JPH11139816A - Granular graphite having high crystallinity and its production - Google Patents

Granular graphite having high crystallinity and its production

Info

Publication number
JPH11139816A
JPH11139816A JP9305896A JP30589697A JPH11139816A JP H11139816 A JPH11139816 A JP H11139816A JP 9305896 A JP9305896 A JP 9305896A JP 30589697 A JP30589697 A JP 30589697A JP H11139816 A JPH11139816 A JP H11139816A
Authority
JP
Japan
Prior art keywords
granular graphite
powder
mesophase pitch
pitch
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9305896A
Other languages
Japanese (ja)
Inventor
Takatsugu Fujiura
隆次 藤浦
Yukio Sakai
幸男 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP9305896A priority Critical patent/JPH11139816A/en
Publication of JPH11139816A publication Critical patent/JPH11139816A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide granular graphite suitable for a cathode material of a lithium ion cell and having high crystallinity, high electrode packing property and high purity and to provide its production method. SOLUTION: Granular graphite is obtained after by grinding mesophase pitch obtained by polymerizing condensation polycyclic hydrocarbon or a material containing the hydrocarbon in the coexistence of hydrogen fluoride and boron trifluoride, oxidation-treating and graphitization-treating the pitch. The granular graphite has a face distance d002 in X-ray diffraction of <=0.3365 nm and the crystal size Lc in the C axis direction of >=100 nm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウムイオン電池
の負極材料として好適な、高結晶性を有する粒状黒鉛お
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to highly crystalline granular graphite suitable as a negative electrode material for a lithium ion battery and a method for producing the same.

【0002】[0002]

【従来の技術】リチウムイオン電池は、エネルギー密度
が大きく、サイクル特性、安全性、小型・軽量性に優れ
ていることから、マルチメディア時代を支える主力電源
として、その重要性がクローズアップされている。この
ような状況の中で、リチウムイオン電池の開発課題も明
確になってきており、一層の低価格化と高容量化を可能
にする負極用炭素材料が強く求められている。このよう
な要求に応えるため、最近メソカーボンマイクロビーズ
や天然黒鉛をはじめとするさまざまな電極材料が開発さ
れ実用化が進展している。
2. Description of the Related Art Lithium-ion batteries have high energy density and are excellent in cycle characteristics, safety, small size and light weight, so their importance as a main power source supporting the multimedia age has been highlighted. . Under such circumstances, development issues of lithium ion batteries have become clear, and there is a strong demand for a carbon material for a negative electrode that enables further cost reduction and higher capacity. To meet such demands, various electrode materials such as mesocarbon microbeads and natural graphite have recently been developed and put into practical use.

【0003】上述のメソカーボンマイクロビーズは、コ
ールタールや石油系重質油を350〜450℃で加熱処
理した際に生成するメソフェーズ球晶をマトリックスピ
ッチから分離したものである。これをそのまま仮焼、黒
鉛化処理すれば、負極用炭素材料として利用可能な黒鉛
粉末が得られる(特開平7−145387号)。この黒
鉛粉末は、その形状が球形であるため負極の充填密度を
高められるという利点を有する。
[0003] The above-mentioned mesocarbon microbeads are obtained by separating mesophase spherulites generated from heat treatment of coal tar or heavy petroleum oil at 350 to 450 ° C from a matrix pitch. If this is calcined and graphitized as it is, a graphite powder that can be used as a carbon material for a negative electrode is obtained (Japanese Patent Laid-Open No. 7-145387). This graphite powder has an advantage that the packing density of the negative electrode can be increased because the shape is spherical.

【0004】しかしながらメソカーボンマイクロビーズ
の調製の際には、ピッチマトリックスからの抽出・濾過
操作できわめて多量の溶剤を必要とすること、原料ピッ
チに対する球晶の歩留まりがきわめて低いこと、球晶の
性状制御が容易でなく一定品質を安定して確保できない
ことなどの点で問題がある。更にメソカーボンマイクロ
ビーズ由来の黒鉛は、天然黒鉛に比べると、その結晶性
が大幅に低下するため電池性能の面においても必ずしも
満足すべきレベルとは言えない。
However, in the preparation of mesocarbon microbeads, an extremely large amount of solvent is required for the extraction and filtration operations from the pitch matrix, the yield of spherulites with respect to the raw material pitch is extremely low, There is a problem in that control is not easy and constant quality cannot be stably secured. Furthermore, graphite derived from mesocarbon microbeads has a significantly lower crystallinity than natural graphite, and therefore cannot be said to be at a satisfactory level in terms of battery performance.

