsorption refrigeration apparatus according to a third embodiment of the present invention.

【図5】本発明の第4の実施形態に係わる吸着式冷凍装
置の概略構成図である。
FIG. 5 is a schematic configuration diagram of an adsorption refrigeration apparatus according to a fourth embodiment of the present invention.

【図6】本発明の第5の実施形態に係わる吸収式冷凍装
置の概略構成図である。
FIG. 6 is a schematic configuration diagram of an absorption refrigeration apparatus according to a fifth embodiment of the present invention.

【図7】従来技術に係わる吸着式冷凍装置の概略構成図
である。
FIG. 7 is a schematic configuration diagram of an adsorption refrigeration apparatus according to a conventional technique.

【符号の説明】[Explanation of symbols]

12…吸着コア、S…吸着剤、13…補助蒸発凝縮コア
(補助蒸発コア)、14…主蒸発凝縮コア(主蒸発コ
ア)、L…液冷媒、26…室内熱交換器。
12: adsorption core, S: adsorbent, 13: auxiliary evaporative condensing core (auxiliary evaporating core), 14: main evaporative condensing core (main evaporating core), L: liquid refrigerant, 26: indoor heat exchanger.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 液冷媒(L)と接触して配される主蒸発
コア(14、141)にて蒸発させた冷媒蒸気を、前記
液冷媒(L)と非接触状態で配される吸着コア(12)
にて吸着し、前記主蒸発コア(14、141)にて冷却
される熱交換流体を熱交換器(26)に流すことによ
り、被冷却部を冷却する冷凍装置において、 前記主蒸発コア(14、141)と前記吸着コア(1
2)との間に、冷媒を蒸発させる補助蒸発コア(13、
130)を、前記液冷媒(L)と非接触状態で設け、 前記熱交換器(26)において吸熱した熱交換流体を、
先に前記補助蒸発コア(13、130)に流し、その
後、前記主蒸発コア(14、141)に流すことを特徴
とする冷凍装置。
1. An adsorption core disposed in a non-contact state with the liquid refrigerant (L), wherein refrigerant vapor evaporated in a main evaporation core (14, 141) disposed in contact with the liquid refrigerant (L) is disposed. (12)
In a refrigerating apparatus that cools a portion to be cooled by flowing a heat exchange fluid that is adsorbed at a temperature and cooled by the main evaporation core (14, 141) to a heat exchanger (26), , 141) and the adsorption core (1).
2), an auxiliary evaporation core (13,
130) is provided in a non-contact state with the liquid refrigerant (L), and the heat exchange fluid that has absorbed heat in the heat exchanger (26) is
A refrigeration system characterized by flowing first to the auxiliary evaporation cores (13, 130) and then to the main evaporation cores (14, 141).
【請求項2】 前記主蒸発コア(141)と前記吸着コ
ア(12)との間の冷媒蒸気通路(112)の全面を横
断するように、前記補助蒸発コア(13、130)を設
けることを特徴とする請求項1に記載の冷凍装置。
2. The method according to claim 1, wherein the auxiliary evaporation cores (13, 130) are provided to traverse the entire surface of the refrigerant vapor passage (112) between the main evaporation core (141) and the adsorption core (12). The refrigeration apparatus according to claim 1, wherein
【請求項3】 液冷媒(L)と接触して配される主蒸発
コア(141)にて蒸発させた冷媒蒸気を、前記液冷媒
(L)と非接触状態で配される吸収コア(5)にて吸収
し、前記主蒸発コア(141)にて冷却される熱交換流
体を熱交換器(26)に流すことにより、被冷却部を冷
却する冷凍装置において、 前記主蒸発コア(141)と前記吸収コア(5)との間
に、冷媒を蒸発させる補助蒸発コア(130)を、前記
液冷媒(L)と非接触状態で設け、 前記熱交換器(26)において吸熱した熱交換流体を、
先に前記補助蒸発コア(130)に流し、その後、前記
主蒸発コア(141)に流すことを特徴とする冷凍装
置。
3. An absorption core (5) which is provided in a non-contact state with the liquid refrigerant (L) in a state where the refrigerant vapor evaporated in a main evaporation core (141) disposed in contact with the liquid refrigerant (L) is not contacted. ), And a heat exchange fluid that is cooled by the main evaporation core (141) flows through the heat exchanger (26) to cool the portion to be cooled. An auxiliary evaporating core (130) for evaporating refrigerant is provided in a non-contact state between the liquid refrigerant (L) and the heat exchange fluid absorbed in the heat exchanger (26). To
A refrigeration system characterized by flowing first to the auxiliary evaporation core (130) and then to the main evaporation core (141).
【請求項4】 前記主蒸発コア(141)と前記吸収コ
ア(5)との間の冷媒蒸気通路(112)の全面を横断
するように、前記補助蒸発コア(130)を設けること
を特徴とする請求項3に記載の冷凍装置。
4. The auxiliary evaporation core (130) is provided so as to cross the entire surface of the refrigerant vapor passage (112) between the main evaporation core (141) and the absorption core (5). The refrigeration apparatus according to claim 3, wherein
JP16161897A 1997-06-18 1997-06-18 Refrigeration equipment Expired - Fee Related JP3740794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16161897A JP3740794B2 (en) 1997-06-18 1997-06-18 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16161897A JP3740794B2 (en) 1997-06-18 1997-06-18 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JPH1114183A true JPH1114183A (en) 1999-01-22
JP3740794B2 JP3740794B2 (en) 2006-02-01

Family

ID=15738607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16161897A Expired - Fee Related JP3740794B2 (en) 1997-06-18 1997-06-18 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3740794B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227839A (en) * 2000-02-16 2001-08-24 Fuji Silysia Chemical Ltd Air conditioning system
CN103822396A (en) * 2014-02-08 2014-05-28 河南科技大学 Heat exchanger running auxiliary system and heat exchanger system using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001227839A (en) * 2000-02-16 2001-08-24 Fuji Silysia Chemical Ltd Air conditioning system
CN103822396A (en) * 2014-02-08 2014-05-28 河南科技大学 Heat exchanger running auxiliary system and heat exchanger system using same
CN103822396B (en) * 2014-02-08 2016-03-09 河南科技大学 Heat exchanger runs accessory system and uses the heat exchanger system of this system

Also Published As

Publication number Publication date
JP3740794B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
JP2004044848A (en) Cooling system
JP5290776B2 (en) Absorption refrigeration system
US6994154B2 (en) Aluminum heat exchanger
JP2000230730A (en) Air conditioning system
JP5803704B2 (en) Refrigeration system
JP3740794B2 (en) Refrigeration equipment
JP6139125B2 (en) Adsorption type air conditioner
JP4134841B2 (en) Adsorber for adsorption refrigerator
JP3695026B2 (en) Adsorption core of adsorption refrigeration equipment
JP3774963B2 (en) Heating system
JP3918239B2 (en) Adsorption refrigeration system
JP4281180B2 (en) Adsorption type refrigerator
JPH1163719A (en) Freezer device
JP4022944B2 (en) Adsorption refrigeration system
JP3719307B2 (en) Adsorption refrigeration equipment for vehicles
JP4186339B2 (en) Adsorption type refrigerator
JP3282244B2 (en) Adsorption refrigeration equipment
JPH11223416A (en) Refrigerating device
JP4300677B2 (en) Adsorption type refrigerator
JP3733665B2 (en) Refrigeration equipment
JP3882242B2 (en) Adsorption refrigeration system
JPH0926224A (en) Refrigeration device
JPH11223415A (en) Refrigerating device
JPH0650628A (en) Cooling device
JPH08159598A (en) Adsorption type cooler and heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees