JPH11137538A - Blood component measuring device, and method - Google Patents

Blood component measuring device, and method

Info

Publication number
JPH11137538A
JPH11137538A JP9310890A JP31089097A JPH11137538A JP H11137538 A JPH11137538 A JP H11137538A JP 9310890 A JP9310890 A JP 9310890A JP 31089097 A JP31089097 A JP 31089097A JP H11137538 A JPH11137538 A JP H11137538A
Authority
JP
Japan
Prior art keywords
light
blood
light source
absorption
glucose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9310890A
Other languages
Japanese (ja)
Inventor
Kazuaki Okubo
和明 大久保
Makoto Inohara
誠 猪野原
Yoshinori Yoshimura
義典 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9310890A priority Critical patent/JPH11137538A/en
Publication of JPH11137538A publication Critical patent/JPH11137538A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a device which non-invasively measures components of blood, especially the blood sugar component, at a favorable precision. SOLUTION: A near infrared beam is made to enter a blood vessel on the bending internal side of a finger joint where blood vessels are concentrated in the vicinity of a cuticle, and the beam which disperses and passes in the blood in the blood vessel is detected, and its absorption by glucose is detected, and in the meantime, by using a beam of a wavelength without absorption of glucose, the dispersed and passed beam in the blood is measured in the same manner, and the glucose concentration is measured by the comparison of both beams. Light of light sources 2, 2' is made to enter an optical fiber 3, and the emitting side of the optical fiber 3 is linearly arranged, and is joined to the skin in a manner to go across the blood vessel of the finger, and the light is made to enter linearly, and the light which has dispersed and passed in the organism is received by a photo-sensor array 5, and among elements of respective arrays, an output wherein the dispersing light path in the blood vessel is long, i.e., the absorption of glucose is largest is used, and the output is compared corresponding to the light from the light sources 2, 2', and thus, a measurement of a favorable precision is realized without strictly performing the localizations for the light radiation and the light detection.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、血液の成分、特に
血糖成分を非侵襲に計測する血液成分測定方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blood component measuring method for non-invasively measuring blood components, particularly blood glucose components.

【0002】[0002]

【従来の技術】人間の血液は、液状の血漿55%と有形
成分(赤血球、白血球、血小板)45%からなり、血糖
は水分中に一様に分布している。血液中の遊離糖は、グ
ルコースの比率が極めて高いため、血液分析ではグルコ
ースに焦点を合わせて行う。
2. Description of the Related Art Human blood is composed of 55% of liquid plasma and 45% of solid components (red blood cells, white blood cells, platelets), and blood sugar is uniformly distributed in water. Since free sugar in blood has an extremely high ratio of glucose, blood analysis focuses on glucose.

【0003】グルコースの正常値は、75〜110mg
/dlとされており、糖尿病の検査法の一つである負荷
試験ではブドウ糖を経口投与し、血液中のグルコース濃
度の時間変化を測定している。
[0003] The normal value of glucose is 75-110 mg.
/ Dl, and in a stress test, which is one of the diabetes testing methods, glucose is orally administered and the time-dependent change in blood glucose concentration is measured.

【0004】注射器等を用いて人体より血液を採取し、
その採血試料を分析してグルコース濃度を求める破壊的
または侵襲的グルコース測定法は公知で、分析には従来
より酵素電極法、比色法等の数々の方法が実用化されて
いる。
[0004] Blood is collected from the human body using a syringe or the like,
A destructive or invasive glucose measuring method for analyzing the collected blood sample to determine the glucose concentration is known, and various methods such as an enzyme electrode method and a colorimetric method have been practically used for the analysis.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、採血試
料を分析してグルコース濃度を求める破壊的、侵襲的な
方法は、患者に苦痛を与える問題があった。
However, the destructive and invasive method of analyzing a blood sample to determine the glucose concentration has a problem of causing pain to the patient.

【0006】一方、非破壊的、非侵襲的方法としては、
皮膚を通して体表面に拡散してくるグルコース濃度を皮
膚表面に押しつけたセンサで測定する経皮的方法や、生
体組織中をレーザー光を透過させて特定波長での吸光度
を測定することによってグルコース濃度を求める方法が
提案されている。例えば特開昭61−25541号公報
「経皮グルコースセンサ」は、皮膚加温機構を有するセ
ンサを人体の皮膚表面に押しつけて体内から皮膚を通じ
て拡散してくるグルコースの濃度を測定する方法があ
る。また、特開昭63−31638号公報「無侵襲生化
学物質計測装置」も、皮膚加温機構を人体の皮膚表面に
押しつけて発汗させ、その汗のグルコース濃度を分析測
定する方法がある。
On the other hand, non-destructive and non-invasive methods include:
A transcutaneous method of measuring the glucose concentration that diffuses to the body surface through the skin with a sensor pressed against the skin surface, or measuring the absorbance at a specific wavelength by transmitting laser light through living tissue and measuring the glucose concentration A method of seeking is proposed. For example, Japanese Patent Application Laid-Open No. 61-25554 discloses a method of measuring the concentration of glucose diffused from the body through the skin by pressing a sensor having a skin warming mechanism against the skin surface of a human body. Japanese Patent Laid-Open Publication No. Sho 63-31638 discloses a "non-invasive biochemical substance measuring apparatus" in which a skin warming mechanism is pressed against the skin surface of a human body to cause perspiration, and the glucose concentration of the sweat is analyzed and measured.

【0007】しかし、これらの方法では、加温加圧する
ことにより皮膚表面に跡形が長く残ることがある上に、
組織血管中を循環しつつある血液を直接測定していない
ので、グルコース濃度の時間変化が組織中拡散による時
間遅れや拡散中の変化などにより正確にとらえられない
問題があった。
However, in these methods, a trace may remain on the skin surface for a long time due to heating and pressurizing.
Since blood circulating in tissue blood vessels is not directly measured, there has been a problem that a time change of glucose concentration cannot be accurately detected due to a time delay due to diffusion in tissue or a change during diffusion.

【0008】また、例えば、米国特許第4,169,67
6号公報「Method for determiningof metabolic produ
cts in the blood −血液中の代謝物の測定方法」で
は、炭酸ガスレーザを用い、内部多重全反射吸収スペク
トル法(ATR)法によって皮膚表面部のグルコース濃
度を求めている。
Also, for example, see US Pat. No. 4,169,67.
No. 6, "Method for determining of metabolic produ
In “cts in the blood—method of measuring metabolites in blood”, the glucose concentration at the skin surface is determined by an internal multiple total reflection absorption spectroscopy (ATR) method using a carbon dioxide laser.

【0009】しかし、この方法では、レーザを用いるた
めにある程度エネルギー強度の強い光を用いることがで
きるが、測定波長は10μm近傍を使用するため、水に
よる吸収の非常に大きい波長領域であることから、水分
を多く含む生体組織では、限られた深さまでしか測定で
きないという問題があった。
In this method, however, light having a relatively high energy intensity can be used in order to use a laser. However, since the measurement wavelength is around 10 μm, it is in a wavelength region where water absorption is very large. However, there is a problem that a living tissue containing a large amount of water can be measured only to a limited depth.

【0010】本発明は、この様な従来の血液成分測定方
法の課題を考慮し、生体を傷つけることなく非侵襲に、
かつ、光照射、光検出の位置合わせを厳密に行うことな
く、精度よい血液中のグルコース濃度測定が可能とな
The present invention has been made in consideration of such a problem of the conventional blood component measuring method, and is non-invasive without damaging a living body.
In addition, accurate measurement of glucose concentration in blood becomes possible without strictly performing alignment of light irradiation and light detection.

【0011】[0011]

【課題を解決するための手段】生体組織中での光の吸収
が大きくなる赤外領域を避け、生体組織中も比較的よく
透過する近赤外光を使用し、血管が表皮付近に集中する
指関節の曲げの内側の血管に近赤外光を入射させ、血管
内の血液中を拡散透過する光を検出し、そのグルコース
による吸収を検出し、さらにグルコースの吸収の無い波
長の光を用いて、同様にして血液中の拡散透過光を測定
し、両者の比よりグルコースの濃度を測定することによ
り、血液中のグルコース濃度を測定可能とするものであ
る。
Means for Solving the Problems Blood vessels are concentrated in the vicinity of the epidermis by using near-infrared light which transmits relatively well in living tissues, avoiding the infrared region where light absorption in living tissues becomes large. Near-infrared light enters the blood vessel inside the bend of the finger joint, detects light diffusely transmitted through the blood in the blood vessel, detects its absorption by glucose, and further uses light of a wavelength that does not absorb glucose. Similarly, by measuring the diffuse transmission light in the blood and measuring the glucose concentration from the ratio between the two, the glucose concentration in the blood can be measured.

【0012】すなわち、請求項1の本発明は、血液中の
計測しようとする成分に対する吸収が大きく、かつ、他
の血液成分の吸収の少ない波長域に選択的に光を放出す
る第一の光源と、血液中の計測しようとする成分に対す
る吸収が小さく、かつ、他の血液成分の吸収の少ない波
長域に選択的に光を放出する第二の光源と、前記第一、
第二の光源からの光を入力し先端からその光を出射す
る、測定個所に当接可能な光ファイバーと、測定個所に
当接可能な、光を受光するホトセンサと、第一の光源の
出射と第二の光源の出射に対応して前記ホトセンサから
得られるそれぞれの出力信号とを比較して、血液中の計
測しようとする成分を判定する判定手段とを備えたこと
を特徴とする血液成分測定装置である。
That is, according to the first aspect of the present invention, a first light source which selectively emits light in a wavelength range in which absorption of a component to be measured in blood is large and absorption of other blood components is small. And a second light source that selectively emits light in a wavelength range in which absorption of a component to be measured in blood is small and absorption of other blood components is small;
Light from the second light source is input and the light is emitted from the tip, an optical fiber that can abut on the measurement location, a photosensor that can receive the light that can abut on the measurement location, and emission of the first light source. Blood component measurement, comprising: determining means for determining a component to be measured in blood by comparing each output signal obtained from the photosensor in response to emission of the second light source. Device.

【0013】また、請求項2の本発明は、前記他の血液
成分とは水分であることを特徴とする請求項1記載の血
液成分測定装置である。
According to a second aspect of the present invention, there is provided the blood component measuring apparatus according to the first aspect, wherein the other blood component is water.

【0014】また、請求項3の本発明は、前記光ファイ
バーは束となっており、その光出射端は直線状に配列さ
れ、その光出射端は測定箇所における血管に実質上横切
るように皮膚に密着させられて、線状に光を入射するも
のであり、前記ホトセンサは直線状に配列されたアレイ
であり、その受光端は測定箇所における血管に実質上横
切るように皮膚に密着させられて使用されるものである
ことを特徴とする請求項1記載の血液成分測定装置であ
る。
According to a third aspect of the present invention, the optical fibers are bundled, and the light emitting ends are linearly arranged, and the light emitting ends are placed on the skin so as to substantially cross the blood vessel at the measurement site. The photosensor is an array arranged in a straight line, and the light receiving end thereof is used in close contact with the skin so as to substantially cross a blood vessel at a measurement location. The blood component measuring device according to claim 1, wherein the blood component measuring device is used.

【0015】また、請求項4の本発明は、前記第一の光
源と第二の光源を切り替えるための点灯回路を備えたこ
とを特徴とする請求項1〜3のいずれかに記載の血液成
分測定装置である。
The blood component according to any one of claims 1 to 3, further comprising a lighting circuit for switching between the first light source and the second light source. It is a measuring device.

【0016】また、請求項5の本発明は、前記第一の光
源と第二の光源とから出射される光を互いに異なる周波
数で変調し、同時に点灯させて、前記光ファイバーに入
射させるための点灯回路をさらに備え、前記ホトセンサ
は同時に第一、第二の光源からの光を検出するものであ
り、さらに、前記第一の光源の光と前記第二の光源の光
に対応する前記ホトセンサからのそれぞれの出力信号
を、それぞれの変調周波数に同期して検波することで、
分離するホトセンサアレイ出力検出回路を備えたことを
特徴とする請求項1記載の血液成分測定装置である。
According to a fifth aspect of the present invention, there is provided a lighting device for modulating lights emitted from the first light source and the second light source at mutually different frequencies, lighting the light simultaneously, and causing the light to enter the optical fiber. Further comprising a circuit, wherein the photosensor detects light from the first and second light sources at the same time, and furthermore, the photosensor from the photosensor corresponding to the light from the first light source and the light from the second light source. By detecting each output signal in synchronization with each modulation frequency,
2. The blood component measurement device according to claim 1, further comprising a photosensor array output detection circuit for separating.

【0017】また、請求項6の本発明は、前記判定手段
は、第一の光源の照射における、前記ホトセンサアレイ
のそれぞれの素子から出力される信号のうち、最も計測
しようとする成分の吸収の大きい出力を選択し、第二の
光源の照射においては、前記第一の光源において出力信
号が選択されたホトセンサーアレイの素子から出力され
る信号を選択し、前記第一の光源の場合の選択出力と第
二の光源の場合の選択出力との比を求め、血液中の計測
しようとする成分を判定することを特徴とする請求項3
記載の血液成分測定装置である。
Further, according to a sixth aspect of the present invention, the determination means absorbs a component to be measured most among the signals output from the respective elements of the photosensor array upon irradiation of the first light source. Is selected, and in the irradiation of the second light source, a signal output from the element of the photosensor array whose output signal is selected in the first light source is selected, and in the case of the first light source, 4. The ratio between the selected output and the selected output in the case of the second light source is determined, and a component to be measured in blood is determined.
It is a blood component measuring device of the description.

【0018】また、請求項7の本発明は、血液中の計測
しようとする成分に対する吸収が大きく、かつ、他の血
液成分の吸収の少ない波長域に選択的に光を第一の光源
から放出し、血液中の計測しようとする成分に対する吸
収が小さく、かつ、他の血液成分の吸収の少ない波長域
に選択的に光を第二の光源から放出し、前記第一、第二
の光源からの光を入力させ先端からその光を出射する光
ファイバーを測定個所に当接し、測定個所にホトセンサ
を当接し、第一の光源の出射と第二の光源の出射に対応
して前記ホトセンサから得られるそれぞれの出力信号と
を比較して、血液中の計測しようとする成分を判定する
ことを特徴とする血液成分測定方法である。
According to a seventh aspect of the present invention, light is selectively emitted from the first light source in a wavelength range in which absorption of a component to be measured in blood is large and absorption of other blood components is small. Then, the absorption of the component to be measured in the blood is small, and selectively emits light from the second light source in a wavelength range where the absorption of other blood components is small, and the first and second light sources emit light. An optical fiber that inputs the light and emits the light from the tip is brought into contact with the measurement location, the photosensor is brought into contact with the measurement location, and is obtained from the photosensor corresponding to the emission of the first light source and the emission of the second light source. The blood component measuring method is characterized by comparing each output signal to determine a component to be measured in blood.

【0019】また、請求項8の本発明は、測定しようと
する成分はグルコースであることをことを特徴とする請
求項7記載の血液成分測定方法である。
The invention according to claim 8 is the blood component measuring method according to claim 7, wherein the component to be measured is glucose.

【0020】また、請求項9の本発明は、測定部位であ
る指関節部分より、指付け根方向の測定部位近傍を圧迫
し、測定部位を充血させて測定することを特徴とする請
求項7記載の血液成分測定方法である。
According to a ninth aspect of the present invention, the measurement is performed by compressing the vicinity of the measurement site in the direction of the base of the finger from the finger joint portion, which is the measurement site, and congesting the measurement site. Is a method for measuring blood components.

【0021】また、請求項10の本発明は、近赤外光
を、指の血管に入射させ、前記血管内の血液中を拡散透
過する光を検出してそのグルコースによる吸収を検出
し、さらに前記血管内の血液中をグルコースの吸収の無
い波長の光を用いて血液中の拡散透過光を測定し、両者
の比よりグルコースの濃度を測定することを特徴とする
血液成分測定方法である。
According to a tenth aspect of the present invention, near-infrared light is made incident on a blood vessel of a finger, light diffusely transmitted through blood in the blood vessel is detected, and its absorption by glucose is detected. A blood component measurement method characterized by measuring diffuse transmission light in blood using light having a wavelength that does not absorb glucose in blood in the blood vessel, and measuring the concentration of glucose based on the ratio between the two.

【0022】また、請求項11の本発明は、グルコース
の吸収の大きい波長域の光を皮膚を介して血管に照射し
て得られる吸光度と、グルコースの吸収の少ない波長域
の光を前記皮膚もしくはその近傍の皮膚を介して血管に
照射して得られる吸光度の比からグルコース濃度を求め
ることを特徴とする血液成分測定方法である。
Further, the present invention according to claim 11 is a device for irradiating blood vessels through a skin with light in a wavelength range where glucose absorption is large and light absorbance obtained by irradiating blood vessels with light in a wavelength range where glucose absorption is small. A blood component measurement method characterized by determining a glucose concentration from a ratio of absorbance obtained by irradiating a blood vessel through skin in the vicinity thereof.

【0023】[0023]

【発明の実施の形態】以下に本発明の実施の形態を図面
を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0024】先ず本発明の原理を説明する。成人の指の
1.2μm〜2.4μmの波長領域での分光吸収特性を
図2に示す。縦軸は吸光度を、横軸は波長を示す。
First, the principle of the present invention will be described. FIG. 2 shows the spectral absorption characteristics of an adult finger in the wavelength range of 1.2 μm to 2.4 μm. The vertical axis indicates absorbance and the horizontal axis indicates wavelength.

【0025】1.4μm〜1.5μmおよび1.9μm
〜2μmに水の吸収のピークが示されている。生体に
は、多くの水が含まれ、血液もその約50%が水であ
る。
1.4 μm to 1.5 μm and 1.9 μm
The absorption peak of water is shown at μ2 μm. Living organisms contain a lot of water, and about 50% of blood is water.

【0026】図3に純水の分光吸収特性(試料透過距離
0.5mm)を、グルコース粉末試料(若干の水分を含
む)の分光吸収特性を図4に示す。
FIG. 3 shows the spectral absorption characteristics of pure water (sample transmission distance 0.5 mm), and FIG. 4 shows the spectral absorption characteristics of a glucose powder sample (containing some water).

【0027】純水とグルコース粉末の吸光度特性から、
図2に示す指の吸光度特性において、1.7μm前後お
よび2.1μm前後の特性が、血液中のグルコースの吸
収に対応していることがわかる。
From the absorbance characteristics of pure water and glucose powder,
From the absorbance characteristics of the finger shown in FIG. 2, it can be seen that the characteristics around 1.7 μm and around 2.1 μm correspond to the absorption of glucose in blood.

【0028】このうち血中グルコース濃度との対応のよ
い波長帯域として1.7μm前後の波長域を使用し、グ
ルコースの吸収の影響の少ない1.2〜1.3μmを規
準波長領域とし、両者の吸光度の比からグルコース濃度
を精度良く求めることができる。
Of these, a wavelength band of about 1.7 μm is used as a wavelength band having a good correspondence with the blood glucose concentration, and 1.2 to 1.3 μm, which is less affected by glucose absorption, is set as a reference wavelength region. The glucose concentration can be accurately determined from the absorbance ratio.

【0029】すなわち、グルコースの吸収の大きい1.
7μm前後の波長域の光を皮膚を介して血管に照射して
得られる吸光度と、グルコースの吸収の少ない1.2〜
1.3μmを規準波長領域とする光を前記皮膚もしくは
その近傍の皮膚を介して血管に照射して得られる吸光度
の比からグルコース濃度を精度良く求めることができ
る。
That is, when the absorption of glucose is large.
Absorbance obtained by irradiating blood vessels through the skin with light in a wavelength range of about 7 μm and light absorption of glucose less than 1.2 to 1.2 μm.
The glucose concentration can be accurately determined from the ratio of the absorbance obtained by irradiating the blood vessel with light having a reference wavelength range of 1.3 μm through the skin or the skin in the vicinity thereof.

【0030】次に本実施の形態の構成を説明する。Next, the configuration of the present embodiment will be described.

【0031】図1において、1は光源部、2はその第一
光源、2’は第二光源、3は光ファイバー束、4は指、
5はホトセンサアレイ、6は点灯回路、7はホトセンサ
アレイ出力検出回路、8は制御回路(本発明の判定手段
に相当する)であって、光源1は点灯回路6に接続さ
れ、天候回路6は制御回路8に接続され、出力検出回路
7は制御回路8に接続され、ホトセンサアレイ5は出力
検出回路7に接続されている。
In FIG. 1, 1 is a light source unit, 2 is a first light source, 2 'is a second light source, 3 is an optical fiber bundle, 4 is a finger,
5 is a photosensor array, 6 is a lighting circuit, 7 is a photosensor array output detection circuit, 8 is a control circuit (corresponding to the determination means of the present invention), and the light source 1 is connected to the lighting circuit 6, 6 is connected to the control circuit 8, the output detection circuit 7 is connected to the control circuit 8, and the photosensor array 5 is connected to the output detection circuit 7.

【0032】この場合、第一の光源2は、1.7μm前
後の波長域に発光する半導体レーザもしくは、白熱電球
に光学干渉フイルタを組み合わせたものを用い、第二の
光源2’には、1.2〜1.3μmの波長域に発光する
半導体レーザもしくは、白熱電球に光学干渉フイルタを
組み合わせたものを用いる。さらに、ホトセンサアレイ
5には、例えば1.8μmまで感度のあるGaInPホ
トダイオードのアレイを使用する。
In this case, as the first light source 2, a semiconductor laser emitting light in a wavelength range of about 1.7 μm or a combination of an incandescent light bulb and an optical interference filter is used. A semiconductor laser that emits light in a wavelength range of 0.2 to 1.3 μm or a combination of an incandescent lamp and an optical interference filter is used. Further, as the photosensor array 5, an array of GaInP photodiodes having a sensitivity of, for example, 1.8 μm is used.

【0033】このような構成を有する本実施の形態にお
いて、光源部1で血液中グルコースの吸収の大きくか
つ、他の血液成分たとえば水の吸収の少ない波長域に選
択的に光を放出する第一の光源2から、そのような光を
光ファイバー束3に入射させる。
In this embodiment having such a configuration, the first light source unit 1 selectively emits light into a wavelength region where absorption of glucose in blood is large and absorption of other blood components such as water is small. Such light is made incident on the optical fiber bundle 3 from the light source 2.

【0034】光ファイバー束3の出射端を直線状に配置
し、測定部位である指4の関節部の曲げの内側の曲げに
平行に、すなわち血管40に横切るように皮膚に密着さ
せて線状に光を入射させる。そして、指4の生体組織中
を拡散透過した光を、指関節の曲げの内側の曲げに平行
に、すなわち血管40に横切るように皮膚に密着したホ
トセンサアレイ5で受光する。
The output end of the optical fiber bundle 3 is linearly arranged, and is linearly adhered to the skin so as to be parallel to the inside of the bend of the joint of the finger 4 as a measurement site, that is, so as to cross the blood vessel 40. Light is incident. Then, the light diffusely transmitted through the living tissue of the finger 4 is received by the photosensor array 5 which is in close contact with the skin so as to be parallel to the bending inside the bending of the finger joint, that is, to cross the blood vessel 40.

【0035】ホトセンサアレイ5の出力検出は、第一の
光源2の点灯を制御する点灯回路6からの同期信号によ
り、第一の光源2の点灯周波数に同期してホトセンサア
レイ出力検出回路7で検波し、さらに制御回路8で、ホ
トセンサアレイ5のそれぞれに対応する検出信号出力の
うち、血管40、41、42中の拡散光路の長い、すな
わち最もグルコースの吸収の大きい血管40を検出して
いるアレイの出力を選択する。
The output of the photosensor array 5 is detected in synchronization with the lighting frequency of the first light source 2 by a synchronization signal from a lighting circuit 6 for controlling the lighting of the first light source 2. The control circuit 8 detects the longest diffused light path among the blood vessels 40, 41 and 42, that is, the blood vessel 40 having the largest glucose absorption among the detection signal outputs corresponding to the respective photosensor arrays 5. The output of the current array.

【0036】次に、制御回路8からの信号により光源を
第二の光源2’に切り替える。第二の光源2’は、第一
の光源2の波長帯域と同程度の血液および生体中の吸収
特性を示し、かつグルコースの吸収の少ない波長帯域に
選択的に光を放出する光源である。第二の光源2’での
照明において、第一の光源2において出力信号を採用し
たホトセンサーアレイ5の素子の信号を第二の光源2’
の点灯周波数に同期してホトセンサアレイ出力検出回路
7で検波し、制御回路8で、第一の光源2の場合の選択
出力との比を求め、グルコースの吸収の特性を分離す
る。
Next, the light source is switched to the second light source 2 'according to a signal from the control circuit 8. The second light source 2 ′ is a light source that exhibits similar absorption characteristics in blood and living body as the wavelength band of the first light source 2 and selectively emits light to a wavelength band in which glucose is less absorbed. In the illumination by the second light source 2 ′, the signal of the element of the photosensor array 5 employing the output signal in the first light source 2 is converted to the second light source 2 ′.
The light is detected by the photosensor array output detection circuit 7 in synchronization with the lighting frequency of the light source, and the control circuit 8 calculates the ratio with the selected output in the case of the first light source 2 to separate the glucose absorption characteristics.

【0037】これにより、光照射、光検出の位置合わせ
を厳密に行うことなく精度よい血液中のグルコース濃度
の測定を実現できる。
As a result, accurate measurement of the glucose concentration in blood can be realized without strictly performing positioning of light irradiation and light detection.

【0038】尚、光の照射位置と照射されて反射拡散し
た光を受光する位置とは、本実施の形態のように、ほぼ
近傍の位置関係であっても良いが(図面上では見やすさ
のため離して記載している)、同一の位置に照射し受光
するように構成してもよいものである。
It should be noted that the light irradiation position and the light receiving and reflected and diffused light receiving position may be in a substantially close positional relationship as in the present embodiment (in the drawing, it is easy to see). Therefore, they may be configured to irradiate and receive light at the same position.

【0039】また、測定部位である指関節部分より、指
付け根方向の測定部位近傍を圧迫し、測定部位を充血さ
せて測定することが好ましい。
It is preferable that the measurement is performed by compressing the vicinity of the measurement site in the direction of the base of the finger from the finger joint portion, which is the measurement site, and congesting the measurement site.

【0040】[0040]

【発明の効果】以上のように本発明によれば、生体を傷
つけることなく非侵襲に、かつ、光照射、光検出の位置
合わせを厳密に行うことなく、精度よい血液中のグルコ
ース濃度測定が可能となる。
As described above, according to the present invention, accurate measurement of glucose concentration in blood can be performed non-invasively without damaging a living body, and without strictly performing alignment of light irradiation and light detection. It becomes possible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態における非侵襲血中グル
コース濃度測定装置の構成図
FIG. 1 is a configuration diagram of a noninvasive blood glucose concentration measuring apparatus according to an embodiment of the present invention.

【図2】成人の指の1.2μm〜2.4μmの波長領域
での分光吸収特性図
FIG. 2 is a diagram showing spectral absorption characteristics of an adult finger in a wavelength range of 1.2 μm to 2.4 μm.

【図3】純水の1.2μm〜2.4μmの波長領域での
分光吸収特性(試料透過距離0.5mm)の測定例を示す
特性図
FIG. 3 is a characteristic diagram showing a measurement example of spectral absorption characteristics (sample transmission distance 0.5 mm) in a wavelength range of 1.2 μm to 2.4 μm of pure water.

【図4】グルコース粉末試料(若干の水分を含む)の
1.2μm〜2.4μmの波長領域での分光吸収特性の
測定例を示す特性図
FIG. 4 is a characteristic diagram showing a measurement example of a spectral absorption characteristic of a glucose powder sample (containing some moisture) in a wavelength region of 1.2 μm to 2.4 μm.

【符号の説明】[Explanation of symbols]

1 光源部 2 第一の光源 2’ 第二の光源 3 光ファイバー束 4 指 5 ホトセンサ・アレイ 6 点灯回路 7 ホトセンサーアレイ出力検出回路 8 制御回路 Reference Signs List 1 light source unit 2 first light source 2 'second light source 3 optical fiber bundle 4 finger 5 photosensor array 6 lighting circuit 7 photosensor array output detection circuit 8 control circuit

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】血液中の計測しようとする成分に対する吸
収が大きく、かつ、他の血液成分の吸収の少ない波長域
に選択的に光を放出する第一の光源と、血液中の計測し
ようとする成分に対する吸収が小さく、かつ、他の血液
成分の吸収の少ない波長域に選択的に光を放出する第二
の光源と、前記第一、第二の光源からの光を入力し先端
からその光を出射する、測定個所に当接可能な光ファイ
バーと、測定個所に当接可能な、光を受光するホトセン
サと、第一の光源の出射と第二の光源の出射に対応して
前記ホトセンサから得られるそれぞれの出力信号とを比
較して、血液中の計測しようとする成分を判定する判定
手段とを備えたことを特徴とする血液成分測定装置。
1. A first light source which selectively emits light in a wavelength range in which absorption of a component to be measured in blood is large and absorption of other blood components is small, and a measurement in blood. A second light source that selectively emits light in a wavelength range in which absorption of components to be performed is small and absorption of other blood components is small, and light from the first and second light sources is input from the tip thereof. Emitting light, an optical fiber that can abut on the measurement location, a photosensor that can abut on the measurement location, receive light, and the photosensor corresponding to the emission of the first light source and the emission of the second light source A blood component measuring device comprising: a determination unit that compares each of the obtained output signals to determine a component to be measured in blood.
【請求項2】前記他の血液成分とは水分であることを特
徴とする請求項1記載の血液成分測定装置。
2. The blood component measuring device according to claim 1, wherein the other blood component is water.
【請求項3】前記光ファイバーは束となっており、その
光出射端は直線状に配列され、その光出射端は測定箇所
における血管に実質上横切るように皮膚に密着させられ
て、線状に光を入射するものであり、前記ホトセンサは
直線状に配列されたアレイであり、その受光端は測定箇
所における血管に実質上横切るように皮膚に密着させら
れて使用されるものであることを特徴とする請求項1記
載の血液成分測定装置。
3. The optical fiber is bundled, and its light emitting end is arranged in a straight line, and its light emitting end is brought into close contact with the skin so as to substantially cross a blood vessel at a measuring point, and is linearly arranged. Light is incident, the photosensor is an array arranged in a straight line, and a light receiving end thereof is used in close contact with the skin so as to substantially cross a blood vessel at a measurement point. The blood component measuring device according to claim 1, wherein
【請求項4】前記第一の光源と第二の光源を切り替える
ための点灯回路を備えたことを特徴とする請求項1〜3
のいずれかに記載の血液成分測定装置。
4. A lighting circuit for switching between the first light source and the second light source.
The blood component measurement device according to any one of the above.
【請求項5】前記第一の光源と第二の光源とから出射さ
れる光を互いに異なる周波数で変調し、同時に点灯させ
て、前記光ファイバーに入射させるための点灯回路をさ
らに備え、 前記ホトセンサは同時に第一、第二の光源からの光を検
出するものであり、 さらに、前記第一の光源の光と前記第二の光源の光に対
応する前記ホトセンサからのそれぞれの出力信号を、そ
れぞれの変調周波数に同期して検波することで、分離す
るホトセンサアレイ出力検出回路を備えたことを特徴と
する請求項1記載の血液成分測定装置。
5. A lighting circuit for modulating light emitted from the first light source and the second light source at frequencies different from each other, lighting the lights at the same time, and causing the light to enter the optical fiber. At the same time, to detect the light from the second light source, further, each output signal from the photosensor corresponding to the light of the first light source and the light of the second light source, each of the 2. The blood component measurement device according to claim 1, further comprising a photosensor array output detection circuit that separates by detecting in synchronization with the modulation frequency.
【請求項6】前記判定手段は、第一の光源の照射におけ
る、前記ホトセンサアレイのそれぞれの素子から出力さ
れる信号のうち、最も計測しようとする成分の吸収の大
きい出力を選択し、第二の光源の照射においては、前記
第一の光源において出力信号が選択されたホトセンサー
アレイの素子から出力される信号を選択し、前記第一の
光源の場合の選択出力と第二の光源の場合の選択出力と
の比を求め、血液中の計測しようとする成分を判定する
ことを特徴とする請求項3記載の血液成分測定装置。
6. The determination means selects an output having a large absorption of a component to be measured among signals output from the respective elements of the photosensor array upon irradiation of a first light source, In the irradiation of the second light source, a signal output from the element of the photosensor array whose output signal has been selected in the first light source is selected, and the selected output in the case of the first light source and the output of the second light source are selected. 4. The blood component measuring device according to claim 3, wherein a ratio of the selected output to the selected output is determined, and a component to be measured in the blood is determined.
【請求項7】血液中の計測しようとする成分に対する吸
収が大きく、かつ、他の血液成分の吸収の少ない波長域
に選択的に光を第一の光源から放出し、血液中の計測し
ようとする成分に対する吸収が小さく、かつ、他の血液
成分の吸収の少ない波長域に選択的に光を第二の光源か
ら放出し、前記第一、第二の光源からの光を入力させ先
端からその光を出射する光ファイバーを測定個所に当接
し、測定個所にホトセンサを当接し、第一の光源の出射
と第二の光源の出射に対応して前記ホトセンサから得ら
れるそれぞれの出力信号とを比較して、血液中の計測し
ようとする成分を判定することを特徴とする血液成分測
定方法。
7. A method according to claim 1, wherein light is selectively emitted from the first light source in a wavelength range in which absorption of components to be measured in blood is large and absorption of other blood components is small. The absorption for the component is small, and selectively emits light from the second light source in a wavelength range where the absorption of other blood components is small, and the light from the first and second light sources is input from the tip to allow the light to enter. An optical fiber that emits light is brought into contact with a measurement location, a photosensor is brought into contact with the measurement location, and the respective output signals obtained from the photosensor corresponding to the emission of the first light source and the emission of the second light source are compared. And determining a component in the blood to be measured.
【請求項8】測定しようとする成分はグルコースである
ことをことを特徴とする請求項7記載の血液成分測定方
法。
8. The blood component measuring method according to claim 7, wherein the component to be measured is glucose.
【請求項9】測定部位である指関節部分より、指付け根
方向の測定部位近傍を圧迫し、測定部位を充血させて測
定することを特徴とする請求項7記載の血液成分測定方
法。
9. The blood component measuring method according to claim 7, wherein the vicinity of the measurement part in the direction of the base of the finger is pressed from the finger joint part as the measurement part, and the measurement part is congested for measurement.
【請求項10】近赤外光を、指の血管に入射させ、前記
血管内の血液中を拡散透過する光を検出してそのグルコ
ースによる吸収を検出し、 さらに前記血管内の血液中をグルコースの吸収の無い波
長の光を用いて血液中の拡散透過光を測定し、両者の比
よりグルコースの濃度を測定することを特徴とする血液
成分測定方法。
10. A near-infrared light is made incident on a blood vessel of a finger, light diffusely transmitted through blood in the blood vessel is detected, absorption by glucose is detected, and glucose in blood in the blood vessel is further detected. A method for measuring blood components, comprising measuring diffuse transmission light in blood using light having a wavelength that does not absorb light, and measuring the concentration of glucose from the ratio between the two.
【請求項11】グルコースの吸収の大きい波長域の光を
皮膚を介して血管に照射して得られる吸光度と、グルコ
ースの吸収の少ない波長域の光を前記皮膚もしくはその
近傍の皮膚を介して血管に照射して得られる吸光度の比
からグルコース濃度を求めることを特徴とする血液成分
測定方法。
11. An absorbance obtained by irradiating a blood vessel through the skin with light in a wavelength range where glucose absorption is high, and a light in a wavelength range where glucose absorption is low through the skin or a skin near the skin. A blood component measuring method, wherein a glucose concentration is determined from a ratio of absorbances obtained by irradiating the blood.
JP9310890A 1997-11-12 1997-11-12 Blood component measuring device, and method Pending JPH11137538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9310890A JPH11137538A (en) 1997-11-12 1997-11-12 Blood component measuring device, and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9310890A JPH11137538A (en) 1997-11-12 1997-11-12 Blood component measuring device, and method

Publications (1)

Publication Number Publication Date
JPH11137538A true JPH11137538A (en) 1999-05-25

Family

ID=18010622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9310890A Pending JPH11137538A (en) 1997-11-12 1997-11-12 Blood component measuring device, and method

Country Status (1)

Country Link
JP (1) JPH11137538A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990083994A (en) * 1999-09-01 1999-12-06 조현우 Blood vessel search device
KR20000075056A (en) * 1999-05-28 2000-12-15 임현수 A potosensor system used in measuring oxygen saturation and amout of blood flow
JP2004504905A (en) * 2000-08-02 2004-02-19 センシス メディカル インク Apparatus and method for reproducibly correcting local absorption and scattering coefficients at a tissue measurement site during optical sampling
JP2007075445A (en) * 2005-09-15 2007-03-29 Olympus Medical Systems Corp Image pickup system
JP2007135621A (en) * 2005-11-14 2007-06-07 Konica Minolta Sensing Inc Biological information measuring instrument
WO2012049753A1 (en) 2010-10-14 2012-04-19 株式会社日立製作所 Equipment for in vivo data acquisition and analysis
JP2018504945A (en) * 2015-12-09 2018-02-22 アイアイエスエム インコーポレイテッド Blood collection measurement correction method and apparatus without blood collection

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000075056A (en) * 1999-05-28 2000-12-15 임현수 A potosensor system used in measuring oxygen saturation and amout of blood flow
KR19990083994A (en) * 1999-09-01 1999-12-06 조현우 Blood vessel search device
JP2004504905A (en) * 2000-08-02 2004-02-19 センシス メディカル インク Apparatus and method for reproducibly correcting local absorption and scattering coefficients at a tissue measurement site during optical sampling
JP2007075445A (en) * 2005-09-15 2007-03-29 Olympus Medical Systems Corp Image pickup system
JP2007135621A (en) * 2005-11-14 2007-06-07 Konica Minolta Sensing Inc Biological information measuring instrument
US8195261B2 (en) 2005-11-14 2012-06-05 Konica Minolta Sensing, Inc. Vital information measuring device
WO2012049753A1 (en) 2010-10-14 2012-04-19 株式会社日立製作所 Equipment for in vivo data acquisition and analysis
CN103260515A (en) * 2010-10-14 2013-08-21 株式会社日立制作所 Equipment for in vivo data acquisition and analysis
JP5623540B2 (en) * 2010-10-14 2014-11-12 株式会社日立製作所 Biological information acquisition and analysis device
JP2018504945A (en) * 2015-12-09 2018-02-22 アイアイエスエム インコーポレイテッド Blood collection measurement correction method and apparatus without blood collection

Similar Documents

Publication Publication Date Title
US6026314A (en) Method and device for noninvasive measurements of concentrations of blood components
CN1771885B (en) Apparatus and method for measuring blood component using light trans-reflectance
AU749033B2 (en) Apparatus and method for noninvasive glucose measurement
CA2605467C (en) Systems and methods for correcting optical reflectance measurements
US6172743B1 (en) Technique for measuring a blood analyte by non-invasive spectrometry in living tissue
RU2122208C1 (en) Method and device for measuring glucose concentration in blood
US7307258B2 (en) Terahertz system for detecting the burn degree of skin
JPH1085204A (en) Tissue chromophore measuring system
WO1992017765A1 (en) Method and apparatus for glucose concentration monitoring
JP2004290544A (en) Blood analyzer
JP4472794B2 (en) Glucose concentration determination device
US9888855B2 (en) Reflection detection type measurement apparatus and method for skin autofluorescence
US20070110621A1 (en) Method and apparatus for measuring analytes
WO2005006984A1 (en) Biological information measurement device
JP2007083028A (en) Noninvasive inspecting apparatus
JPH11137538A (en) Blood component measuring device, and method
JPH07132120A (en) Nonaggressive measuring method and device of specimen concentration using discontinuous emission
JP4052461B2 (en) Non-invasive measuring device for blood glucose level
KR100300960B1 (en) Method and device for noninvasive determination of the concentrations of blood components
JP2641575B2 (en) Glucose non-invasive measuring device
US10627405B2 (en) Detection device and biological information measuring device
KR20070055614A (en) Instrument for noninvasively measuring blood sugar level
JPH0928697A (en) Optical measurement instrument
CN108670269A (en) A kind of human body Woundless blood sugar measuring device based on scatter energy
JPH10234737A (en) Metabolic information measuring probe