【0005】一方、天然黒鉛は優れた結晶性を示しきわ
めて高い真密度をもっているので、高いエネルギー密度
を獲得することができ、実用負極材料として大きな注目
を集めている。しかし天然黒鉛は鱗片状で嵩高く、負極
作製の際のバインダーに対する分散性が悪いので、塗着
ムラや剥がれ落ちの問題が生じる。この結果、良好な電
極構造を確保することが容易ではなく、サイクル寿命の
低下の要因ともなっている。
[0005] On the other hand, natural graphite has excellent crystallinity and an extremely high true density, so that a high energy density can be obtained, and has attracted much attention as a practical anode material. However, natural graphite is flaky and bulky, and has poor dispersibility in a binder at the time of producing a negative electrode, which causes problems such as uneven coating and peeling. As a result, it is not easy to secure a favorable electrode structure, and this also causes a reduction in cycle life.

【0006】[0006]

【発明が解決しようとする課題】以上のようにメソカー
ボンマイクロビーズは球形であるために負極の充填密度
は高められるものの、その結晶性がいまだ満足すべきレ
ベルになく、性能面で課題が残る。更にメソカーボンマ
イクロビーズを調製する場合、その抽出・分離工程にお
いて多量の溶剤を必要とすることや、歩留まりが極端に
低いことなど、環境面・コスト面での改善が強く求めら
れている。
As described above, since the mesocarbon microbeads are spherical, the packing density of the negative electrode can be increased, but the crystallinity is still not at a satisfactory level, and there remains a problem in performance. . Further, when preparing mesocarbon microbeads, there is a strong demand for improvements in environmental and cost aspects, such as the need for a large amount of solvent in the extraction / separation step and the extremely low yield.

【0007】また天然黒鉛は結晶性に優れ真密度が高い
という特長を有しているにもかかわらず、鱗片状である
といった特異な形状をしているため、負極材料としてそ
の本来の特長を充分に生かしきれていない。本発明の目
的は、このような問題を解決するため、高導電性の高密
度電極成形を可能にするような、高結晶性の非鱗片状黒
鉛粉末を安価に提供しようとするものである。
[0007] In addition, natural graphite has a unique shape such as a scale-like shape, although it has the characteristics of excellent crystallinity and high true density. Not fully utilized. An object of the present invention is to solve the above-mentioned problems by providing a non-flaky graphite powder having high crystallinity at a low cost, which enables high-conductivity, high-density electrode molding.

【0008】[0008]

【課題を解決するための手段】発明者らは上記課題を解
決すべく鋭意検討した結果、特定の合成メソフェーズピ
ッチを粉砕したのち、適度の酸化処理を行ない、この粉
末を黒鉛化処理することによって、非鱗片状の高結晶性
を有する粒状黒鉛が得られることを見い出し、本発明に
至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems. As a result, after grinding a specific synthetic mesophase pitch, an appropriate oxidation treatment is performed, and the powder is graphitized. The present inventors have found that non-flaky granular graphite having high crystallinity can be obtained, which has led to the present invention.

【0009】即ち本発明は、弗化水素・三弗化硼素の共
存下縮合多環炭化水素またはこれを含有する物質を重合
して得られたメソフェーズピッチを、酸化処理および黒
鉛化処理することによってされた、X線回折における面
間隔d002 が0.3365nm以下で、かつC軸方向の
結晶子の大きさLc が100nm以上の粒状黒鉛、およ
びその製造方法である。
That is, the present invention provides an oxidizing treatment and a graphitizing treatment of a mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride and boron trifluoride. A granular graphite having a plane spacing d 002 in X-ray diffraction of 0.3365 nm or less and a crystallite size Lc in the C-axis direction of 100 nm or more, and a method for producing the same.

【0010】[0010]

【発明の実施の形態】本発明において原料に用いられる
メソフェーズピッチは、縮合多環炭化水素またはこれを
含有する物質を超強酸触媒である弗化水素・三弗化硼素
存在下で重合させて得られるものである。すなわちこの
合成メソフェーズピッチは、特開平1−139621
号、特開平1−254796号および特開平3−223
391号に示されるように、ナフタレン、アントラセ
ン、メチルナフタレン、フェナントレン、アセナフテ
ン、アセナフチレン、ピレン等ならびにこれらの骨格を
有する縮合多環炭化水素、およびこれらの混合物ないし
これらを含有する物質から合成されたピッチである。こ
のメソフェーズピッチはに商業生産されており、価格、
品質安定性、化学純度、炭化性等の点できわめて優れた
特長を有している。
BEST MODE FOR CARRYING OUT THE INVENTION The mesophase pitch used as a raw material in the present invention is obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride / boron trifluoride which is a super strong acid catalyst. It is something that can be done. That is, this synthesized mesophase pitch is disclosed in Japanese Patent Application Laid-Open No. 1-139621.
, JP-A-1-254796 and JP-A-3-223
No. 391, naphthalene, anthracene, methylnaphthalene, phenanthrene, acenaphthene, acenaphthylene, pyrene, etc., condensed polycyclic hydrocarbons having these skeletons, and mixtures thereof or pitches synthesized from substances containing these It is. This mesophase pitch is commercially produced at
It has extremely excellent features in terms of quality stability, chemical purity, carbonization, etc.

【0011】この合成メソフェーズピッチは、メトラー
法による軟化点が240℃以上、光学的異方性相含有率
が90%以上、特に実質100%であることが好まし
い。すなわち光学的等方性相の含有量が増加するとピッ
チを黒鉛化した場合に無定型炭素の生成やグラファイト
結晶構造の乱れの原因となる恐れがあるため、光学的等
方性相の含有量ができるだけ少なく、光学的異方性相含
有率が実質100%であることが好ましい。なお、本明
細書に記載の「光学的異方性相」とは、常温近くで固化
したピッチ塊の断面を研磨し、反射型光学顕微鏡で直交
ニコル下で観察したとき、試料または直交ニコルを回転
して光輝が認められる部分、すなわち光学的異方性であ
る部分を意味し、「光学的異方性相含有率」とは、顕微
鏡で観察した際のこの光学的異方性相の面積分率を意味
する。
The synthetic mesophase pitch preferably has a softening point of at least 240 ° C. according to the Mettler method and an optically anisotropic phase content of at least 90%, especially substantially 100%. That is, when the content of the optically isotropic phase increases, the pitch may be graphitized, which may cause generation of amorphous carbon or disorder of the graphite crystal structure. It is preferable that the content of the optically anisotropic phase is as small as possible and substantially 100%. Incidentally, the "optically anisotropic phase" described in the present specification, when the cross section of the solidified pitch mass near room temperature is polished and observed under crossed Nicols with a reflection optical microscope, the sample or crossed Nicols The part where the glitter is observed by rotation, that is, the part that is optically anisotropic, means the "optically anisotropic phase content" is the area of this optically anisotropic phase when observed with a microscope. Means fraction.

【0012】またこの合成メソフェーズピッチは、純物
質を出発原料としているので、化学的純度がきわめて高
い。したがって、本合成メソフェーズピッチから誘導さ
れる黒鉛は,従来のメソフェーズピッチ、すなわちコー
ルタールや石油残渣等の熱処理による重質化処理を経て
得られるバルクメソフェーズ由来の黒鉛に比べ、その残
存不純物含有量(S,N,Si,Fe,Ni等)が極端
に少なくなる。この結果、グラファイト層間にあるリチ
ウムイオンがこれら不純物元素と相互作用を引き起こし
て消費される恐れがなく、電極反応の阻害を防止でき、
充放電効率やサイクル寿命特性の向上に大きく寄与す
る。
Further, since the synthetic mesophase pitch uses a pure substance as a starting material, its chemical purity is extremely high. Therefore, the graphite derived from the synthetic mesophase pitch has a higher residual impurity content (compared to the conventional mesophase pitch, ie, graphite derived from bulk mesophase obtained through heavy treatment by heat treatment of coal tar, petroleum residue, and the like). S, N, Si, Fe, Ni, etc.) are extremely reduced. As a result, there is no fear that lithium ions existing between the graphite layers interact with these impurity elements to be consumed, and it is possible to prevent the inhibition of the electrode reaction,
It greatly contributes to improvement of charge / discharge efficiency and cycle life characteristics.

【0013】本発明の粒状黒鉛前駆体の製造に際して
は、まず上記の合成メソフェーズピッチを粉末化する。
本メソフェーズピッチは微粉砕が容易であるため、工業
的には特殊な粉砕装置を必要とすることなく、ジェット
ミル等で簡単に粉末化できる。粉末の粒度は平均粒径で
通常1〜50μm、好ましくは3〜40μmの範囲にな
るように粉砕条件が選択される。なお、本明細書におけ
る平均粒径(メジアン径)の測定については、レーザー
回折式粒度分布測定装置を用い、分散媒には微量の界面
活性剤を添加した純水が用いられる。粉砕機について
は、ジェットミルの他、振動ボールミル、衝撃ミル、ハ
ンマーミル、マイクロアトマイザーなどから適宜、最適
機種が選択され、特に限定されない。分級機について
も、機械式分級機、風力式分級機等から適宜、最適機種
が選択され、特に限定されない。
In producing the granular graphite precursor of the present invention, the above-mentioned synthetic mesophase pitch is first powdered.
Since the mesophase pitch is easily pulverized, it can be easily pulverized with a jet mill or the like without industrially requiring a special pulverizer. The pulverization conditions are selected such that the average particle size of the powder is usually in the range of 1 to 50 μm, preferably 3 to 40 μm. The average particle diameter (median diameter) in this specification is measured using a laser diffraction particle size distribution analyzer, and pure water to which a trace amount of a surfactant is added is used as a dispersion medium. Regarding the crusher, an optimal model is appropriately selected from a vibration ball mill, an impact mill, a hammer mill, a micro atomizer, and the like, in addition to the jet mill, and is not particularly limited. As for the classifier, an optimal model is appropriately selected from a mechanical classifier, a wind classifier, and the like, and is not particularly limited.

【0014】つぎに粉砕処理されたメソフェーズピッチ
粉末は、空気あるいは酸素などの酸素含有ガスの流通下
において適度に酸化処理される。このとき酸化収率(=酸
化処理前のピッチ粉末重量に対する酸化処理後のピッチ
粉末重量の比率)が103〜112%の範囲になるよう
調整することが肝要である。酸化収率が103%よりも
小さい場合には、後続の仮焼工程において、粒子の溶融
膨張や粒子同士の接着が起こりやすくなるため、再度の
粉砕処理あるいは解砕処理が必要となり、コストアップ
となるので、本発明の目的に合致せず好ましくない。酸
素含有率が112%よりも大きい場合には、結晶構造の
破壊を招き、得られる黒鉛粉の結晶性が低下するといっ
た問題が生じる。
Next, the pulverized mesophase pitch powder is appropriately oxidized under a flow of an oxygen-containing gas such as air or oxygen. At this time, it is important to adjust the oxidation yield (= the ratio of the pitch powder weight after the oxidation treatment to the pitch powder weight before the oxidation treatment) to be in the range of 103 to 112%. When the oxidation yield is less than 103%, in the subsequent calcination step, the particles are likely to expand and adhere to each other, so that the pulverization treatment or the pulverization treatment is required again, which leads to an increase in cost. This is not preferable because it does not meet the purpose of the present invention. If the oxygen content is higher than 112%, the crystal structure is destroyed, and the crystallinity of the obtained graphite powder is reduced.

【0015】このための酸化処理温度は特に限定されな
いが、工業的に実施する上では、一般に空気中180〜
370℃、好ましくは220〜350℃の範囲である。
370℃以上では酸化反応がきわめて速く進行するため
酸素吸収量の制御が困難となる。また原料ピッチの熱分
解反応も誘発する恐れがある。一方、180℃以下では
酸化反応がきわめて遅く実際的でない。なお、酸化時間
については1〜120分が適当である。
The temperature of the oxidation treatment for this purpose is not particularly limited, but for industrial implementation, it is generally 180 to 180 ° C. in air.
It is in the range of 370 ° C, preferably 220-350 ° C.
At 370 ° C. or higher, it is difficult to control the amount of oxygen absorption because the oxidation reaction proceeds very quickly. In addition, there is a possibility that a thermal decomposition reaction of the raw material pitch may be induced. On the other hand, when the temperature is lower than 180 ° C., the oxidation reaction is extremely slow, which is not practical. The oxidation time is suitably from 1 to 120 minutes.

【0016】本発明において高結晶性を有する粒状黒鉛
を得るためには、このようにして適度に酸化したメソフ
ェーズピッチ粉末を仮焼したのち黒鉛化処理することが
好ましい。一般に仮焼工程は非酸化性雰囲気下800〜
1600℃で熱処理することによって行なわれる。黒鉛
化処理は非酸化性雰囲気下1900℃以上、好ましくは
2400℃以上で行なわれる。
In order to obtain granular graphite having high crystallinity in the present invention, it is preferable to calcine the mesophase pitch powder which has been appropriately oxidized in this way and then to perform graphitization. Generally, the calcination step is performed in a non-oxidizing atmosphere at 800 to
The heat treatment is performed at 1600 ° C. The graphitization treatment is performed in a non-oxidizing atmosphere at 1900 ° C. or higher, preferably 2400 ° C. or higher.

【0017】こうして得られた黒鉛粉末は、X線回折に
おける面間隔d002 が0.3365nm以下で、かつC
軸方向の結晶子の大きさLc が100nm以上であり、
高い結晶性を有する。このため、大きな電気容量を有す
る電極を得ることができる。なおnmは10-9m(ナノ
メートル)を示す。また合成メソフェーズピッチを出発
原料としているので、化学純度もきわめて高く不純物を
ほとんど含まない。このため、残存不純物を塩素等と高
温で反応させハロゲン化物として系外に出す操作などの
コストアップにつながる高純度化処理を必要としない。
本発明に基づいて得られる黒鉛粉末は高い結晶性を示す
とともに、その形状は粒状、すなわち球形に近い非鱗片
状である。このような高結晶性を有する粒状黒鉛をリチ
ウムイオン電池の負極材料に適用すれば、高導電性の高
密度電極成形が可能になるので、高いエネルギー密度が
獲得でき、しかも優れた電圧平坦性と良好なサイクル可
逆性が実現できる。
The graphite powder thus obtained has a plane spacing d 002 in X-ray diffraction of 0.3365 nm or less and a C
The crystallite size Lc in the axial direction is 100 nm or more;
Has high crystallinity. Therefore, an electrode having a large electric capacity can be obtained. In addition, nm shows 10 <-9> m (nanometer). Further, since synthetic mesophase pitch is used as a starting material, it has a very high chemical purity and contains almost no impurities. For this reason, there is no need for a high-purification treatment that leads to an increase in cost, such as an operation of reacting the remaining impurities with chlorine or the like at a high temperature and out of the system as halide.
The graphite powder obtained according to the present invention exhibits high crystallinity and its shape is granular, that is, non-scale-like, almost spherical. Applying such highly crystalline granular graphite to the negative electrode material of lithium ion batteries makes it possible to form high-conductivity, high-density electrodes, so that a high energy density can be obtained, and excellent voltage flatness and Good cycle reversibility can be realized.

【0018】[0018]

【実施例】以下、実施例により本発明をさらに具体的に
説明する。但し本発明はこれらの実施例により制限され
るものではない。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited by these examples.

【0019】実施例1 超強酸触媒HF−BF3 の共存下、ナフタレンを重合さ
せて得られたメソフェーズピッチ(軟化点295℃,光
学的異方性相含有率100%)をジェットミルにより粉
末化し、平均粒径20μmとした。次にこのメソフェー
ズピッチ粉末を空気中320℃で30分間保持した。こ
のときの酸化収率は107%であった。該粉末を窒素雰
囲気下1000℃で10分保持して仮焼を行なった。こ
の際、粒子の溶融や粒子同士の接着は全く見られなかっ
た。引き続きアルゴン雰囲気下3000℃で1時間の黒
鉛化処理を行なった。この黒鉛化品を電子顕微鏡で観察
したところ非鱗片状であることが分かった。また、X線
回折法(CuKαをX線源、標準物質に高純度シリコン
を使用)により該黒鉛粉末の結晶構造パラメーターを求
めたところ、(002)面の格子面間隔d002 は0.3
363nm、C軸方向の結晶子の大きさLc は100n
m以上であることが分かった。こうして得られた粒状黒
鉛90重量部にバインダーとしてPVDF(ポリフッ化
ビニリデン)10重量部を配合し、これに脱水された
N,N−ジメチルホルムアミドを加え充分混合すること
によってスラリーを調製した。このスラリーを銅箔の片
面に均一に塗布し真空乾燥した。これを10mm×10
mmの大きさに切り出して炭素電極とし、三電極式試験
セルを用いて充放電容量性能を調べた。対極および参照
極としては金属リチウムを用いた。電解液には、EC
(エチレンカーボネート)とDEC(ジエチルカーボネ
ート)の混合溶媒(体積比で1:1)に電解質として六
フッ化リン酸リチウム(LiPF6 )を1Mの濃度で溶
解させたものを用いた。充放電容量の測定は30mA/
gの定電流下で行ない、充電は0V、放電は2.0V
(vs. Li/Li+)まで測定した。その結果、充電容
量は340mAh/g、放電容量は322mAh/g
(初期効率:94.7%)であった。
Example 1 A mesophase pitch (softening point: 295 ° C., optically anisotropic phase content: 100%) obtained by polymerizing naphthalene in the presence of a super strong acid catalyst HF-BF 3 was powdered by a jet mill. And the average particle diameter was 20 μm. Next, this mesophase pitch powder was kept in air at 320 ° C. for 30 minutes. At this time, the oxidation yield was 107%. The powder was calcined at 1000 ° C. for 10 minutes in a nitrogen atmosphere. At this time, no melting of the particles or adhesion between the particles was observed at all. Subsequently, a graphitization treatment was performed at 3000 ° C. for 1 hour in an argon atmosphere. Observation of this graphitized product with an electron microscope showed that it was non-scale-like. When the crystal structure parameters of the graphite powder were determined by X-ray diffraction (using CuKα as an X-ray source and high-purity silicon as a standard substance), the lattice spacing d 002 of the (002) plane was 0.3.
363 nm, and the crystallite size Lc in the C-axis direction is 100 n.
m or more. A slurry was prepared by mixing 10 parts by weight of PVDF (polyvinylidene fluoride) as a binder with 90 parts by weight of the granular graphite thus obtained, adding dehydrated N, N-dimethylformamide thereto, and mixing well. This slurry was uniformly applied to one side of a copper foil and vacuum dried. This is 10mm × 10
The carbon electrode was cut out to a size of mm, and the charge / discharge capacity performance was examined using a three-electrode test cell. Metal lithium was used as a counter electrode and a reference electrode. The electrolyte is EC
A solution prepared by dissolving lithium hexafluorophosphate (LiPF 6 ) at a concentration of 1 M as an electrolyte in a mixed solvent (1: 1 by volume) of (ethylene carbonate) and DEC (diethyl carbonate) was used. The charge / discharge capacity was measured at 30 mA /
g at a constant current of 0 V for charging and 2.0 V for discharging
(Vs. Li / Li +). As a result, the charge capacity was 340 mAh / g, and the discharge capacity was 322 mAh / g.
(Initial efficiency: 94.7%).

【0020】実施例2 超強酸触媒HF−BF3 の共存下、メチルナフタレンを
重合させて得られたメソフェーズピッチ(軟化点280
℃、光学的異方性相含有率100%)をジェットミルに
より粉砕し、平均粒径22μmとした。このメソフェー
ズピッチ粉砕品を空気中230℃で2時間保持すること
によって酸化処理を行なった。このときの酸化収率は1
04%であった。該粉末を仮焼するため、窒素雰囲気下
1000℃で10分保持した。この際、粒子の溶融や融
着は全く見られなかった。引き続き、アルゴン雰囲気下
3000℃で1時間の黒鉛化処理を行なった。該黒鉛化
品を電子顕微鏡で観察したところ、非鱗片状であること
が分かった。また、X線回折法によって該黒鉛粉末の結
晶構造を解析した結果、(002)面の格子面間隔d
002 は0.3362nm、結晶子の大きさLc は100
nm以上であることが分かった。実施例1と同様の方法
で炭素電極を作製し充放電容量特性を調べた結果、充電
容量は347mAh/g、放電容量は330mAh/g
(初期効率:95.1%)であった。
Example 2 Mesophase pitch (softening point 280) obtained by polymerizing methyl naphthalene in the presence of super strong acid catalyst HF-BF 3
° C, optically anisotropic phase content 100%) was pulverized by a jet mill to an average particle size of 22 µm. Oxidation treatment was performed by holding the mesophase pitch ground product at 230 ° C. for 2 hours in the air. The oxidation yield at this time is 1
04%. In order to calcine the powder, it was kept at 1000 ° C. for 10 minutes in a nitrogen atmosphere. At this time, no melting or fusion of the particles was observed. Subsequently, a graphitization treatment was performed at 3000 ° C. for 1 hour in an argon atmosphere. When the graphitized product was observed with an electron microscope, it was found to be non-scale-like. Further, as a result of analyzing the crystal structure of the graphite powder by the X-ray diffraction method, the lattice spacing d of the (002) plane was obtained.
002 is 0.3362 nm, and the crystallite size Lc is 100
nm or more. As a result of preparing a carbon electrode in the same manner as in Example 1 and examining the charge / discharge capacity characteristics, the charge capacity was 347 mAh / g and the discharge capacity was 330 mAh / g.
(Initial efficiency: 95.1%).

