JPH11135436A - Formation of compound semiconductor film - Google Patents

Formation of compound semiconductor film

Info

Publication number
JPH11135436A
JPH11135436A JP29705497A JP29705497A JPH11135436A JP H11135436 A JPH11135436 A JP H11135436A JP 29705497 A JP29705497 A JP 29705497A JP 29705497 A JP29705497 A JP 29705497A JP H11135436 A JPH11135436 A JP H11135436A
Authority
JP
Japan
Prior art keywords
compound semiconductor
semiconductor film
substrate
reaction chamber
source gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29705497A
Other languages
Japanese (ja)
Inventor
Hisashi Sakai
久 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP29705497A priority Critical patent/JPH11135436A/en
Publication of JPH11135436A publication Critical patent/JPH11135436A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a compound semiconductor film having a small dislocation density and surface roughness. SOLUTION: In a method, a substrate 3 is disposed within a reaction chamber 1, and a material or source gas therein is dissociated and reacted to thereby form a compound semiconductor film on the substrate 3. At an early stage of forming the compound semiconductor film, laser light L is irradiated from outside of the reaction chamber 1 to the source gas as parallel to the substrate 3 to dissociate the gas and to form the compound semiconductor film on the substrate 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は化合物半導体膜の形
成方法に関し、特に半導体集積回路や電界効果トランジ
スタなどを形成するための化合物半導体膜の形成方法に
関する。
The present invention relates to a method of forming a compound semiconductor film, and more particularly to a method of forming a compound semiconductor film for forming a semiconductor integrated circuit, a field effect transistor, and the like.

【0002】[0002]

【従来の技術および発明が解決しようとする課題】Si
基板上に光学的特性や高速性に優れるGaAs、In
P、GaNなどの化合物半導体を成長できれば、化合物
半導体エピタキシャル基板の低コスト化だけでなく、O
EIC(Optoelectronic integrated circuit )などの
機能素子やMMIC(Monolithic Microwave Integrate
d Circuit )などの安価な化合物半導体集積回路の製作
が可能となる。
BACKGROUND OF THE INVENTION Problems to be Solved by the Invention
GaAs, In with excellent optical characteristics and high speed on the substrate
If compound semiconductors such as P and GaN can be grown, not only can the cost of the compound semiconductor epitaxial substrate be reduced, but also O
Functional elements such as EIC (Optoelectronic integrated circuit) and MMIC (Monolithic Microwave Integrate)
d Circuit) can be manufactured at low cost.

【0003】ところが、SiとGaAsは格子定数が4
%程度相違することから、Si基板上にGaAsなどの
化合物半導体膜を形成する場合、大きな密度の転位や表
面ラフネス(粗面)が発生したり、残留内部応力による
基板の反りが発生するために、ホモエピタキシャル成長
させる場合よりも、デバイス特性が劣るという問題があ
った。
However, Si and GaAs have a lattice constant of 4
%, A compound semiconductor film such as GaAs is formed on a Si substrate. If a compound semiconductor film such as GaAs is formed on the Si substrate, a large density of dislocations or surface roughness (rough surface) occurs, or the substrate is warped due to residual internal stress. However, there is a problem that device characteristics are inferior to those in the case of homoepitaxial growth.

【0004】そこで、このような表面モホロジー(ラフ
ネス)を改善するために、Si基板上にGaAsなどの
異種半導体を形成する場合、従来は二段階成長法、熱サ
イクルアニール法、超格子法、Inドーピング法、TE
G(トリエチルガリウム)法、研磨・再成長法などを採
用して形成していた。
[0004] In order to improve such surface morphology (roughness), when a heterogeneous semiconductor such as GaAs is formed on a Si substrate, conventionally, a two-step growth method, a thermal cycle annealing method, a superlattice method, In Doping method, TE
It was formed by employing a G (triethyl gallium) method, a polishing / regrowth method, or the like.

【0005】このうち、二段階成長法とは、化合物半導
体膜を最初は低温で形成して、次に高温で形成する方法
である。熱サイクルアニール法とは、化合物半導体膜の
形成途中で形成を一旦中止して加熱と冷却を繰り返す方
法である。超格子法とは、化合物半導体膜の膜中に格子
定数が若干異なる層を介在させて転位を側方に逃す方法
である。Inドーピング法とは、化合物半導体膜中にI
nを2%ドーピングする方法である。TEG法とは、ガ
リウムの原料ガスとしてトリエチルガリウム((C2
5 3 Ga)を用いる方法である。研磨・再成長法と
は、Si基板上にGaAsを通常の方法で成長させた
後、表面を化学研磨又は機械研磨する方法である。
[0005] The two-stage growth method is a method in which a compound semiconductor film is formed first at a low temperature and then at a high temperature. The thermal cycle annealing method is a method in which the formation is temporarily stopped during the formation of the compound semiconductor film and heating and cooling are repeated. The superlattice method is a method in which a layer having a slightly different lattice constant is interposed in a compound semiconductor film to allow dislocations to escape laterally. The In doping method means that the compound semiconductor film
This is a method of doping n by 2%. The TEG method means that triethyl gallium ((C 2 H
5) a 3 Ga) method using a. The polishing / regrowth method is a method in which GaAs is grown on a Si substrate by an ordinary method, and then the surface is chemically polished or mechanically polished.

【0006】ところが、これらの形成方法では、プロセ
スが複雑で、プロセス時間が長く、高コストであるなど
の問題があった。
However, these forming methods have problems in that the process is complicated, the process time is long, and the cost is high.

【0007】また、上記化合物半導体膜の形成方法のう
ち、二段階成長法では、当初は350〜450℃程度の
温度で堆積させてアモルファス状の化合物半導体膜(初
期膜)を薄く形成して一旦停止し、次に550〜650
℃に昇温してアニールした後、さらにこの温度で化合物
半導体膜を堆積して初期膜で転位を逃すようにしたもの
である。
[0007] In the two-step growth method among the above-mentioned compound semiconductor film formation methods, an amorphous compound semiconductor film (initial film) is initially formed by depositing at a temperature of about 350 to 450 ° C. Stop, then 550-650
After the temperature was raised to ° C and annealing was performed, a compound semiconductor film was further deposited at this temperature so that dislocations were missed in the initial film.

【0008】この二段階成長法では、他の成長法に比較
して初期膜を比較的低温で形成するものの、依然として
350〜450℃で形成することから、転位密度と表面
ラフネスが依然として大きく、さらに低温で形成するこ
とが望まれていた。
In this two-stage growth method, although the initial film is formed at a relatively low temperature as compared with other growth methods, it is still formed at 350 to 450 ° C., so that the dislocation density and the surface roughness are still large. It was desired to form at a low temperature.

【0009】また、特開平4−212415号公報に
は、Si基板上に、GaAsなどの化合物半導体膜を形
成する際に、ArFエキシマレーザー光などを照射しな
がら形成することが開示されているが、基板にArFエ
キシマレーザー光を直接照射すると、レーザー光の強度
を増加させた場合、基板および蒸着膜に損傷が起こるこ
とや、転位密度や表面ラフネスの面内分布が悪いという
問題があった。
Japanese Patent Application Laid-Open No. 4-212415 discloses that a compound semiconductor film such as GaAs is formed on a Si substrate while irradiating an ArF excimer laser beam or the like. When the substrate is directly irradiated with ArF excimer laser light, when the intensity of the laser light is increased, there is a problem that the substrate and the deposited film are damaged, and the in-plane distribution of dislocation density and surface roughness is poor.

【0010】本発明は、このような従来方法の問題点に
鑑みてなされたものであり、化合物半導体膜の転位密度
と表面ラフネスが大きいという問題点を解消した化合物
半導体膜の形成方法を提供することを目的とする。
The present invention has been made in view of such problems of the conventional method, and provides a method of forming a compound semiconductor film which has solved the problems of large dislocation density and surface roughness of the compound semiconductor film. The purpose is to:

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る化合物半導体膜の形成方法では、反応
室内に基板を設置してこの反応室内に導入した複数の原
料ガスを分解して他の原料ガスの成分と反応させること
によって前記基板上に化合物半導体膜を堆積させる化合
物半導体膜の形成方法において、前記化合物半導体膜を
堆積させる初期において、レーザー光を前記反応室の外
部から前記原料ガスに前記基板と平行に照射して前記複
数の原料ガスを分解して反応させることによって、前記
基板上に前記化合物半導体膜を堆積させる。
In order to achieve the above object, in a method for forming a compound semiconductor film according to the present invention, a substrate is placed in a reaction chamber and a plurality of source gases introduced into the reaction chamber are decomposed. In the method of forming a compound semiconductor film on the substrate by reacting with a component of another source gas, in the initial stage of depositing the compound semiconductor film, a laser beam is applied from outside the reaction chamber to the compound semiconductor film. The compound semiconductor film is deposited on the substrate by irradiating a source gas in parallel with the substrate to decompose and react the plurality of source gases.

【0012】また、本発明に係る化合物半導体膜の形成
方法では、前記化合物半導体膜が100〜2000Åの
厚みになるまで、前記レーザー光を前記原料ガスに照射
することが望ましい。
In the method of forming a compound semiconductor film according to the present invention, it is preferable that the source gas is irradiated with the laser beam until the thickness of the compound semiconductor film becomes 100 to 2000 °.

【0013】また、本発明に係る化合物半導体膜の形成
方法では、前記レーザー光が原料ガスお光吸収が起こる
200nm以下の発振波長を有するエキシマレーザーで
あることが望ましい。
In the method of forming a compound semiconductor film according to the present invention, it is preferable that the laser light is an excimer laser having an oscillation wavelength of 200 nm or less at which light absorption of a source gas occurs.

【0014】さらに、本発明に係る化合物半導体膜の形
成方法では、前記反応室に前記レーザー光を取り入れる
窓を設け、この窓に不活性ガスを照射しながら、前記レ
ーザー光を前記原料ガスに照射することが望ましい。
Further, in the method of forming a compound semiconductor film according to the present invention, a window for introducing the laser beam is provided in the reaction chamber, and the laser beam is irradiated on the source gas while irradiating the window with an inert gas. It is desirable to do.

【0015】[0015]

【発明の実施の形態】以下、本発明を添付図面に基づき
詳細に説明する。図1は、本発明に係る化合物半導体膜
の形成方法の一実施形態を示す図であり、(a)は上方
から見た図、(b)は側方から見た図である。図1中、
1は反応室、2はサセプタ、3は基板である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. 1A and 1B are diagrams showing one embodiment of a method for forming a compound semiconductor film according to the present invention, wherein FIG. 1A is a diagram viewed from above, and FIG. 1B is a diagram viewed from the side. In FIG.
1 is a reaction chamber, 2 is a susceptor, and 3 is a substrate.

【0016】前記反応室1には、原料ガス供給口4が設
けられていると共に、反応室1の外部には、レーザー5
と光学系6が設けられている。
A source gas supply port 4 is provided in the reaction chamber 1, and a laser 5 is provided outside the reaction chamber 1.
And an optical system 6 are provided.

【0017】前記基板3は、シリコン(Si)やガリウ
ム砒素(GaAs)などの半導体基板、又はサファイア
(Al2 3 )などの絶縁基板などから成る。
The substrate 3 comprises a semiconductor substrate such as silicon (Si) or gallium arsenide (GaAs), or an insulating substrate such as sapphire (Al 2 O 3 ).

【0018】前記サセプタ2はカーボンなどから成り、
その下部には基板3を加熱すると共に、原料ガスを熱分
解するためのヒータ7が設けられている。
The susceptor 2 is made of carbon or the like.
A heater 7 for heating the substrate 3 and thermally decomposing the source gas is provided below the substrate 3.

【0019】本発明に係る化合物半導体膜の形成方法で
は、GaAs、GaP、InP、GaN、InGaA
s、AlGaAs、InGaNなどの各種半導体膜が形
成される。
In the method of forming a compound semiconductor film according to the present invention, GaAs, GaP, InP, GaN, InGaAs
Various semiconductor films such as s, AlGaAs, and InGaN are formed.

【0020】このような半導体膜を形成するための原料
ガスとしては、(CH3 3 Ga、(C2 5 3
a、(CH3 3 In、(C2 5 3 In、(C
3 3 Al、(C2 5 3 Al、AsH3 、P
3 、NH3 などの原料ガスが用いられると共に、水素
(H2 )などのキャリアガスが用いられる。
Source gases for forming such a semiconductor film include (CH 3 ) 3 Ga and (C 2 H 5 ) 3 G
a, (CH 3 ) 3 In, (C 2 H 5 ) 3 In, (C
H 3 ) 3 Al, (C 2 H 5 ) 3 Al, AsH 3 , P
Source gases such as H 3 and NH 3 are used, and a carrier gas such as hydrogen (H 2 ) is used.

【0021】レーザー5としては、発振波長が193n
mのArFエキシマレーザーなどが用いられ、100〜
500mJ/pulseの発振パルスエネルギーで10
0〜200Hz程度の発振繰り返し数で駆動される。
The laser 5 has an oscillation wavelength of 193n.
m of ArF excimer laser or the like is used.
10 at an oscillation pulse energy of 500 mJ / pulse
It is driven at an oscillation repetition rate of about 0 to 200 Hz.

【0022】化合物半導体の原料である水素化物や有機
金属は、200nm以下の紫外光を吸収して分解するこ
とが知られている。NH3 、AsH3 、(CH3 3
aあるいは(CH3 3 Alなどを高輝度紫外線ArF
エキシマレーザー(193nm)を用いて分解させるこ
とにより、低温で砒化物あるいは窒化物半導体薄膜が形
成できる。このレーザー光の発振波長が200nm以上
になると、原料ガスガスがレーザー光を吸収しないた
め、分解することができなくなる。
It is known that hydrides and organic metals, which are raw materials for compound semiconductors, absorb ultraviolet light of 200 nm or less and decompose. NH 3 , AsH 3 , (CH 3 ) 3 G
a or (CH 3 ) 3 Al, etc.
By decomposing using an excimer laser (193 nm), an arsenide or nitride semiconductor thin film can be formed at a low temperature. When the oscillation wavelength of the laser light is 200 nm or more, the source gas does not absorb the laser light, and thus cannot be decomposed.

【0023】このレーザー光Lは走査ミラー6aによっ
てレーザー光線Lが基板3上の全領域に走査して照射で
きるように構成されていると共に、シリンドリカルレン
ズ6bによって基板3と平行な光線となるように構成さ
れている。このように、基板3と平行な光線を照射する
と、レーザー光線Lが基板3に直接照射されることはな
く、基板3の直上の原料ガスに光照射することができ、
基板全面に半導体薄膜を形成することができる。
The laser beam L is configured to be able to scan and irradiate the entire area on the substrate 3 with the laser beam L by the scanning mirror 6a, and is configured to be parallel to the substrate 3 by the cylindrical lens 6b. Have been. As described above, when the light beam parallel to the substrate 3 is irradiated, the laser beam L is not directly irradiated to the substrate 3 but can be irradiated to the raw material gas immediately above the substrate 3.
A semiconductor thin film can be formed over the entire surface of the substrate.

【0024】また、合成石英ガラスなどから成る反応室
1のレーザー光Lの導入窓1aへの蒸着物の付着による
レーザー強度の低下を抑制するために、反応室1の内側
のレーザー光導入窓1aにH2 ガスを吹き付けることが
望ましい。
Further, in order to suppress a decrease in laser intensity due to deposition of a deposit on the introduction window 1a of the laser beam L of the reaction chamber 1 made of synthetic quartz glass or the like, the laser beam introduction window 1a inside the reaction chamber 1 is suppressed. It is desirable to blow H 2 gas to the surface.

【0025】膜厚分布を改善するために、反応室1内に
導入されたレーザー光Lは原料ガスの光吸収により光強
度が減少するので、原料ガスの圧力を1〜50Torr
に設定すると共に、供給流量を例えばGaAsの場合で
あれば、TMGのH2 キャリアガス流量を5〜25cc
/minで、20%AsH3 /H2 ガス流量を50〜5
00cc/minに調整し、原料ガスの濃度制御を行
う。つまり、原料ガスごとに光吸収係数が異なるため、
原料により供給流量を異ならしめる。
In order to improve the film thickness distribution, the laser beam L introduced into the reaction chamber 1 has a reduced light intensity due to the light absorption of the source gas.
And the supply flow rate is, for example, GaAs, the TMG H 2 carrier gas flow rate is 5 to 25 cc.
/ Min, the 20% AsH 3 / H 2 gas flow rate is set to 50 to 5
The concentration is adjusted to 00 cc / min to control the concentration of the source gas. In other words, since the light absorption coefficient differs for each source gas,
The supply flow rate varies depending on the raw material.

【0026】本発明では、化合物半導体膜が100〜2
000Åの厚みになるまでレーザー光Lを原料ガスに照
射することが望ましい。すなわち、厚みが100Å以下
の場合は、化合物半導体による基板1の被覆率が充分で
なく、部分的にしか膜を形成できず、バッファ層として
機能しない。また、バッファ層は、その厚みが2000
Å以上の場合は、後工程におけるアニールで構成原子が
動かず、結晶性の改善が行われにくくなるため、バッフ
ァ層としての効果がなくなる。したがって、バッファ層
を形成するときだけ、原料ガスにレーザー光Lを照射す
るのであれば、2000Åの厚みまで照射すれば充分で
ある。
In the present invention, the compound semiconductor film has a thickness of 100 to 2
It is desirable to irradiate the source gas with the laser beam L until the thickness becomes 000 mm. That is, when the thickness is 100 ° or less, the coverage of the substrate 1 with the compound semiconductor is not sufficient, the film can be formed only partially, and does not function as a buffer layer. The buffer layer has a thickness of 2000
In the case of Å or more, constituent atoms do not move by annealing in a later step, and it becomes difficult to improve crystallinity, so that the effect as a buffer layer is lost. Therefore, if the raw material gas is irradiated with the laser beam L only when forming the buffer layer, it is sufficient to irradiate the raw material gas to a thickness of 2000 °.

【0027】このように、バッファ層を形成するときだ
け、原料ガスにレーザー光Lを照射して形成すればよ
く、その後は原料ガスをヒータ7で加熱して熱分解させ
ることによって堆積させればよい。この際には、従来か
ら周知の熱サイクルアニール法や超格子法などを適宜採
用して形成される。
As described above, only when the buffer layer is formed, the source gas may be formed by irradiating the laser beam L, and thereafter, the source gas is heated by the heater 7 to be thermally decomposed and deposited. Good. In this case, a well-known thermal cycle annealing method, a superlattice method, or the like is used as appropriate.

【0028】[0028]

【発明の効果】以上のように、本発明に係る化合物半導
体膜の形成方法によれば、レーザー光を反応室の外部か
ら原料ガスに基板と平行に照射して分解して反応させる
ことによって、基板上に化合物半導体膜を堆積させるこ
とから、複雑なプロセスを用いることなくアモルファス
状の砒化物および窒化物半導体薄膜のバッファ層の形成
温度が350℃から200℃程度まで低温化でき、しか
も低温でも高速に成膜でき、基板表面における化合物半
導体の分子の配置が規則的になるため、良質なアモルフ
ァス状のバッファ層が形成でき、その上に形成する砒化
物あるいは窒化物半導体薄膜は欠陥密度や表面ラフネス
が小さい高品質な砒化物あるいは窒化物半導体薄膜とな
る。
As described above, according to the method for forming a compound semiconductor film according to the present invention, a laser beam is applied to a source gas from outside the reaction chamber in parallel with the substrate to cause decomposition and reaction. Since the compound semiconductor film is deposited on the substrate, the formation temperature of the buffer layer of the amorphous arsenide and nitride semiconductor thin films can be reduced from 350 ° C. to about 200 ° C. without using a complicated process. A film can be formed at high speed, and the arrangement of the molecules of the compound semiconductor on the substrate surface becomes regular, so that a high-quality amorphous buffer layer can be formed, and the arsenide or nitride semiconductor thin film formed thereon has a defect density or surface density. A high quality arsenide or nitride semiconductor thin film with small roughness is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る化合物半導体膜の形成方法を説明
するための装置を示す図であり、(a)は平面視した
図、(b)は側面視した図である。
FIGS. 1A and 1B are views showing an apparatus for explaining a method of forming a compound semiconductor film according to the present invention, wherein FIG. 1A is a plan view and FIG. 1B is a side view.

【符号の説明】[Explanation of symbols]

1‥‥‥反応室、2‥‥‥サセプタ、3‥‥‥基板、5
‥‥‥レーザー、L‥‥‥レーザー光
1 reaction chamber, 2 susceptor, 3 substrate, 5
‥‥‥ Laser, L ‥‥‥ Laser light

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01S 3/18 H01S 3/18 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI H01S 3/18 H01S 3/18

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 反応室内に基板を設置してこの反応室内
に導入した複数の原料ガスを分解して他の原料ガスの成
分と反応させることによって前記基板上に化合物半導体
膜を堆積させる化合物半導体膜の形成方法において、前
記化合物半導体膜を堆積させる初期において、レーザー
光を前記反応室の外部から前記原料ガスに前記基板と平
行に照射して前記複数の原料ガスを分解して反応させる
ことによって、前記基板上に前記化合物半導体膜を堆積
させることを特徴とする化合物半導体膜の形成方法。
1. A compound semiconductor in which a substrate is placed in a reaction chamber and a plurality of source gases introduced into the reaction chamber are decomposed and reacted with other components of the source gas to deposit a compound semiconductor film on the substrate. In the method of forming a film, in the initial stage of depositing the compound semiconductor film, by irradiating the source gas from outside the reaction chamber to the source gas in parallel with the substrate, the plurality of source gases are decomposed and reacted. Depositing the compound semiconductor film on the substrate.
【請求項2】 前記化合物半導体膜が100〜2000
Åの厚みになるまで、前記レーザー光を前記原料ガスに
照射することを特徴とする請求項1に記載の化合物半導
体膜の形成方法。
2. The method according to claim 1, wherein the compound semiconductor film has a thickness of 100 to 2,000.
2. The method according to claim 1, wherein the laser beam is applied to the source gas until the thickness becomes Å.
【請求項3】 前記レーザー光が200nm以下の発振
波長を有するエキシマレーザーであることを特徴とする
請求項1に記載の化合物半導体膜の形成方法。
3. The method according to claim 1, wherein the laser light is an excimer laser having an oscillation wavelength of 200 nm or less.
【請求項4】 前記反応室に前記レーザー光を取り入れ
る窓を設け、この窓に不活性ガスを照射しながら、前記
レーザー光を前記原料ガスに照射することを特徴とする
化合物半導体膜の形成方法。
4. A method for forming a compound semiconductor film, comprising: providing a window for taking in the laser beam in the reaction chamber; and irradiating the source beam with the laser beam while irradiating the window with an inert gas. .
JP29705497A 1997-10-29 1997-10-29 Formation of compound semiconductor film Pending JPH11135436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29705497A JPH11135436A (en) 1997-10-29 1997-10-29 Formation of compound semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29705497A JPH11135436A (en) 1997-10-29 1997-10-29 Formation of compound semiconductor film

Publications (1)

Publication Number Publication Date
JPH11135436A true JPH11135436A (en) 1999-05-21

Family

ID=17841626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29705497A Pending JPH11135436A (en) 1997-10-29 1997-10-29 Formation of compound semiconductor film

Country Status (1)

Country Link
JP (1) JPH11135436A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774348B2 (en) 2002-06-04 2004-08-10 Honeywell International Inc. Method and apparatus for monitoring the power of a multi-wavelength optical signal
JP2007273843A (en) * 2006-03-31 2007-10-18 Fujifilm Corp Deposition method, semiconductor layer, and semiconductor device
JP2007294877A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Semiconductor device, its film forming method, and semiconductor light emitting element
JP2007294878A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Semiconductor layer, depositing method, semiconductor light emitting device and semiconductor luminescent device
US7505688B2 (en) 2002-06-04 2009-03-17 Finisar Corporation Optical transceiver
US7831152B2 (en) 2002-06-04 2010-11-09 Finisar Corporation Optical transceiver
JP2010534933A (en) * 2007-07-27 2010-11-11 エルジー イノテック カンパニー リミテッド Semiconductor light emitting device and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6774348B2 (en) 2002-06-04 2004-08-10 Honeywell International Inc. Method and apparatus for monitoring the power of a multi-wavelength optical signal
US7505688B2 (en) 2002-06-04 2009-03-17 Finisar Corporation Optical transceiver
US7831152B2 (en) 2002-06-04 2010-11-09 Finisar Corporation Optical transceiver
JP2007273843A (en) * 2006-03-31 2007-10-18 Fujifilm Corp Deposition method, semiconductor layer, and semiconductor device
JP2007294877A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Semiconductor device, its film forming method, and semiconductor light emitting element
JP2007294878A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Semiconductor layer, depositing method, semiconductor light emitting device and semiconductor luminescent device
JP2010534933A (en) * 2007-07-27 2010-11-11 エルジー イノテック カンパニー リミテッド Semiconductor light emitting device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US9929011B2 (en) Formation of heteroepitaxial layers with rapid thermal processing to remove lattice dislocations
JP4401168B2 (en) Method for forming an independent (Al, Ga, In) N article
US4876219A (en) Method of forming a heteroepitaxial semiconductor thin film using amorphous buffer layers
JP2005527978A (en) Method of manufacturing a gallium nitride film separated from a substrate by epitaxy
US7888250B2 (en) Method and apparatus for activating compound semiconductor
JPH11135436A (en) Formation of compound semiconductor film
JP2006303258A (en) Method for growing p-type nitride semiconductor
JP2003332234A (en) Sapphire substrate having nitride layer and its manufacturing method
JPH09266218A (en) Method to reduce resistance of p-type compound semiconductor
JPH08203862A (en) Method for etching nitride compound semiconductor
US5213654A (en) Vapor-phase epitaxial growth method for semiconductor crystal layers
JP3077781B2 (en) Method for growing indium gallium nitride
JP2549835B2 (en) Method for manufacturing compound semiconductor thin film
JPH05186295A (en) Method for growing crystal
JP2003179027A (en) Method of etching nitride system compound semiconductor
JP3182584B2 (en) Compound thin film forming method
JPH0744154B2 (en) Light irradiation type low temperature MOCVD method and apparatus
JPH04187597A (en) Production of thin film of gallium nitride
GB2576262A (en) Formation of heteroepitaxial layers with rapid thermal processing to remove lattice dislocations
JP2008294223A (en) Method of growing iii-v compound semiconductor film
JPH09293678A (en) Semiconductor wafer with ingan layer, manufacture thereof, and light emitting device equipped therewith
JPH10251100A (en) Growing method of compound semiconductor crystal
JP2004047865A (en) Method and device for manufacturing indium nitride thin film and indium nitride alloy thin film
JPH05243150A (en) Molecular beam epitaxial growth and device thereof
JPH03119721A (en) Crystal growth