【0021】比較例1 実施例1と同一のメソフェーズピッチ粉末を用いて、空
気中210℃で10分間保持した。このときの酸化収率
は101%であった。 該メソフェーズピッチ粉末を仮
焼したところ、粒子同士の著しい融着が見られた。
Comparative Example 1 The same mesophase pitch powder as in Example 1 was used and kept at 210 ° C. for 10 minutes in air. At this time, the oxidation yield was 101%. When the mesophase pitch powder was calcined, remarkable fusion between the particles was observed.

【0022】比較例2 実施例1と同一のメソフェーズピッチ粉末を用いて,空
気中250℃で24時間保持した。このときの酸化収率
は115%であった。次に該粉末を仮焼したのち300
0℃で1時間の黒鉛化処理を行なった。該黒鉛化品の格
子面間隔d002は0.3371nm,結晶子の大きさLc
は50nmであった。このように過度の酸化処理を行
った場合には、黒鉛粉末の結晶性が低い。
Comparative Example 2 The same mesophase pitch powder as used in Example 1 was kept at 250 ° C. in air for 24 hours. At this time, the oxidation yield was 115%. Next, after calcining the powder, 300
Graphitization treatment was performed at 0 ° C. for 1 hour. The lattice spacing d 002 of the graphitized product is 0.3371 nm, and the crystallite size Lc
Was 50 nm. When such an excessive oxidation treatment is performed, the crystallinity of the graphite powder is low.

【0023】[0023]

【発明の効果】以上の如く本発明による粒状黒鉛は、高
い結晶性を有し、かつ非鱗片状であるので、リチウムイ
オン電池の実用電極材料として好適である。本発明の粒
状黒鉛を負極材料に用いれば、高導電性の高密度電極成
形が可能になり高いエネルギー密度が獲得できるととも
に安定した電極構造を確保できるので、サイクル寿命の
拡大と優れた電圧平坦性が実現できる。また本発明の粒
状黒鉛は、品質の一定した安価な合成メソフェーズピッ
チを出発原料として用いるので、工業的に安定して有利
に製造できる。
As described above, the granular graphite according to the present invention has high crystallinity and is non-scale-like, and thus is suitable as a practical electrode material for lithium ion batteries. If the granular graphite of the present invention is used as a negative electrode material, it is possible to form a high-conductivity, high-density electrode, obtain a high energy density and secure a stable electrode structure, so that the cycle life is extended and excellent voltage flatness is obtained. Can be realized. In addition, the granular graphite of the present invention can be produced industrially stably and advantageously because inexpensive synthetic mesophase pitch of constant quality is used as a starting material.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 弗化水素・三弗化硼素の共存下縮合多環
炭化水素またはこれを含有する物質を重合して得られた
メソフェーズピッチを、酸化処理および黒鉛化処理する
ことによって製造された、X線回折における面間隔d
002 が0.3365nm以下で、かつC軸方向の結晶子
の大きさLc が100nm以上である粒状黒鉛。
1. A mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride and boron trifluoride, and produced by subjecting the mesophase pitch to oxidation treatment and graphitization treatment. , Plane spacing d in X-ray diffraction
A granular graphite having a 002 of 0.3365 nm or less and a crystallite size Lc in the C-axis direction of 100 nm or more.
【請求項2】 弗化水素・三弗化硼素の共存下縮合多環
炭化水素またはこれを含有する物質を重合して得られた
メソフェーズピッチを、平均粒径1〜50μmに粉砕し
て粉末とした後、酸素含有ガスの流通下180〜370
℃で酸化処理し、非酸化性雰囲気下1900℃以上の温
度で黒鉛化処理する請求項1の粒状黒鉛の製造方法。
2. A mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the coexistence of hydrogen fluoride and boron trifluoride, and pulverizing the powder to an average particle size of 1 to 50 μm to form a powder. After that, under the flow of the oxygen-containing gas,
The method for producing granular graphite according to claim 1, wherein the granular graphite is oxidized at a temperature of 1900 ° C. in a non-oxidizing atmosphere at a temperature of 1900 ° C. or higher.
【請求項3】 酸化処理前のピッチ粉末に対する酸化処
理後のピッチ粉末の重量比で表される酸化収率が103
〜112%の範囲である請求項2に記載の粒状黒鉛の製
造方法。
3. An oxidation yield represented by a weight ratio of pitch powder after oxidation treatment to pitch powder before oxidation treatment is 103.
The method for producing granular graphite according to claim 2, wherein the content is in the range of about to 112%.
【請求項4】 酸化処理されたメソフェーズピッチ粉末
を、非酸化性雰囲気下800〜1600℃で熱処理した
後、黒鉛化処理する請求項2に記載の粒状黒鉛の製造方
法。
4. The method for producing granular graphite according to claim 2, wherein the oxidized mesophase pitch powder is heat-treated at 800 to 1600 ° C. in a non-oxidizing atmosphere and then graphitized.
JP9305896A 1997-11-07 1997-11-07 Granular graphite having high crystallinity and its production Pending JPH11139816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9305896A JPH11139816A (en) 1997-11-07 1997-11-07 Granular graphite having high crystallinity and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9305896A JPH11139816A (en) 1997-11-07 1997-11-07 Granular graphite having high crystallinity and its production

Publications (1)

Publication Number Publication Date
JPH11139816A true JPH11139816A (en) 1999-05-25

Family

ID=17950614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9305896A Pending JPH11139816A (en) 1997-11-07 1997-11-07 Granular graphite having high crystallinity and its production

Country Status (1)

Country Link
JP (1) JPH11139816A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1127842A1 (en) * 2000-02-21 2001-08-29 Mitsubishi Gas Chemical Company, Inc. Carbon material comprising particles having a coarsely granular surface and process for the production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1127842A1 (en) * 2000-02-21 2001-08-29 Mitsubishi Gas Chemical Company, Inc. Carbon material comprising particles having a coarsely granular surface and process for the production thereof

Similar Documents

Publication Publication Date Title
US8580432B2 (en) Nano graphene reinforced nanocomposite particles for lithium battery electrodes
US9093693B2 (en) Process for producing nano graphene reinforced composite particles for lithium battery electrodes
KR101618386B1 (en) Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
CA2238286C (en) Material for negative electrode of lithium secondary battery, method for production thereof and lithium secondary battery using the same
JP3803866B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
Chen et al. Electrochemical lithiation and de-lithiation of carbon nanotube-Sn2Sb nanocomposites
JP6535467B2 (en) Graphite powder for lithium ion secondary battery negative electrode active material
JP4403327B2 (en) Graphite powder for negative electrode of lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2976299B2 (en) Anode material for lithium secondary battery
JP4045438B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
US6066413A (en) Method for increasing reversible lithium intercalation capacity in carbon electrode secondary batteries
JP2004134658A (en) Chargeable and dischargeable electrochemical element
JP2000003708A (en) Coated carbon material, manufacture thereof and lithium secondary battery using the material
JP2976300B1 (en) Method for producing negative electrode material for lithium secondary battery
US20220115641A1 (en) Battery anodes from humic acid
JP2000149946A (en) Carbon material for nonaqueous solvent secondary battery negative electrode and its manufacture
JP2002124256A (en) Nonaqueous solvent secondary battery
JPH11139816A (en) Granular graphite having high crystallinity and its production
CN115799500A (en) Method for preparing high-rate lithium battery negative electrode material from natural graphite spherical tailings
JP2000149947A (en) Graphite powder for lithium ion battery negative electrode
EP0885465B1 (en) Method for increasing reversible lithium intercalation capacity in carbon electrode secondary batteries
JP2002124255A (en) Nonaqueous solvent secondary battery
JP2001023631A (en) Manufacture of graphite for negative electrode for lithium ion secondary battery
JP2002121570A (en) Process for manufacturing bulk mesophase carbon and graphite powder
JP2004134295A (en) Nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A02 Decision of refusal

Effective date: 20060613

Free format text: JAPANESE INTERMEDIATE CODE: A02